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Abstract

We discuss scaling limits of large bipartite quadrangulations of positive genus. For a
given g, we consider, for every n ≥ 1, a random quadrangulation qn uniformly distributed
over the set of all rooted bipartite quadrangulations of genus g with n faces. We view
it as a metric space by endowing its set of vertices with the graph distance. As n tends
to infinity, this metric space, with distances rescaled by the factor n−1/4, converges in
distribution, at least along some subsequence, toward a limiting random metric space. This
convergence holds in the sense of the Gromov-Hausdorff topology on compact metric spaces.
We show that, regardless of the choice of the subsequence, the limiting space is almost surely
homeomorphic to the genus g-torus.

1 Introduction

1.1 Motivation

The present work is a sequel to [3], whose aim is to investigate the topology of scaling limits
for random maps of arbitrary genus. A map is a cellular embedding of a finite graph (possibly
with multiple edges and loops) into a compact connected orientable surface without boundary,
considered up to orientation-preserving homeomorphisms. By cellular, we mean that the faces
of the map—the connected components of the complement of edges—are all homeomorphic to
disks. The genus of the map is defined as the genus of the surface into which it is embedded.
For technical reasons, it will be convenient to deal with rooted maps, meaning that one of the
half-edges—or oriented edges—is distinguished.

We will particularly focus on bipartite quadrangulations: a map is a quadrangulation if all
its faces have degree 4; it is bipartite if each vertex can be colored in black or white, in such
a way that no edge links two vertices that have the same color. Although in genus g = 0, all
quadrangulations are bipartite, this is no longer true in positive genus g ≥ 1.

A natural way to generate a large random bipartite quadrangulation of genus g is to choose it
uniformly at random from the set Qn of all rooted bipartite quadrangulations of genus g with n
faces, and then consider the limit as n goes to infinity. A natural setting for this problem is to
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consider quadrangulations as metric spaces endowed with their graph distance, properly rescaled
by the factor n−1/4 [20], and to study their limit in the Gromov-Hausdorff topology [14]. From
this point of view, the planar case g = 0 has largely been studied during the last decade. Le
Gall [17] showed the convergence of these metric spaces along some subsequence. It is believed
that the convergence holds without the “along some subsequence” part in the last sentence,
and Le Gall gave a conjecture for a limiting space to this sequence [17]. Although the whole
convergence is yet to be proved, some information is available on the accumulation points of this
sequence. Le Gall and Paulin [19] proved that every possible limiting metric space is almost
surely homeomorphic to the two-dimensional sphere. Miermont [21] later gave a variant proof of
this fact.

We showed in [3] that the convergence along some subsequence still holds in any fixed positive
genus g. In this work, we show that the topology of every possible limiting space is that of the
genus g-torus Tg.

1.2 Main results

We will work in fixed genus g. On the whole, we will not let it figure in the notations, in order
to lighten them. As the case g = 0 has already been studied, we suppose g ≥ 1.

We use the following formalism for maps. For any map m, we denote by V (m) and E(m)

respectively its sets of vertices and edges. We also call ~E(m) its set of half-edges, and e∗ ∈ ~E(m)

its root. For any half-edge e, we write ē its reverse—so that E(m) = {{e, ē} : e ∈ ~E(m)}—as

well as e− and e+ its origin and end. Finally, we say that Ě(m) ⊂ ~E(m) is an orientation of the
half-edges if for every edge {e, ē} ∈ E(m) exactly one of e or ē belongs to Ě(m).

Recall that the Gromov-Hausdorff distance between two compact metric spaces (X , δ) and
(X ′, δ′) is defined by

dGH ((X , δ), (X ′, δ′)) := inf
{

dHaus

(

ϕ(X ), ϕ′(X ′)
)}

,

where the infimum is taken over all isometric embeddings ϕ : X → X ′′ and ϕ′ : X ′ → X ′′ of X
and X ′ into the same metric space (X ′′, δ′′), and dHaus stands for the usual Hausdorff distance
between compact subsets of X ′′. This defines a metric on the set M of isometry classes of compact
metric spaces ([6, Theorem 7.3.30]), making it a Polish space1.

Any map m possesses a natural graph metric dm: for any a, b ∈ V (m), the distance dm(a, b)
is defined as the number of edges of any shortest path linking a to b. The main result of [3] is
the following.

Proposition 1 Let qn be uniformly distributed over the set Qn of all bipartite quadrangulations
of genus g with n faces. Then, from any increasing sequence of integers, we may extract a
subsequence (nk)k≥0 such that there exists a metric space (q∞, d∞) satisfying

(

V (qnk
),

1

γn
1/4
k

dqnk

)

(d)−−−−→
k→∞

(q∞, d∞)

in the sense of the Gromov-Hausdorff topology, where

γ :=

Å

8

9

ã
1
4

.

Moreover, the Hausdorff dimension of the limit space (q∞, d∞) is almost surely equal to 4,
regardless of the choice of the sequence of integers.

1This is a simple consequence of Gromov’s compactness theorem [6, Theorem 7.4.15].
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Note that, a priori, the metric space (q∞, d∞) depends on the subsequence (nk)k≥0. Similarly
to the planar case, we believe that the extraction in Proposition 1 is not necessary, and we
conjecture the space (q∞, d∗∞) for the limit, where d∗∞ was defined at the end of Section 6.3
in [3]. We may now state our main result, which identifies the topology of (q∞, d∞), regardless
of the subsequence (nk)k≥0.

Theorem 2 The metric space (q∞, d∞) is a.s. homeomorphic to the g-torus Tg.

The methods we will use are the following. We will code quadrangulations of genus g by maps
of genus g with only one face—called g-trees—through a bijection due to Chapuy, Marcus, and
Schaeffer [8]. These g-trees naturally generalize (plane) trees (note, in particular, that 0-trees
are merely plane trees), and this bijection generalizes Shaeffer’s bijection, which codes planar
quadrangulations via plane trees. In the limit, we will see (q∞, d∞) as a quotient of a continuous
analog to a g-tree, which we call real g-tree. Through a fine study of this quotient and thanks to
the notion of 1-regularity introduced by Whyburn [25] and studied by Whyburn and Begle [1, 25],
we will see that the convergence of Proposition 1 is sufficently “regular” in some sense. Finally,
we will use a bijection due to Chapuy [7] in order to “transfer” some results from the planar case
to the case of positive genus.

We will use the background provided in [3]. We briefly recall it in Section 2. In Section 3, we
define real g-trees and explain how we may see (q∞, d∞) as a quotient of such objects. Theorem 8
in Section 4 gives a criteria telling which points are identified in this quotient, and Section 5 is
dedicated to the proof of Theorem 2. Finally, we expose in Section 6 Chapuy’s bijection [7], and
use it to prove four technical lemmas stated during Section 4.

2 Preliminaries

In this section, we recall the notations, settings, and results from [3] that we will need for this
work. We refer the reader to [3] for more details.

2.1 The Chapuy-Marcus-Schaeffer bijection

The first main tool we will need consists in the Chapuy-Marcus-Schaeffer bijection [8, Corollary 2
to Theorem 1], which allows us to code (rooted) quadrangulations by so-called well-labeled
(rooted) g-trees.

It may be convenient to represent a g-tree t with n edges by a 2n-gon whose edges are pairwise
identified (see Figure 1). We note e1 := e∗, e2, . . . , e2n the half-edges of t arranged according to
the clockwise order around this 2n-gon. The half-edges are said to be arranged according to the
facial order of t. Informally, for 2 ≤ i ≤ 2n, ei is the “first half-edge to the left after ei−1.” We
call facial sequence of t the sequence t(0), t(1), . . . , t(2n) defined by t(0) = t(2n) = e−1 = e+2n
and for 1 ≤ i ≤ 2n− 1, t(i) = e+i = e−i+1. Imagine a fly flying along the boundary of the unique
face of t. Let it start at time 0 by following the root e∗ and let it take one unit of time to follow
each half-edge, then t(i) is the vertex where the fly is at time i.

Let t be a g-tree. The two vertices u, v ∈ V (t) are said to be neighbors, and we write u ∼ v,
if there is an edge linking them.

Definition 1 A well-labeled g-tree is a pair (t, l) where t is a g-tree and l : V (t) → Z is a
function (thereafter called labeling function) satisfying:

i. l(e−∗ ) = 0, where e∗ is the root of t,

3
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e1e2
e3

e4
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e6

e7
e8

e9

t(0), t(2)

t(1)

t(3)

t(4), t(7), t(9)

t(5)
t(6)

t(8)

Figure 1: Left. The facial order and facial sequence of a g-tree. Right. Its representation as a polygon
whose edges are pairwise identified.

ii. if u ∼ v, then |l(u)− l(v)| ≤ 1.

We call Tn the set of all well-labeled g-trees with n edges. A pointed quadrangulation is
a pair (q, v•) consisting in a quadrangulation q together with a distinguished vertex v• ∈ V (q).
We call Q•

n := {(q, v•) : q ∈ Qn, v
• ∈ V (q)} the set of all pointed bipartite quadrangulations of

genus g with n faces.

The Chapuy-Marcus-Schaeffer bijection is a bijection between the sets Tn×{−1,+1} and Q•
n.

Let us now briefly describe the mapping from Tn×{−1,+1} ontoQ•
n. We refer the reader to [8] for

a more precise description. Let (t, l) ∈ Tn be a well-labeled g-tree with n edges and ε ∈ {−1,+1}.
As above, we write t(0), t(1), . . . , t(2n) its facial sequence. The pointed quadrangulation (q, v•)
corresponding to ((t, l), ε) is then constructed as follows. First, shift all the labels in such a
way that the minimal label is equal to 1. Let us call l̃ := l − min l + 1 this shifted labeling
function. Then, add an extra vertex v• carrying the label l̃(v•) := 0 inside the only face of t.
Finally, following the facial sequence, for every 0 ≤ i ≤ 2n− 1, draw an arc—without crossing
any edge of t or arc already drawn—between t(i) and t(succ(i)), where succ(i) is the successor

of i, defined by

succ(i) :=

®

inf{k ≥ i : l̃(t(k)) = l̃(t(i))− 1} if {k ≥ i : l̃(t(k)) = l̃(t(i))− 1} 6= ∅,

inf{k ≥ 1 : l̃(t(k)) = l̃(t(i))− 1} otherwise,
(1)

with the conventions inf ∅ = ∞, and t(∞) = v•.
The quadrangulation q is then defined as the map whose set of vertices is V (t)∪ {v•}, whose

edges are the arcs we drew and whose root is the first arc drawn, oriented from t(0) if ε = −1 or
toward t(0) if ε = +1 (see Figure 2).

Because of the way we drew the arcs of q, we see that for any vertex v ∈ V (q), l̃(v) = dq(v
•, v).

When seen as a vertex in V (q), we write q(i) instead of t(i). In particular, {q(i), 0 ≤ i ≤ 2n} =
V (q)\{v•}.

We end this section by giving an upper bound for the distance between two vertices q(i) and
q(j), in terms of the labeling function l:

dq(q(i), q(j)) ≤ l(t(i)) + l(t(j)) − 2max

Ç

min
k∈

−−→
Ji,jK

l(t(k)), min
k∈

−−→
Jj,iK

l(t(k))

å

+ 2 (2)
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Figure 2: The Chapuy-Marcus-Schaeffer bijection. In this example, ε = 1. On the bottom-left picture,
the vertex v• has a thicker (red) borderline.

where we note, for i ≤ j, Ji, jK := [i, j] ∩ Z = {i, i+ 1, . . . , j}, and

−−→
Ji, jK :=

ß

Ji, jK if i ≤ j,
Ji, 2nK ∪ J0, jK if j < i.

(3)

We refer the reader to [22, Lemma 4] for a detailed proof of this bound.

2.2 Decomposition of a g-tree

We explained in [3] how to decompose a g-tree into simpler objects. Roughly speaking, it is a
scheme (a g-tree whose all vertices have degree at least 3) in which every half-edge is replaced
by a forest.

2.2.1 Forests

We adapt the standard formalism for plane trees—as found in [23] for instance—to forests. Let
U :=

⋃∞
n=1 N

n, where N := {1, 2, . . .}. If u ∈ N
n, we write |u| := n. For u = (u1, . . . , un),

v = (v1, . . . , vp) ∈ U , we let uv := (u1, . . . , un, v1, . . . , vp) be the concatenation of u and v. If
w = uv for some u, v ∈ U , we say that u is a ancestor of w and that w is a descendant of u.
In the case where v ∈ N, we may also use the terms parent and child instead.

Definition 2 A forest is a finite subset f ⊂ U satisfying the following:

i. there is an integer t(f) ≥ 1 such that f ∩ N = J1, t(f) + 1K,

ii. if u ∈ f, |u| ≥ 2, then its parent belongs to f,
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iii. for every u ∈ f, there is an integer cu(f) ≥ 0 such that ui ∈ f if and only if 1 ≤ i ≤ cu(f),

iv. ct(f)+1(f) = 0.

The integer t(f) encountered in i. and iv. is called the number of trees of f.

For u = (u1, . . . , up) ∈ f, we call a(u) := u1 its oldest ancestor. A tree of f is a level set for a:
for 1 ≤ j ≤ t(f), the j-th tree of f is the set {u ∈ f : a(u) = j}. The integer a(u) hence records
which tree u belongs to. We call f ∩N = {a(u), u ∈ f} the floor of the forest f.

For u, v ∈ f, we write u ∼ v if either u is a parent or child of v, or u, v ∈ N and |u− v| = 1.
It is convenient, when representing a forest, to draw edges between u’s and v’s such that u ∼ v
(see Figure 3). We say that an edge drawn between a parent and its child is a tree edge

whereas an edge drawn between an i and an i + 1 will be called a floor edge. We call Fm
σ :=

{f : t(f) = σ, |f| = m+ σ + 1} the set of all forests with σ trees and m tree edges.

Definition 3 A well-labeled forest is a pair (f, l) where f is a forest and l : f → Z is a function
satisfying:

i. for all u ∈ f ∩ N, l(u) = 0,

ii. if u ∼ v, |l(u)− l(v)| ≤ 1.

Let Fm
σ := {(f, l) : f ∈ Fm

σ } be the set of well-labeled forests with σ trees and m tree edges.

Encoding by contour and spatial contour functions

There is a very convenient way to code forests and well-labeled forests. Let f ∈ Fm
σ be a forest.

Let us begin by defining its facial sequence f(0), f(1), . . . , f(2m+ σ) as follows (see Figure 3):
f(0) := 1, and for 0 ≤ i ≤ 2m+ σ − 1,

⋄ if f(i) has children that do not appear in the sequence f(0), f(1), . . . , f(i), then f(i+1) is the
first of these children, that is f(i+ 1) := f(i)j0 where

j0 = min {j ≥ 1 : f(i)j /∈ {f(0), f(1), . . . , f(i)}} ,

⋄ otherwise, if f(i) has a parent (that is |f(i)| ≥ 2), then f(i+ 1) is this parent,

⋄ if neither of these cases occur, which implies that |f(i)| = 1, then f(i+ 1) := f(i) + 1.

11 1

1 22

0

0000 0 0 00

00

0 0

-1 -1 -1-1

-1 -1

-1

-2 -2

f(0), f(8)

f(1), f(5), f(7)

f(2), f(4)

f(3)
f(6)

f(9)

f(10)

Figure 3: The facial sequence of a well-labeled forest from F20
7 .

Each tree edge is visited exactly twice—once going from the parent to the child, once going
the other way around—whereas each floor edge is visited only once—from some i to i+ 1. As a
result, f(2m+ σ) = t(f) + 1.
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The contour pair (Cf, Lf,l) of (f, l) consists in the contour function Cf : [0, 2m+ σ] → R+

of f and the spatial contour function Lf,l : [0, 2m+ σ] → R defined by

Cf(i) := |f(i)|+ t(f)− a (f(i)) and Lf,l(i) := l(f(i)), 0 ≤ i ≤ 2m+ σ,

and linearly interpolated between integer values (see Figure 4). It entirely determines (f, l).

Cf

Lf,l

Figure 4: The contour pair of the well-labeled forest appearing in Figure 3. The paths are dashed on the
intervals corresponding to floor edges.

2.2.2 Decomposition of a well-labeled g-tree into simpler objects

We explain here how to decompose a well-labeled g-tree. See [3] for a more precise description.

Definition 4 We call scheme of genus g a g-tree with no vertices of degree one or two. A
scheme is said to be dominant when it only has vertices of degree exactly three.

We call S the finite set of all schemes of genus g and S∗ the set of all dominant schemes of
genus g.

Let us first explain how to decompose a g-tree (without labels) into a scheme, a family of

forests, and an integer. Let s be a scheme. We suppose that we have forests fe ∈ Fme

σe , e ∈ ~E(s),
where for all e, σē = σe, as well as an integer u ∈ J0, 2me∗ + σe∗ − 1K. We construct a g-tree as
follows. First, we replace every edge {e, ē} in s with a chain of σe = σē edges. Then, for every

half-edge e ∈ ~E(s), we replace the chain of half-edges corresponding to it with the forest fe, in
such a way that its floor matches with the chain. In other words, we “graft” the forest fe to the
left of e. Finally, the root of the g-tree is the half-edge linking fe∗(u) to fe∗(u + 1) in the forest
grafted on the left of e∗.

Proposition 3 The above description provides a bijection between the set of all g-trees and the

set of all triples
Ä

s, (fe)
e∈ ~E(s), u

ä

where s ∈ S is a scheme (of genus g), the forests fe ∈ Fme

σe are

such that σē = σe for all e and u ∈ J0, 2me∗ + σe∗ − 1K.
Moreover, g-trees with n edges correspond to triples satisfying

∑

e∈~E(s)

(

me + 1
2σ

e
)

= n.

Let t be a g-tree and
Ä

s, (fe)
e∈ ~E(s), u

ä

be the corresponding triple. We say that s is the scheme

of t and that the forests fe, e ∈ ~E(s), are its forests. The set V (s) may be seen as a subset of t; we
call nodes its elements. Finally, we call floor of t the set fl of vertices we obtain after replacing
the edges of s by chains of edges (see Figure 5).

We now deal with well-labeled g-trees. We will need the following definition:
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Definition 5 We call Motzkin path a sequence of the form (Mn)0≤n≤σ for some σ ≥ 0 such
that M0 = 0 and for 0 ≤ i ≤ σ − 1, Mi+1 −Mi ∈ {−1, 0, 1}. We write σ(M) := σ its lifetime.

Let s be a scheme. We suppose that we have well-labeled forests (fe, le) ∈ Fme

σe , e ∈ ~E(s), where
for all e, σē = σe, as well as an integer u ∈ J0, 2me∗ + σe∗ − 1K. Suppose moreover that we have

a family of Motzkin paths (Me)
e∈~E(s) such that Me is defined on J0, σeK and Me(σe) = le

+ − le
−

for some family of integers (lv)v∈V (s) with le
−

∗ = 0. We suppose that the Motzkin paths satisfy
the following relation:

Mē(i) = Me(σe − i)− le, 0 ≤ i ≤ σe.

We will say that a quadruple
(

s, (Me)
e∈ ~E(s), (f

e, le)
e∈~E(s), u

)

satisfying these constraints is com-

patible.
We construct a well-labeled g-tree as follows. We begin by suitably relabeling the forests. For

every half-edge e, first, we shift the labels of Me by le
−

so that it goes from le
−

to le
+

. Then, we
shift all the labels of (fe, le) tree by tree according to the Motzkin path: precisely, we change le

into w ∈ fe 7→ le
−

+Me(a(w) − 1) + le(w). Then, we replace the half-edge e with this forest, as
in the previous section. As before, we find the position of the root thanks to u. Finally, we shift
all the labels for the root label to be equal to 0.
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1
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3
3

4
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s
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fe, le

Me

Figure 5: Decomposition of a well-labeled g-tree t into its scheme s, the collection of its Motzkin paths
(Me)e∈~E(s), and the collection of its well-labeled forests (fe, le)e∈~E(s). In this example, the integer u = 10.
The floor of t is more thickly outlined, and its two nodes are even more thickly outlined.

Proposition 4 The above description provides a bijection between the set of all well-labeled
g-trees and the set of all compatible quadruples

(

s, (Me)
e∈ ~E(s), (f

e, le)
e∈~E(s), u

)

.

Moreover, g-trees with n edges correspond to quadruples satisfying
∑

e∈~E(s)

(

me + 1
2σ

e
)

= n.

If we call (Ce, Le) the contour pair of (fe, le), then we may retrieve the oldest ancestor of fe(i)
thanks to Ce by the relation

a
(

fe(i)
)

− 1 = σe − Ce(i),

where we use the notation
Xs := inf

[0,s]
X
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for any process (Xs)s≥0. The function

Le :=
(

Le(t) +Me
(

σe − Ce(t)
)

)

0≤t≤2me+σe

(4)

then records the labels of the forest fe, once shifted tree by tree according to the Motzkin pathMe.
This function will be used in Section 2.4.

Through the Chapuy-Marcus-Schaeffer bijection, a uniform random quadrangulation corre-
sponds to a uniform random well-labeled g-tree. It can then be decomposed into a scheme, a
collection of well-labeled forests, a collection of Motzkin paths and an integer, as explained above.
The following section exposes the scaling limits of these objects.

2.3 Scaling limits

Let us define the space K of continuous real-valued functions on R+ killed at some time:

K :=
⋃

x∈R+

C([0, x],R).

For an element f ∈ K, we will define its lifetime σ(f) as the only x such that f ∈ C([0, x],R).
We endow this space with the following metric:

dK(f, g) := |σ(f)− σ(g)|+ sup
y≥0

∣

∣f
(

y ∧ σ(f)
)

− g
(

y ∧ σ(g)
)∣

∣ .

Throughout this section, m and σ will denote positive real numbers and l will be any real
number.

2.3.1 Brownian bridges, first-passage Brownian bridges, and Brownian snake

We define here the Brownian bridge B0→l
[0,m] on [0,m] from 0 to l and the first-passage Brownian

bridge F 0→−σ
[0,m] on [0,m] from 0 to −σ. Informally, B0→l

[0,m] and F 0→−σ
[0,m] are a standard Brownian

motion β on [0,m] conditioned respectively on the events {βm = l} and {inf{s ≥ 0 : βs =
−σ} = m}. Because both theses events occur with probability 0, we need to define these objects
properly. There are several equivalent ways do do so (see for example [2, 4, 24]). We call pa the
density of a centered Gaussian variable with variance a, as well as p′a its derivative:

pa(x) :=
1√
2π a

exp

Å

−x2

2a

ã

and p′a(x) = −x

a
pa (x) .

Let (βt)0≤t≤m be a standard Brownian motion. As explained in [13, Proposition 1], the law
of the Brownian bridge is characterized by B0→l

[0,m](m) = l and the formula

E

[

f
(

Ä

B0→l
[0,m](t)

ä

0≤t≤m′

)]

= E

ï

f
Ä

(βt)0≤t≤m′

ä pm−m′(l − βm′)

pm(l)

ò

for all bounded measurable function f on K, for all 0 ≤ m′ < m. We define the law of the
first-passage Brownian bridge in a similar way, by letting

E

[

f
(

Ä

F 0→−σ
[0,m] (t)

ä

0≤t≤m′

)]

= E

ï

f
Ä

(βt)0≤t≤m′

ä p′m−m′(−σ − βm′)

p′m(−σ)
1{βm′>−σ}

ò

(5)
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for all bounded measurable function f on K, for all 0 ≤ m′ < m, and F 0→−σ
[0,m] (m) = −σ.

For any real numbers l1, l2, σ1 > σ2, we define the bridge on [0,m] from l1 to l2 and the
first-passage bridge on [0,m] from σ1 to σ2 by

Bl1→l2
[0,m] (s) := l1 +B0→l2−l1

[0,m] and F σ1→σ2

[0,m]
:= σ1 + F 0→σ2−σ1

[0,m] .

We showed in [3, Lemmas 10 and 14] that these objects appear as the limits of their discrete
analogs.

Conditionally given a first passage Brownian bridge F = F σ→0
[0,m], we define a Gaussian process

(

Z[0,m](s)
)

0≤s≤m
with covariance function

cov
(

Z[0,m](s), Z[0,m](s
′)
)

= inf
[s∧s′,s∨s′]

(F − F ).

The process
(

F σ→0
[0,m], Z[0,m]

)

has the law of the so-called Brownian snake’s head (see [11, 15] for

more details).

2.3.2 Convergence results

Recall that S∗ is the set of all dominant schemes of genus g, that is schemes with only vertices of

degree 3. For any s ∈ S, we identify an element (m,σ, l, u) ∈ R
~E(s)\{e∗}
+ ×(R∗

+)
Ě(s)×R

V (s)\{e−
∗
}×

R+ with an element of R
~E(s)
+ × (R∗

+)
~E(s) × R

V (s) × R+ by setting

⋄ me∗ := 1−∑
e∈ ~E(s)\{e∗}

me,

⋄ σē := σe for every e ∈ Ě(s),

⋄ le
−

∗ := 0.

We write
∆s :=

¶

(xe)e∈ ~E(s) ∈ [0, 1]
~E(s),

∑

e∈~E(s) xe = 1
©

the simplex of dimension | ~E(s)| − 1. Note that m lies in ∆s as long as me∗ ≥ 0. We define the

probability µ by, for all measurable function ϕ on
⋃

s∈S{s} ×∆s × (R∗
+)

~E(s) × R
V (s) × [0, 1],

µ(ϕ) =
1

Υ

∑

s∈S∗

∫

Ss

dLs 1{me∗≥0, u<me∗} ϕ (s,m, σ, l, u)
∏

e∈~E(s)

−p′me (σe)
∏

e∈Ě(s)

pσe (le) ,

where dLs = d(me) d(σe) d(lv) du is the Lebesgue measure on the set

Ss := [0, 1]
~E(s)\{e∗} × (R∗

+)
Ě(s) × R

V (s)\{e−
∗
} × [0, 1]

and

Υ =
∑

s∈S∗

∫

Ss

dLs 1{me∗≥0, u<me∗}

∏

e∈~E(s)

−p′me (σe)
∏

e∈Ě(s)

pσe (le) (6)

is a normalization constant. We gave a non-integral expression for this constant in [3].

Let (tn, ln) be uniformly distributed over the set Tn of well-labeled g-trees with n vertices.
We call sn its scheme and we define, as in Section 2.2, (fen, l

e
n)e∈~E(sn)

its well-labeled forests,
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(me
n)e∈ ~E(sn)

and (σe
n)e∈ ~E(sn)

respectively their sizes and lengths, (lvn)v∈V (sn) the shifted labels of

its nodes, (Me
n)e∈~E(sn)

its Motzkin paths, and un the integer recording the position of the root

in the first forest fe∗n . We call (Ce
n, L

e
n) the contour pair of the well-labeled forest (fen, l

e
n) and

we extend the definition of Me
n to [0, σe

n] by linear interpolation. We then define the rescaled
versions of these objects,

me
(n) :=

2me
n + σe

n

2n
, σe

(n) :=
σe
n√
2n

, lv(n) :=
lvn

γ n
1
4

, u(n) :=
un

2n

and

Ce
(n) :=

Å

Ce
n(2nt)√
2n

ã

0≤t≤me

(n)

, Le
(n) :=

Ç

Le
n(2nt)

γ n
1
4

å

0≤t≤me

(n)

, Me
(n) :=

Ç

Me
n(
√
2n t)

γ n
1
4

å

0≤t≤σe

(n)

.

Remark. Throughout this paper, the notations with a parenthesized n will always refer to
suitably rescaled objects, as in the definitions above.

We described in [3] the limiting law of these objects:

Proposition 5 The random vector
Ä

sn,
(

me
(n)

)

e∈~E(sn)
,
(

σe
(n)

)

e∈~E(sn)
,
(

lv(n)
)

v∈V (sn)
, u(n),

(

Ce
(n), L

e
(n)

)

e∈~E(sn)
,
(

Me
(n)

)

e∈~E(sn)

ä

converges in law toward the random vector
Ä

s∞, (me
∞)

e∈~E(s∞) , (σ
e
∞)

e∈~E(s∞) , (l
v
∞)v∈V (s∞) , u∞, (Ce

∞, Le
∞)

e∈~E(s∞) , (M
e
∞)

e∈~E(s∞)

ä

whose law is defined as follows:

⋄ the law of the vector

I∞ :=
Ä

s∞, (me
∞)

e∈~E(s∞) , (σ
e
∞)

e∈ ~E(s∞) , (l
v
∞)v∈V (s∞) , u∞

ä

is the probability µ,

⋄ conditionally given I∞,

– the processes (Ce
∞, Le

∞), e ∈ ~E(s∞) and (Me
∞), e ∈ Ě(s∞) are independent,

– the process (Ce
∞, Le

∞) has the law of a Brownian snake’s head on [0,me
∞] going from

σe
∞ to 0:

(Ce
∞, Le

∞)
(d)
=
Ä

F
σe

∞
→0

[0,me

∞
], Z[0,me

∞
]

ä

,

– the process (Me
∞) has the law of a Brownian bridge on [0, σe

∞] from 0 to le∞ := le
+

∞−le
−

∞ :

(Me
∞)

(d)
= B

0→le
∞

[0,σe

∞
],

– the Motzkin paths are linked through the relation

Mē
∞(s) = Me

∞(σe
∞ − s)− le∞.

Applying the Skorokhod theorem, we may and will assume that this convergence holds almost
surely. As a result, note that for n large enough, sn = s∞.
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2.4 Maps seen as quotients of [0, 1]

Let qn be uniformly distributed over the set Qn of bipartite quadrangulations of genus g with n
faces. Conditionally given qn, we take v•n uniformly over V (qn) so that (qn, v

•
n) is uniform over

the set Q•
n of pointed bipartite quadrangulations of genus g with n faces. Recall that every

element of Qn has the same number of vertices: n + 2 − 2g. Through the Chapuy-Marcus-
Schaeffer bijection, (qn, v

•
n) corresponds to a uniform well-labeled g-tree with n edges (tn, ln).

The parameter ε ∈ {−1, 1} appearing in the bijection will be irrelevant to what follows.
Recall the notations tn(0), tn(1), . . . , tn(2n) and qn(0), qn(1), . . . , qn(2n) from Section 2.1.

For technical reasons, it will be more convenient, when traveling along the g-tree, not to begin
by its root but rather by the first edge of the first forest. Precisely, we define

ṫn(i) :=

ß

tn(i− un + 2n) if 0 ≤ i ≤ un,
tn(i− un) if un ≤ i ≤ 2n,

where un is the integer recording the position of the root in the first forest of tn. We define q̇n
in a similar way. We endow J0, 2nK with the pseudo-metric dn defined by

dn(i, j) := dqn
(q̇n(i), q̇n(j)) .

We define the equivalence relation ∼n on J0, 2nK by declaring that i ∼n j if q̇n(i) = q̇n(j), that
is if dn(i, j) = 0. We call πn the canonical projection from J0, 2nK to J0, 2nK/∼n

and we slightly
abuse notation by seeing dn as a metric on J0, 2nK/∼n

defined by dn(πn(i), πn(j)) := dn(i, j). In
what follows, we will always make the same abuse with every pseudo-metric. The metric space
(

J0, 2nK/∼n
, dn
)

is then isometric to (V (qn)\{v•n}, dqn
), which is at dGH -distance at most 1 from

the space (V (qn), dqn
).

We extend the definition of dn to non integer values by linear interpolation and define its
rescaled version: for s, t ∈ [0, 1], we let

d(n)(s, t) :=
1

γ n
1
4

dn(2ns, 2nt). (7)

Spatial contour function of (tn, ln)

The spatial contour function of (tn, ln) is the function Ln : [0, 2n] → R, defined by

Ln(i) := ln
(

ṫn(i)
)

− ln
(

ṫn(0)
)

, 0 ≤ i ≤ 2n,

and linearly interpolated between integer values. Its rescaled version is

L(n) :=

Ç

Ln(2nt)

γ n
1
4

å

0≤t≤1

.

Recall the definition (4) of the process Le
n. We define its rescaled version by

Le
(n) :=

Ç

Le
n(2nt)

γ n
1
4

å

0≤t≤me

(n)

=
Ä

Le
(n)(t) +Me

(n)

(

σe
(n) − Ce

(n)(t)
)

ä

0≤t≤me

(n)

.

Proposition 5 shows that Le
(n) converges in the space (K, dK) toward

Le
∞ :=

(

Le
∞(t) +Me

∞

(

σe
∞ − Ce

∞(t)
)

)

0≤t≤me

∞

.

12



We can express L(n) in terms of the processes Le
(n)’s by concatenating them. For f, g ∈ K0 two

functions started at 0, we call f • g ∈ K0 their concatenation defined by σ(f • g) := σ(f) + σ(g)
and, for 0 ≤ t ≤ σ(f • g),

f • g(t) :=
ß

f(t) if 0 ≤ t ≤ σ(f),
f(σ(f)) + g(t− σ(f)) if σ(f) ≤ t ≤ σ(f) + σ(g).

We arrange the half-edges of sn according to its facial order, beginning with the root: e1 = e∗,
. . . , e2(6g−3), so that L(n) = Le1

(n) •L
e2
(n) • · · · •L

e2(6g−3)

(n) . By continuity of the concatenation, L(n)

converges in (K, dK) toward L∞ := Le1
∞ • Le2

∞ • · · · • L
e2(6g−3)
∞ , where the half-edges of s∞ are

arranged in the same way.

Upper bound for d(n)

The bound (2) provides us with an upper bound on d(n). We define

d◦n(i, j) := Ln(i) + Ln(j)− 2max

Ç

min
k∈

−−→
Ji,jK

Ln(k), min
k∈

−−→
Jj,iK

Ln(k)

å

+ 2,

we extend it to [0, 2n] by linear interpolation and define its rescaled version d◦(n) as we did for

dn by (7). We readily obtain that

d(n)(s, t) ≤ d◦(n)(s, t). (8)

Moreover, the process
Ä

d◦(n)(s, t)
ä

0≤s,t≤1
converges in

(

C([0, 1]2,R), ‖ · ‖∞
)

toward the process

(d◦∞(s, t))0≤s,t≤1 defined by

d◦∞(s, t) := L∞(s) + L∞(t)− 2max

Ç

min
x∈

−−→
[s,t]

L∞(x), min
x∈

−−→
[t,s]

L∞(x)

å

,

where
−−→
[s, t] :=

ß

[s, t] if s ≤ t,
[s, 1] ∪ [0, t] if t < s.

(9)

Tightness of the processes d(n)’s

In [3, Lemma 19], we showed the tightness of the processes d(n)’s laws thanks to the inequality (8).
As a result, there exist a (deterministic) subsequence (nk)k≥0 and a function d∞ ∈ C([0, 1]2,R)
such that

(

d(nk)(s, t)
)

0≤s,t≤1

(d)−−−−→
k→∞

(d∞(s, t))0≤s,t≤1 . (10)

By the Skorokhod theorem, we will assume that this convergence holds almost surely. We can
check that the function d∞ is actually a pseudo-metric. We define the equivalence relation
associated with it by saying that s ∼∞ t if d∞(s, t) = 0, and we call q∞ := [0, 1]/∼∞

. We proved
in [3] that

(

V (qnk
),

1

γn
1/4
k

dqnk

)

(d)−−−−→
k→∞

(q∞, d∞)

in the sense of the Gromov-Hausdorff topology.
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3 Real g-trees

In the discrete setting, it is sometimes convenient to work directly with the space tn instead of
J0, 2nK. In the continuous setting, we will see q∞ as a quotient of a continuous version of a g-tree,
which we will call real g-tree. In other words, we will see the identifications s ∼∞ t as of two
different kinds: some are inherited “from the g-tree structure,” whereas the others come “from
the map structure.”

3.1 Definitions

As g-trees generalize plane trees in genus g, real g-trees are the objects that naturally generalize
real trees. We will only use basic facts on real trees in this work. See for example [16] for more
detail.

We consider a fixed dominant scheme s ∈ S∗. Let (me)
e∈~E(s) and (σe)

e∈~E(s) be two families

of positive numbers satisfying
∑

e m
e = 1 and σe = σē for all e. As usual, we arrange the half-

edges of s according to its facial order: e1 = e∗, . . . , e2(6g−3). For every s ∈ [0, 1), there exists a
unique 1 ≤ k ≤ 2(6g − 3) such that

k−1
∑

i=1

mei ≤ s <

k
∑

i=1

mei.

We let e(s) := ek and 〈s〉 := s −∑k−1
i=1 mei ∈ [0,me(s)). By convention, we set e(1) = e1 and

〈1〉 = 0. Beware that these notions depend on the family (me)
e∈ ~E(s). There should be no

ambiguity in what follows.
Let us suppose we have a family (he)

e∈ ~E(s) of continuous functions he : [0,me] → R+ such

that he(0) = σe and he(me) = 0. It will be useful to consider their concatenation: we define the
continuous function h : [0, 1] → R+ going from

∑

e σ
e to 0 by

h :=
(

he1 − σe1
)

•
(

he2 − σe2
)

• · · · •
(

he2(6g−3) − σe2(6g−3)
)

+

2(6g−3)
∑

i=1

σei . (11)

We define the relation ≃ on [0, 1] as the coarsest equivalence relation for which s ≃ t if one
of the following occurs:

⋄ h(s) = h(t) = inf [s∧t,s∨t] h, (12.1)

⋄ h(s) = h(s), h(t) = h(t), e(s) = e(t), and he(s)(〈s〉) = σe(t) − he(t)(〈t〉), (12.2)

⋄ 〈s〉 = 〈t〉 = 0 and e(s)− = e(t)−. (12.3)

If we see the he’s as contour functions (in a continuous setting), the first item identifies
numbers coding the same point in one of the forests. The second item identifies the floors of
forests “facing each other.” The numbers s and t should code floor points (two first equalities)
of forests facing each other (third equality) and correspond to the same point (fourth equality).
Finally, the third item identifies the nodes. We call real g-tree any space T := [0, 1]/≃ obtained
by such a construction2.

We now define the notions we will use throughout this work (see Figure 6). For s ∈ [0, 1], we
write T (s) its equivalence class in the quotient T = [0, 1]/≃. Similarly to the discrete case, the
floor of T is defined as follows.

2There should be a more intrinsic definition for these spaces in terms of compact metric spaces that are locally
real trees. As we will need to use this construction in what follows, we chose to define them as such for simplicity.
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Definition 6 We call floor of T the set fl := T ({s : h(s) = h(s)}).

For a = T (s) ∈ T \fl, let l := inf{t ≤ s : h(t) = h(s)} and r := sup{t ≥ s : h(t) = h(s)}.
The set τa := T ([l, r]) is a real tree rooted at ρa := T (l) = T (r) ∈ fl.

Definition 7 We call tree of T a set of the form τa for any a ∈ T \fl.

If a ∈ fl, we simply set ρa := a. Let τ be a tree of T rooted at ρ, and a, b ∈ τ . We call
[[a, b]] the range of the unique injective path linking a to b. In particular, the set [[ρ, a]] will be
of interest. It represents the ancestral lineage of a in the tree τ . We say that a is an ancestor

of b, and we write a � b, if a ∈ [[ρ, b]]. We write a ≺ b if a � b and a 6= b.

Definition 8 Let b = T (t) ∈ T \fl and ρ ∈ [[ρb, b]]\{ρb, b}. Let l′ := inf{s ≤ t : T (s) = ρ}
and r′ := sup{s ≤ t : T (s) = ρ}. Then, provided l′ 6= r′, we call tree on the left of [[ρb, b]]
rooted at ρ the set T ([l′, r′]).

We define the tree on the right of [[ρb, b]] rooted at ρ in a similar way, by replacing “≤”
with “≥” in the definitions of l′ and r′.

Definition 9 We call subtree of T any tree of T , or any tree on the left or right of [[ρb, b]]
for some b ∈ T \fl.

Note that subtrees of T are real trees, and that trees of T are also subtrees of T . For a
subtree τ , the maximal interval [s, t] such that τ = T ([s, t]) is called the interval coding the
subtree τ .

Definition 10 For e ∈ ~E(s), we call forest to the left of e the set fe := T
(

{s : e(s) = e}
)

.

The nodes of T are the elements of T ({s : 〈s〉 = 0}). In what follows, we will identify the
nodes of T with the vertices of s. In particular, the two nodes e− and e+ lie in fe. We extend
the definition of [[a, b]] to the floor of fe: for a, b ∈ fe ∩ fl, let s, t ∈ {r : e(r) = e} be such that
a = T (s) and b = T (t). We define

[[a, b]] := T ([s ∧ t, s ∨ t]) ∩ fl

the range of the unique3 injective path from a to b that stays inside fe. For clarity, we write the
set [[e−, e+]] simply as [[e]]. Note that, in particular, [[e]] = fe ∩ fē = fe ∩ fl.

Let a, b ∈ T . There is a natural way4 to explore T from a to b. If inf T −1(a) ≤ supT −1(b),
then let t := inf{r ≥ inf T −1(a) : b = T (r)} and s := sup{r ≤ t : a = T (r)}. If supT −1(b) <
inf T −1(a), then let t := inf T −1(b) and s := supT −1(a). We define

[a, b] := T

(−−→
[s, t]

)

, (13)

where
−−→
[s, t] is defined by (9).

We call Tn the real g-tree obtained from the scheme sn and the family (Ce
(n))e∈~E(sn)

as well

as T∞ the real g-tree obtained from s∞ and (Ce
∞)

e∈ ~E(s∞). For the sake of consistency with [3],

we call C(n) and C∞ the functions obtained by (11) in this construction. We also call ≃(n) and

3Note that e+ 6= e− because s is a dominant scheme.
4Note that, if a, b ∈ fl, there are other possible ways to explore the g-tree between them. Indeed, a point of fl

is visited twice—or three times if it is a node—when we travel around fl. In particular, this definition depends
on the position of the root in s for such points. In what follows, we never use this definition for such points, so
there will be no confusion.

15



α β

[[α, β]]

[[b, c]]

[a, b]

a

a

a
b

b b c
l

r

l′

r′

ρa ρb

ρ

ττa

fe

e

fl

mn

Figure 6: Left. On this picture, we can see the floor fl, the two nodes n and m, an example of tree τa,
and an example of tree τ on the left of [[ρb, b]] rooted at ρ. Middle. The set [a, b]. Right. On this
picture, a is an ancestor of b and c, and we can see the sets [[b, c]], [[α, β]], and fe.

≃∞ the corresponding equivalence relations. When dealing with T∞, we add an ∞ symbol to
the notations defined above: for example, the floor of T∞ will be noted fl∞, and its forest to the
left of e will be noted fe∞. It is more natural to use tn rather than Tn in the discrete setting. As
tn may be viewed as a subset of Tn, we will use for tn the formalism we defined above simply
by restriction. Note that the notions of floor, forests, trees, and nodes are consistent with the
definitions we gave in Section 2.2 in that case.

Note that, because the functions Ce
∞’s are first-passage Brownian bridges, the probability

that there exists ε > 0 such that Ce
∞(s) > Ce

∞(0) for all s ∈ (0, ε) is equal to 0. As a result,
there are almost surely no trees rooted at the nodes of T∞. Moreover, the fact that the forests
fe and fē are independent yields that, almost surely, we cannot have a tree in fe and a tree in fē

rooted at the same point. As a consequence, we see that, almost surely, all the points of T∞ are
of order less than 3.

3.2 Maps seen as quotients of real g-trees

Consistently with the notations tn(i) and qn(i) in the discrete setting, we call T∞(s) (resp. q∞(s))
the equivalence class of s ∈ [0, 1] in T∞ = [0, 1]/≃∞

(resp. in q∞ = [0, 1]/∼∞
).

Lemma 6 The equivalence relation ≃∞ is coarser than ∼∞, so that we can see q∞ as the
quotient of T∞ by the equivalence relation on T∞ induced from ∼∞.

Proof. By definition of ≃∞, it suffices to show that if s < t satisfy (12.1), (12.2), or (12.3),
then s ∼∞ t. Let us first suppose that s and t satisfy (12.1), that is

C∞(s) = C∞(t) = inf
[s,t]

C∞.

We moreover suppose that C∞(r) > C∞(s) for all r ∈ (s, t). Using Proposition 5, we can find
integers 0 ≤ sn < tn ≤ 2n such that (s(n), t(n)) := (sn/2n, tn/2n) → (s, t) and C(n)(s(n)) =

C(n)(t(n)) = inf [s(n),t(n)] C(n). The latter condition imposes ṫn(sn) = ṫn(tn) so that dn(sn, tn) = 0
and s ∼∞ t by (10).

Equation (5) shows that, for every e, the law of Ce
∞ is absolutely continuous with respect to

the Wiener measure on any interval [0,me
∞− ε], for ε > 0. Because local minimums of Brownian

motion are pairwise distinct, this is also true for any Ce
∞, and thus for the whole process C∞

by construction. If there exists r ∈ (s, t) for which C∞(r) = C∞(s), it is thus unique. We may
then apply the previous reasoning to (s, r) and (r, t) and find that s ∼∞ r and r ∼∞ t, so that
s ∼∞ t.
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Let us now suppose that s and t satisfy (12.2). If there is 0 ≤ r < s such that C∞(r) = C∞(s)
then r ≃∞ s by (12.1). The same holds with t instead of s. We may thus restrict our attention
to s and t for which C∞(r) > C∞(s) for all r ∈ [0, s) and C∞(r) > C∞(t) for all r ∈ [0, t). Let us
call e = e(s) = e(t). In order to avoid confusion, we use the notations 〈·〉n and en(·) when dealing
with the functions Ce

(n)’s. We know that for n large enough, we have sn = s∞. We only consider

such n’s in the following. We first find 0 ≤ sn ≤ 2n such that s(n) := sn/2n → s, en(s(n)) = e,
and C(n)(s(n)) = C(n)(s(n)). We define

t(n) := inf

ß

r ∈ 1

2n
J0, 2nK : en(r) = ē, Cē

(n)

(

〈r〉n
)

= σe
(n) − Ce

(n)

(

〈s(n)〉n
)

™

,

so that t(n) ≃(n) s(n), and then d(n)
(

s(n), t(n)
)

= 0. Taking an extraction if needed, we may
suppose that t(n) → t′ ∼∞ s. By construction, e(t′) = e(t) and C∞(t′) = C∞(t′) = C∞(t). So t′

and t fulfill the requirement (12.1) and t′ ∼∞ t by the above argument. The case of (12.3) is
easier and may be treated in a similar way. �

This lemma allows us to define a pseudo-metric and an equivalence relation on T∞, still
denoted by d∞ and ∼∞, by setting d∞

(

T∞(s),T∞(t)
)

:= d∞(s, t) and declaring T∞(s) ∼∞

T∞(t) if s ∼∞ t. The metric space (q∞, d∞) is then isometric to
(

T∞/∼∞
, d∞

)

. We define d◦∞
on T∞ by letting

d◦∞(a, b) := inf {d◦∞(s, t) : a = T∞(s), b = T∞(t)} .
We will see in Lemma 9 that there is a.s. only one point where the function L∞ reaches its

minimum. On this event, the following lemma holds.

Lemma 7 Let s• be the unique point where L∞ reaches its minimum. Then

d∞(s, s•) = L∞(s)− L∞(s•).

Moreover, s ∼∞ t implies L∞(s) = L∞(t).

Proof. This readily comes from the discrete setting. Let 0 ≤ s•n ≤ 2n be an integer where
Ln reaches its minimum. By extracting if necessary, we may suppose that s•n/2n converges,
necessarily toward s•. Let 0 ≤ sn ≤ 2n be such that sn/2n → s. From the Chapuy-Marcus-
Schaeffer bijection, dn(sn, s

•
n) = Ln(sn)−Ln(s

•
n) + 1. Letting n → ∞ after renormalizing yields

the first assertion. The second one follows from the first one and the triangular inequality. �

As a result of Lemmas 6 and 7, we can define L∞ on T∞ by L∞

(

T∞(s)
)

:= L∞(s). When
(a, b) /∈ (fl∞)2, we have

d◦∞(a, b) := L∞(a) + L∞(b)− 2max

Å

min
x∈[a,b]

L∞(x), min
x∈[b,a]

L∞(x)

ã

. (14)

where [a, b] was defined by (13).

4 Points identifications

This section is dedicated to the proof of the following theorem:

Theorem 8 A.s., for every a, b ∈ T∞, a ∼∞ b is equivalent to d◦∞(a, b) = 0.

We already know that d◦∞(a, b) = 0 implies a ∼∞ b from the bound d∞ ≤ d◦∞. We will show
the converse through a series of lemmas. We adapt the approach of Le Gall [17] to our setting.
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4.1 Preliminary lemmas

Let us begin by giving some information on the process (C∞,L∞).

Lemma 9 The set of points where L∞ reaches its minimum is a.s. a singleton.

Let f : [0, 1] → R be a continuous function. We say that s ∈ [0, 1) is a right-increase point

of f if there exists t ∈ (s, 1] such that f(r) ≥ f(s) for all s ≤ r ≤ t. A left-increase point is
defined in a symmetric way. We call IP(f) the set of all (left or right) increase points of f .

Lemma 10 A.s., IP(C∞) and IP(L∞) are disjoint sets.

As the proofs of these lemmas are rather technical and unrelated to what follows, we postpone
them to Section 6.

4.2 Key lemma

Remark. In what follows, every discrete path denoted by the letter “γ” will always be a path
in the map, never in the tree, i.e. a path using the edges of the map.

Let τ be a subtree of tn and γ = (γ(0), γ(1), . . . , γ(r)) be a path in qn that avoids the base
point v•n. We say that the arc (γ(0), γ(1)) enters the subtree τ from the left (resp. from the
right) if γ(0) /∈ τ , γ(1) ∈ τ and ln(γ(1))− ln(γ(0)) = −1 (resp. ln(γ(1))− ln(γ(0)) = 1). We say
that the path γ passes through the subtree τ between times i and j, where 0 < i ≤ j < r, if

⋄ γ(i− 1) /∈ τ ; γ(Ji, jK) ⊆ τ ; γ(j + 1) /∈ τ ,

⋄ ln(γ(i))− ln(γ(i− 1)) = ln(γ(j + 1))− ln(γ(j)).

The first condition states that γ “visits” τ , whereas the second one ensures that it really goes
“through.” It enters and exits τ going “in the same direction.”

We say that a vertex an ∈ tn converges toward a point a ∈ T∞ if there exists a sequence of
integers sn ∈ J0, 2nK coding an (i.e. an = ṫn(sn)) such that sn/2n admits a limit s satisfying
a = T∞(s). Let Jln, rnK be the intervals coding subtrees τn ⊆ tn. We say that the subtree τn
converges toward a subtree τ ⊆ T∞ if the sequences ln/2n and rn/2n admit limits l and r such
that the interval coding τ is [l, r]. The following lemma is adapted from Le Gall [17, End of
Proposition 4.2].

Lemma 11 With full probability, the following occurs. Let a, b ∈ T∞ be such that L∞(a) =
L∞(b). We suppose that there exists a subtree τ rooted at ρ such that infτ L∞ < L∞(a) < L∞(ρ).
We further suppose that we can find vertices an, bn ∈ tn and subtrees τn in tn converging
respectively toward a, b, τ and satisfying the following property: for infinitely many n’s, there
exists a geodesic path γn in qn from an to bn that avoids the base point v•n and passes through
the subtree τn.

Then, a 6∼∞ b.

Proof. The idea is that if a and b were identified, then all the points in the discrete subtrees
close (in a certain sense) to the geodesic path would be close to a in the limit. Fine estimates
on the sizes of balls yields the result. We proceed to the rigorous proof.

We reason by contradiction and suppose that a ∼∞ b. We only consider integers n for which
the hypothesis holds. We call ρn the root of τn, and we set, for ε > 0,

Uε
∞ :=

{

y ∈ τ : L∞(y) < L∞(a) + ε ; ∀x ∈ [[ρ, y]], L∞(x) > L∞(a) +
ε

8

}

.
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We first show that Uε
∞ ⊆ B∞(a, 2ε), where B∞(a, 2ε) denotes the closed ball of radius 2ε centered

at a in the metric space (q∞, d∞). Let y ∈ Uε
∞. We can find yn ∈ τn\{ρn} converging toward y.

For n large enough, we have

dqn
(an, bn) ≤

ε

32
n1/4, sup

c∈γn

|ln(c)− ln(an)| ≤
ε

32
n1/4,

ln(yn) ≤ ln(an) +
3

2
ε n1/4, ∀x ∈ [[ρn, yn]], ln(x) ≥ ln(an) +

ε

16
n1/4.

The first inequality comes from the fact that a ∼∞ b. The second inequality is a consequence of
the first one. The third inequality holds because (ln(yn)− ln(v

•
n))/γ n

1
4 → L∞(y) and (ln(an)−

ln(v
•
n))/γ n

1
4 → L∞(a). Finally, the fourth inequality follows by compactness of [[ρ, y]].

From now on, we only consider such n’s. We call tn := sup{t : yn = ṫn(t)} the last
integer coding yn, and Jln, rnK the interval coding τn. We also call i ≤ j two integers such
that γn passes through τn between times i and j. For the sake of simplicity, we suppose that γn
enters τn from the left5. Notice that the path γn does not intersect [[ρn, yn]], because the labels
on [[ρn, yn]] are strictly greater than the labels on γn. Let γn(k) be the last point of γn lying
in the set {γn(i − 1)} ∪ ṫn(Jln, tnK). Then γn(k + 1) ∈ {γn(j + 1)} ∪ ṫn(Jtn, rnK). Moreover,
ln(γn(k + 1)) = ln(γn(k)) − 1: otherwise, all the vertices in [γn(k + 1), γn(k)] would have labels
greater than ln(γn(k)), and it is easy to see that this would prohibit γn from exiting τn by
going “to the right,” in the sense that we would not have ln(γn(j + 1)) = ln(γn(j)) − 1. As
a result, when performing the Chapuy-Marcus-Schaeffer bijection for the arc linking γn(k) to
γn(k + 1), we have to visit yn. Then, going through consecutive successors of tn, we are bound
to hit γn(k + 1), so that dqn

(yn, γn) ≤ ln(yn) − ln(γn(k + 1)). This yields that dqn
(an, yn) ≤

dqn
(an, bn) + dqn

(yn, γn) ≤ 2ε γ n
1
4 , and, by taking the limit, d∞(a, y) ≤ 2ε.

We conclude thanks to two lemmas, whose proofs are postponed to Section 6. They are
derived from similar results in the planar case: [17, Lemma 2.4] and [18, Corollary 6.2]. We
call λ the volume measure on q∞, that is the image of the Lebesgue measure on [0, 1] by the
canonical projection from [0, 1] to q∞.

Lemma 12 Almost surely, for every η > 0 and every subtree τ rooted at ρ, the condition
infτ L∞ < L∞(ρ)− η implies that

lim inf
ε→0

ε−2λ
({

y ∈ τ : L∞(y) < L∞(ρ)− η + ε ; ∀x ∈ [[ρ, y]], L∞(x) > L∞(ρ)− η +
ε

8

})

> 0.

Lemma 13 Let δ ∈ (0, 1]. For every p ≥ 1,

E

ñÇ

sup
ε>0

Ç

sup
x∈q∞

λ(B∞(x, ε))

ε4−δ

ååpô

< ∞.

We apply Lemma 12 to τ and η = L∞(ρ)−L∞(a) > 0, and we find that, for ε small enough,

λ(Uε
∞) ≥ ε5/2.

The inclusion Uε
∞ ⊆ B∞(a, 2ε) yields that

S := sup
ε>0

Ç

sup
x∈q∞

λ(B∞(x, ε))

ε7/2

å

= ∞.

Lemma 13 applied to δ = 1/2 and p = 1 yields that S is integrable, so that S < ∞ a.s. This is
a contradiction. �

5The case where γn enters τn from the right may be treated by considering the path h 7→ γn(dqn (an, bn)− h)
instead of γn.
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4.3 Set overflown by a path

We call fln the floor of tn. Let i ∈ J0, 2nK, and let succ(i) be its successor in (tn, ln), defined
by (1). We moreover suppose that succ(i) 6= ∞. We say that the arc linking tn(i) to tn(succ(i))
overflies the set

tn

(−−−−−−−→
Ji, succ(i)K

)

∩ fln,

where
−−−−−−−→
Ji, succ(i)K was defined by (3). We define the set overflown by a path γ in qn that avoids

the base point v•n as the union of the sets its arcs overfly. We denote it by of(γ) ⊆ fln.

of(γ)

γ

Figure 7: The set overflown by the path γ is the set of (blue) large dots.

Lemma 14 Let a ∼∞ b ∈ T∞ and α, β ∈ fe∞ ∩ fl∞. We suppose that, for n sufficiently large,
there exist vertices αn, βn ∈ fen∩fln and an, bn ∈ tn converging respectively toward α, β, a and b.
If, for infinitely many n’s, there exists a geodesic path γn from an to bn that overflies [[αn, βn]],
then for all c ∈ [[α, β]],

L∞(c) ≥ L∞(a) = L∞(b).

Moreover, if there exists c ∈ [[α, β]] for which L∞(c) = L∞(a), then a ∼∞ c.

Proof. Let c ∈ [[α, β]]. We can find vertices cn ∈ [[αn, βn]] converging to c. By definition,
there is an arc of γn that overflies cn. Say it links a vertex labeled l to a vertex v labeled l − 1.
From the Chapuy-Marcus-Schaeffer construction, we readily obtain that ln(cn) ≥ l. Using the
fact that ln(an)− l ≤ dqn

(an, bn), we find

ln(cn) ≥ ln(an)− dqn
(an, bn).

Moreover, we can construct a path from cn to v going through consecutive successors of cn.
As a result, dqn

(cn, γn) ≤ ln(cn)− l+ 1, so that

dqn
(cn, an) ≤ ln(cn)− ln(an) + 2dqn

(an, bn) + 1.

Both claims follow by taking limits in these inequalities after renormalization, and by using
the fact that dqn

(an, bn) = o(n1/4). �

4.4 Points identifications

We proceed in three steps. We first show that points of fl∞ are not identified with any other
points, then that points cannot be identified with their strict ancestors, and finally Theorem 8.
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4.4.1 Floor points are not identified with any other points

Lemma 15 A.s., if a ∈ fl∞ and b ∈ T∞ are such that a ∼∞ b, then a = b.

Proof. Let a ∈ fl∞ and b ∈ T∞\{a} be such that a ∼∞ b. We first suppose that a is

not a node. There exists e ∈ ~E(s∞) such that a ∈ fe∞ ∩ fē∞, and we can find s, t satisfying
a = T∞(s) = T∞(t), e(s) = e and e(t) = ē. Without loss of generality, we may suppose that
s < t. Until further notice, we will moreover suppose that ρb /∈ [[e]].

We restrict ourselves to the case sn = s∞, which happens for n sufficiently large. We can find
an ∈ fln and bn ∈ tn converging toward a and b and satisfying ρbn /∈ [[e]]. Let γn be a geodesic
path (in qn, for dqn

) from an to bn. It has to overfly at least [[an, e
−]] or [[an, e

+]]. Indeed,
every pair (x, y) ∈ [[an, e

−]]× [[an, e
+]] breaks tn into connected components, and the points an

and bn do not belong to the same of these components. There has to be an arc of γn that links
a point belonging to the component containing an to one of the other components. Such an arc
overflies x or y.

Let us suppose that, for infinitely many n’s, γn overflies [[an, e
−]]. Lemma 14 then ensures

that L∞(c) ≥ L∞(a) = L∞(b) for all c ∈ [[a, e−]]. Properties of Brownian snakes show that the
labels on [[a, e−]] are Brownian. Precisely, we may code [[e]] by the interval [0, σe] as follows. For
x ∈ [0, σe], we define Tx := inf{r ≥ 〈s〉 : C∞(r) = C∞(〈s〉)− x}. Then [[e]] = T∞({Tx, 0 ≤ x ≤
σe}), and

(

L∞(Tx)− L∞(〈s〉)
)

0≤x≤σe

=
(

Me
∞(x)

)

0≤x≤σe

,

where, conditionally given I∞, the process Me
∞ (defined during Proposition 5) has the law of a

certain Brownian bridge. Using the fact that local minimums of Brownian motion are distinct,
we can find d ∈ [[a, e−]]\{a} such that L∞(c) > L∞(a) for all c ∈ [[a, d]]\{a}.

Because a ∈ fl∞, s and t are both increase points of C∞ and thus are not increase points
of L∞, by Lemma 10. As a result, there exist two trees τ1 ⊆ fe∞ and τ2 ⊆ fē∞ rooted at ρ1,
ρ2 ∈ [[a, d]]\{a} satisfying infτ i L∞ < L∞(a) < L∞(ρi) (see Figure 8).

e−

e+

fe

fē

ad

ρ1

ρ2

τ1

τ2

s

t

inf L∞ < L∞(a)

inf L∞ < L∞(a)

L∞ > L∞(a)

Figure 8: The trees τ 1 and τ 2.

Similarly, if for infinitely many n’s, γn overflies [[an, e
+]], then we can find two trees τ3 ⊆ fe∞

and τ4 ⊆ fē∞ rooted at ρ3, ρ4 ∈ [[a, e+]]\{a} satisfying infτ i L∞ < L∞(a) < L∞(ρi), and
L∞(c) > L∞(a) for all c ∈ [[ρ3, ρ4]]. Three cases may occur:

(i) for n large enough, γn does not overfly [[an, e
+]] (and therefore overflies [[an, e

−]]),

(ii) for n large enough, γn does not overfly [[an, e
−]] (and therefore overflies [[an, e

+]]),
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(iii) for infinitely many n’s, γn overflies [[an, e
+]], and for infinitely many n’s, γn overflies

[[an, e
−]].

In case (i), the trees τ1 and τ2 are well-defined. Let τ1n ⊆ fen, τ
2
n ⊆ fēn be trees rooted at

ρ1n, ρ
2
n ∈ [[an, e

−]] converging to τ1 and τ2. We claim that, for n sufficiently large, γn passes
through τ1n or τ2n. First, notice that, for n large enough, γn ∩ [[ρ1n, ρ

2
n]] = ∅. Otherwise, for

infinitely many n’s, we could find αn ∈ γn ∩ [[ρ1n, ρ
2
n]], and, up to extraction, we would have

αn → α ∈ [[ρ1, ρ2]] ⊆ [[a, d]]\{a}. Furthermore, dqn
(an, αn) ≤ dqn

(an, bn) so that a ∼∞ α, and
L∞(a) = L∞(α) by Lemma 7, which is impossible. For n even larger, it holds that infτ i

n
ln <

infγn
ln. Roughly speaking, γn cannot go from a tree located at the right of τ1n (resp. at the left

of τ2n) to a tree located at its left in fen (resp. to a tree located at its right in fēn) without entering
it. Then γn has to enter τ1n from the right or τ2n from the left and pass through one of these trees
(see Figure 9).

More precisely, we call Js1n, t
1
nK and Js2n, t

2
nK the sets coding the subtrees τ1n and τ2n. Let

ωn ∈ [[an, e
+]] be a point that is not overflown by γn, pn := inf{t1n ≤ r ≤ 2n : ωn = ṫn(r)} and

qn := sup{0 ≤ r ≤ s2n : ωn = ṫn(r)}. Then, we let

An := ṫn

(−−−−→
Jt1n, pnK ∪

−−−−−→
Jqn, s

2
nK
)

.

We call γn(i−1) the last point of γn belonging to An. Such a point exists because an ∈ An and
bn /∈ An. The remarks in the preceding paragraphs yield that neither γn(i−1) nor γn(i) belong to
[[ρ1n, ρ

2
n]], and, because of the way arcs are constructed in the Chapuy-Marcus-Schaeffer bijection,

we see that γn(i) ∈ τ1n∪τ2n. Without loss of generality, we may assume that γn(i) ∈ τ1n. Because γn
does not overfly ωn, it enters τ1n from the right at time i, that is ln(γn(i)) = ln(γn(i − 1)) + 1.
Let γn(j +1) be the first point after γn(i) not belonging to τ1n. It exists because bn /∈ τ1n. Then,
because γn(j +1) /∈ An and γn does not overfly ωn, we see that ln(γn(j +1)) = ln(γn(j)) + 1, so
that γn passes through τ1n between times i and j.

e−

e+fen

fēn

γn

An

an

ωns1n

t1n

s2n

t2n

pn

qn

τ1n

τ2n

Figure 9: The path γn passing through the tree τ 1
n.

In case (ii), we apply the same reasoning with τ3 and τ4 instead of τ1 and τ2. In case (iii),
the four trees τ1, τ2, τ3 and τ4 are well-defined and we obtain that γn has to pass through one of
their discrete approximations. We then conclude by Lemma 11 that a 6∼∞ b, which contradicts
our hypothesis.

We treat the case where ρb ∈ [[e]]\{a} in a similar way, simply by replacing e+ (resp. e−) by
ρb if ρb ∈ [[a, e+]] (resp. ρb ∈ [[a, e−]]). When a is a node, we apply the same arguments, finding
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up to six trees (one for each forest containing a). Finally, if ρb = a, then a is a strict ancestor
of b. This will be a particular case of Lemma 16. �

4.4.2 Points are not identified with their strict ancestors

Lemma 16 A.s., for every a, b ∈ T∞ such that ρa = ρb and a ≺ b, we have a 6∼∞ b.

The proof of this lemma uses the same kind of arguments we used in Section 4.4.1, is slightly
easier than the proof of Lemma 15, and is very similar to Le Gall’s proof for Proposition 4.2
in [17], so that we leave the details to the reader.

4.4.3 Points a, b are only identified when d◦∞(a, b) = 0

Lemma 17 A.s., for every tree τ ⊆ T∞ rooted at ρ ∈ fl∞ and all a, b ∈ τ\{ρ} satisfying a ∼∞ b,
we have d◦∞(a, b) = 0.

Proof. Let τ ⊆ T∞ be a tree rooted at ρ ∈ fl∞ and a, b ∈ τ\{ρ} satisfying a 6= b and a ∼∞ b.
By Lemma 16, we know that a 6≺ b and b 6≺ a. As a consequence, we have either s < t for all
(s, t) ∈ T −1

∞ (a)×T −1
∞ (b) or s > t for all (s, t) ∈ T −1

∞ (a)×T −1
∞ (b). Without loss of generality, we

will assume that the first case occurs. Let us suppose that d◦∞(a, b) > 0. By Lemma 7, we know
that L∞(a) = L∞(b), and by (14), we have both inf [a,b] L∞ < L∞(a) and inf [b,a] L∞ < L∞(a).
As a result, there are two subtrees τ1 ⊆ [a, b] and τ2 ⊆ [b, a] rooted at ρ1 ∈ [[a, b]]\{a, b} and
ρ2 ∈ ([[ρ, a]] ∪ [[ρ, b]] ∪ fl∞)\{a, b} satisfying infτ i L∞ < L∞(a).

Let τn ⊆ tn be a tree rooted at ρn and an, bn ∈ tn be points converging to τ , a, and b.
Let τ1n ⊆ [an, bn] and τ2n ⊆ [bn, an] be subtrees rooted at ρ1n ∈ [[an, bn]]\{an, bn} and ρ2n ∈
([[ρn, an]]∪ [[ρn, bn]]∪fln)\{an, bn} converging toward τ1 and τ2. We consider a geodesic path γn
from an to bn. Recall that a ∼∞ b implies that dqn

(an, bn) = o(n1/4).
Because every point in [[ρ, ρ1]] is a strict ancestor to a or b, for n large enough, γn does not

intersect [[ρn, ρ
1
n]]. Otherwise, we could find an accumulation point α identified with a and b,

such that α ≺ a or α ≺ b (possibly both), and this would contradict Lemma 16. If ρ2 ∈ τ , for n
large, γn does not intersect [[ρn, ρ

2
n]] either. The same reasoning yields that γn does not intersect

fln for n sufficiently large, because of Lemma 15.
Let Js1n, t

1
nK and Js2n, t

2
nK be the sets coding the subtrees τ1n and τ2n. We let

An := ṫn

(−−−−→
Jt2n, s

1
nK
)

and Bn := ṫn

(−−−−→
Jt1n, s

2
nK
)

.

By convention, if ρ2n /∈ fen, we set [[ρn, ρ
2
n]] := ∅. It is easy to see that an ∈ An, bn ∈ Bn,

An ∩Bn ⊆ [[ρn, ρ
1
n]] ∪ [[ρn, ρ

2
n]] ∪ fln and An ∪Bn ∪ τ1n ∪ τ2n = tn.

We conclude as in the proof of Lemma 15. We call γn(i − 1) the last point of γn belonging
to An. Such a point exists because an ∈ An and bn /∈ An. The remarks in the preceding
paragraphs yield that, for n large enough, neither γn(i− 1) nor γn(i) belong to An ∩Bn. For n
even larger, infτ j

n
ln < infγn

ln, and because of the way arcs are constructed in the Chapuy-

Marcus-Schaeffer bijection, we see that γn(i) ∈ τ1n ∪ τ2n. The path γn either enters τ1n from the
left or enters τ2n from the right. Without loss of generality, we may suppose that γn(i) ∈ τ1n. Let
γn(i

′ + 1) be the first point after γn(i) not belonging to τ1n. Then γn(i
′ + 1) ∈ Bn ∪ τ2n. If γn

passes through τ1n between times i and i′, we are done. Otherwise, γn(i
′ + 1) ∈ τ2n because of

the condition infτ2
n
ln < infγn

ln (informally, γn cannot pass over τ2n without entering it). We
consider the first point γn(i

′′ + 1) after γn(i
′) not belonging to τ2n, and reiterate the argument.

Because γn is a finite path, we see that γn will eventually pass through τ1n or τ2n.
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An
Bn

An ∩Bnρn

an
bns1n

t1n

s2n t2n

τ1n

τ2n

γn

Figure 10: The path γn passing through the subtree τ 1
n.

If γn passes through τ1n (resp. τ2n) for infinitely many n’s, a reasoning similar to the one
we used in the proof of Lemma 14 yields that L∞(ρ1) > L∞(a) (resp. L∞(ρ2) > L∞(a)). We
conclude by Lemma 11 that a ∼∞ b. This is a contradiction. �

Lemma 18 A.s., for all a, b ∈ T∞\fl∞ such that ρa 6= ρb and a ∼∞ b, we have d◦∞(a, b) = 0.

Proof. The proof of this lemma is very similar to that of Lemma 17. Let a, b ∈ T∞\fl∞
be such that ρa 6= ρb and a ∼∞ b. Here again, we may suppose that s < t for all (s, t) ∈
T −1

∞ (a) × T −1
∞ (b), and we can find two subtrees τ1 ⊆ [a, b] and τ2 ⊆ [b, a] rooted at ρ1, ρ2 ∈

([[ρa, a]]∪ [[ρb, b]]∪ fl∞)\{a, b} satisfying infτ i L∞ < L∞(a). As before, we consider the discrete
approximations an, bn, τ

1
n = ṫn(Js

1
n, t

1
nK) and τ2n = ṫn(Js

2
n, t

2
nK) of a, b, τ1 and τ2. Let γn be a

geodesic path from an to bn. We still define

An := ṫn

(−−−−→
Jt2n, s

1
nK
)

and Bn := ṫn

(−−−−→
Jt1n, s

2
nK
)

,

and we see by the same arguments as in Lemma 17 that, for n sufficiently large, γn does not
intersect An ∩Bn. We then conclude exactly as before. �

Theorem 8 follows from Lemmas 15, 16, 17 and 18. A straightforward consequence of Theo-
rem 8 is that, if the equivalence class of a = T∞(s) for ∼∞ is not trivial, then s is an increase
point of L∞. By Lemma 10, the equivalence class of a for ≃∞ is then trivial. Such points may
be called leaves by analogy with tree terminology.

5 1-regularity of quadrangulations

The goal of this section is to prove Theorem 2. To that end, we use the notion of regular
convergence, introduced by Whyburn [25].

5.1 1-regularity

Recall that (M, dGH) denotes the set of isometry classes of compact metric spaces, endowed with
the Gromov-Hausdorff metric. We say that a metric space (X , δ) is a path metric space if any
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two points x, y ∈ X may be joined by a path isometric to a real segment—necessarily of length
δ(x, y). We call PM the set of isometry classes of path metric spaces. By [6, Theorem 7.5.1],
PM is a closed subset of M.

Definition 11 We say that a sequence (Xn)n≥1 of path metric spaces is 1-regular if for every
ε > 0, there exists δ > 0 such that for n large enough, every loop of diameter less than δ in Xn

is homotopic to 0 in its ε-neighborhood.

This definition is actually slightly stronger than Whyburn’s original definition [25]. See the
discussion in the second section of [21] for more details. We also chose here not to restrict
the notion of 1-regularity only to converging sequences of path metric spaces, as it was done
in [21, 25], because the notion of 1-regularity (as stated here) is not directly related to the
convergence of the sequence of path metric spaces. Our main tool is the following theorem,
which is a simple consequence of Begle [1, Theorem 7].

Proposition 19 Let (Xn)n≥1 be a sequence of path metric spaces all homeomorphic to the g-
torus Tg. Suppose that Xn converges toward X for the Gromov-Hausdorff topology, and that the
sequence (Xn)n≥1 is 1-regular. Then X is either reduced to a point or homeomorphic to Tg as
well.

5.2 Representation as metric surfaces

In order to apply Proposition 19, we construct a path metric space (Sn, δn) homeomorphic to Tg,
and an embedded graph that is a representative of the map qn, such that the restriction of (Sn, δn)
to the embedded graph is isometric to

(

V (qn), dqn

)

. We use the method provided by Miermont
in [21, Section 3.1].

We write F (qn) the set of faces of qn. Let (Xf , Df ), f ∈ F (qn) be n copies of the hollow
bottomless unit cube

Xf := [0, 1]3\
(

(0, 1)2 × [0, 1)
)

endowed with the intrinsic metricDf inherited from the Euclidean metric. (The distance between
two points x and y is the Euclidean length of a minimal path in Xf linking x to y.)

When traveling counterclockwise around the boundary of any face f ∈ F (qn), we encounter
four half-edges e1, e2, e3, and e4 in this order. For 0 ≤ t ≤ 1, we define

ce1(t) = (t, 0, 0) ∈ Xf ,

ce2(t) = (1, t, 0) ∈ Xf ,

ce3(t) = (1− t, 1, 0) ∈ Xf ,

ce4(t) = (0, 1− t, 0) ∈ Xf .

In this way, we associate with every half-edge e ∈ ~E(qn) a path along one of the four edges of
the square ∂Xf , where f is the face located to the left of e.

We then define the relation≈ as the coarsest equivalence relation for which ce(t) ≈ cē(1−t) for

all e ∈ ~E(qn) and t ∈ [0, 1]. This corresponds to gluing the spaces Xf ’s along their boundaries
according to the map structure of qn. The topological quotient Sn := (

∐

f∈F (qn) Xf )/≈ is a
2-dimensional CW-complex satisfying the following. Its 1-skeleton En = (

∐

f∈F (qn) ∂Xf)/≈ is
an embedding of qn with faces Xf\∂Xf . To the edge {e, ē} ∈ E(qn) corresponds the edge
of Sn made of the equivalence class of the points in ce([0, 1]). Its 0-skeleton Vn is in one-to-
one correspondence with V (qn). Its vertices are the equivalence classes of the corners of the
squares ∂Xf .
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We endow the space
∐

f∈F (qn) Xf with the largest pseudo-metric δn compatible with Df ,
f ∈ F (qn) and ≈, in the sense that δn(x, y) ≤ Df (x, y) for x, y ∈ Xf and δn(x, y) = 0 whenever
x ≈ y. Its quotient—still noted δn—then defines a pseudo-metric on Sn (which actually is a true

metric, as we will see in Proposition 20). As usual, we define δ(n) := δn/γ n
1
4 its rescaled version.

We rely on the following proposition. It was actually stated in [21, Proposition 1] for the
2-dimensional sphere but readily extends to the g-torus.

Proposition 20 The space (Sn, δn) is a path metric space homeomorphic to Tg. Moreover, the
restriction of Sn to Vn is isometric to (V (qn), dqn

), and any geodesic path in Sn between points
in Vn is a concatenation of edges of Sn. Finally, dGH

(

(V (qn), dqn
), (Sn, δn)

)

≤ 3, so that, by
Proposition 1,

(

Snk
, δ(nk)

) (d)−−−−→
k→∞

(q∞, d∞)

in the sense of the Gromov-Hausdorff topology.

5.3 Proof of Theorem 2

We prove here that (q∞, d∞) is a.s. homeomorphic to Tg by means of Propositions 19 and 20.
Because (q∞, d∞) is obviously a.s. not reduced to a point6, we only need to show that the
sequence

(

Snk
, δ(nk)

)

is 1-regular. At first, we only consider simple loops made of edges. We
proceed in two steps: Lemma 21 shows that there are no non-contractible “small” loops; then
Lemma 22 states that the small loops are homotopic to 0 in their ε-neighborhood.

Lemma 21 A.s., there exists ε0 > 0 such that for all k large enough, any non-contractible simple
loop made of edges in Snk

has diameter greater than ε0.

Proof. The basic idea is that a non-contractible loop in Sn has to intersect fln and to “jump”
from a forest to another one. At the limit, the loop transits from a forest to another by visiting
two points that ∼∞ identifies. If the loops vanish at the limit, then these two identified points
become identified with a point in fl∞, creating an increase point for both L∞ et C∞. We proceed
to the rigorous proof.

We argue by contradiction and assume that, with positive probability, along some (random)
subsequence of (nk)k≥0, there exist non-contractible simple loops γn made of edges in Sn with
diameter tending to 0 (with respect to the rescaled metric δ(n)). We reason on this event.

Because γn is non-contractible, it has to intersect fln: if not, γn would entirely be drawn in
the unique face of sn, which is homeomorphic to a disk, by definition of a map. It would thus be
contractible, by the Jordan curve theorem. Let an ∈ γn ∩ fln. Up to further extraction, we may
suppose that an → a ∈ fl∞. Notice that every time γn intersects fln, it has to be “close” to an.
Precisely, if bn ∈ γn ∩ fln tends to b, then δ(n)(an, bn) ≤ diam(γn) → 0, which yields a ∼∞ b,
and a = b by Lemma 15. Moreover, for n sufficiently large, the base point v•n /∈ γn: otherwise,

for infinitely many n’s, (ln(an)−min ln + 1)/γ n
1
4 ≤ diam(γn) → 0, so that L∞ would reach its

minimum at a, and we know by Lemma 9 that this is not the case.
Let us first suppose that a is not a node of T∞. There exists e ∈ ~E(s∞) such that a ∈ fe∞∩ fē∞

and for n large enough, an ∈ fen ∩ fēn. For n even larger, the whole loop γn “stays in fen ∪ fēn.”

Precisely, for all e′ ∈ ~E(s∞)\{e, ē}, we have γn ∩ fe
′

n = ∅. Otherwise, since ~E(s∞) is finite,
there would exist e′ /∈ {e, ē} such that for infinitely many n’s, we can find cn ∈ γn ∩ fe

′

n . Up to
extraction, cn → c ∈ fe

′

∞, so that c 6= a (a is not a node) and c ∼∞ a, which is impossible, by
Lemma 15.

6It is for example a.s. of Hausdorff dimension 4 by Proposition 1.
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We claim that there exists an arc of γn linking a point bn ∈ fen to some point in fēn that overflies
either [[ρbn , e

+]] or [[e−, ρbn ]] (see Figure 11). Let suppose for a moment that this does not hold. In
particular, there is no arc linking a point in fen\fln to a point in fēn\fln. It will be more convenient
here to write γn as (an = v1, α1, v2, α2, . . . , vr−1, αr−1, vr = an) where the vi’s are vertices and
the αi’s are arcs. Let i := inf{j ∈ J2, rK : vj ∈ fln} be the index of the first time γn returns to fln.
Then v2, . . . , vi−1 belong to the same set fen\fln or fēn\fln, and (α1, v2, α2, . . . , vi−1, αi−1) is thus
drawn inside the face of sn. As a result, the path (v1, α1, v2, . . . , vi−1, αi−1, vi) is homotopic
to the segment [[v1, vi]]. Repeating the argument for every “excursion” away from fln, we see
that γn is homotopic to a finite concatenation of segments all included in the topological segment
[[ 2, σe

n]], where we used the notations of Section 2.2.1 for the forest fen (see Figure 11). It follows
that γn is contractible, which is a contradiction.

e−

e+

fen

fēn

an

bn

ρbn2

σe
n

Figure 11: A non-contractible loop intersecting fln at an and “jumping” from fen to fēn at bn.

We consider the case where the arc from the previous paragraph overflies [[ρbn , e
+]]. The

other case is treated in a similar way. From the construction of the Chapuy-Marcus-Schaeffer
bijection, we can find integers sn ≤ tn such that bn = ṫn(sn), e

+ = ṫn(tn) and for all sn ≤ r ≤ tn,
Ln(r) ≥ Ln(sn). Up to further extraction, we may suppose that sn/2n → s and tn/2n → t.
Therefore, for all s ≤ r ≤ t, L∞(r) ≥ L∞(s). Moreover, the fact that bn → a 6= e+ yields s < t,
so that s is an increase point for L∞. But T∞(s) = a and s has to be an increase point for C∞.
By Lemma 10, this cannot happen.

If a is a node, there are three half-edges e1, e2 and e3 such that a = e+1 = e+2 = e+3 . A
reasoning similar to what precedes yields the existence of an arc of γn linking a point bn in one
of the three sets fei ∪ fēi+1 , i = 1, 2, 3 (where we use the convention e4 = e1) to a point lying in
another one of these three sets that overflies either, if bn ∈ fei∞, [[ρbn , a]] ∪ [[ei+1]] or [[e−i , ρbn ]],
or, if bn ∈ f

ei+1
∞ , [[ρbn , e

+
i+1]] or [[ei]] ∪ [[a, ρbn ]]. We conclude by similar arguments. �

We now turn our attention to contractible loops. Let γ be a contractible simple loop in Sn

made of edges. Then γ splits Sn into two domains. Only one of these is homeomorphic to a
disk7. We call it the inner domain of γ, and we call the other one the outer domain of γ. In
particular, these domains are well-defined for loops whose diameter is smaller than ε0, when n
is large enough.

Lemma 22 A.s., for all ε > 0, there exists 0 < δ < ε ∧ ε0 such that for all k sufficiently large,
the inner domain of any simple loop made of edges in Snk

with diameter less than δ has diameter
less than ε.

7This is a consequence of the Jordan-Schönflies theorem, applied in the universal cover of Sn, which is either
the plane when g = 1, or the unit disk when g ≥ 2. See for example [12, Theorem 1.7].
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Proof. We adapt the method used by Miermont in [21]. The idea is that a contractible loop
separates a whole part of the map from the base point. Then the labels in one of the two domains
it separates are larger than the labels on the loop. In the g-tree, this corresponds to having a
part with labels larger than the labels on the “border.” In the continuous limit, this creates an
increase point for both C∞ and L∞.

Suppose that, with positive probability, there exists 0 < ε < ε0 for which, along some
(random) subsequence of (nk)k≥0, there exist contractible simple loops γn made of edges in Sn

with diameter tending to 0 (with respect to the rescaled metric δ(n)) and whose inner domains
are of diameter larger than ε. Let us reason on this event. First, notice that, because g ≥ 1,
the outer domain of γn contains at least one non-contractible loop, so that its diameter is larger
than ε0 > ε by Lemma 21.

Let s• be the unique point where L∞ reaches its minimum, and s•n be an integer where Ln

reaches its minimum. We call w•
n := ṫn(s

•
n) the corresponding point in the g-tree. This is a

vertex at δn-distance 1 from v•n. Let us take xn in the domain that does not contain w•
n, such

that the distance between xn and γn is maximal. (If w•
n ∈ γn, we take xn in either of the two

domains according to some convention.) Let yn ∈ γn ∩ ([[ρw•

n
, w•

n]] ∪ fln ∪ [[ρxn
, xn]]) be such

that there exists an injective path8 pn in tn from xn to yn that intersects γn only at yn. In other
words, when going from xn to w•

n along some injective path, yn is the first vertex belonging to γn
we meet (see Figure 12). Such a point exists, because xn and w•

n do not belong to the same of
the two components delimited by γn. Up to further extraction, we suppose that s•n/2n → s•,
xn → x, and yn → y. We call p ⊆ [[ρw• , w•]] ∪ fl∞ ∪ [[ρx, x]] the injective path corresponding
to pn in the limit, that is the path defined as pn “without the subscripts n.” Because the distance
between two points in the same domain as xn is smaller than 2δ(n)(xn, γn)+diam(γn), we obtain
that δ(n)(xn, yn) ≥ ε/4, as soon as diam(γn) ≤ ε/2. In particular, we see that x 6= y, and that
the path p is not reduced to a single point.

Let us first suppose that y 6= w• := T∞(s•). (In particular, w•
n /∈ γn for n large, so that

there is no ambiguity on which domain to chose xn.) In that case, y ∈ ([[ρw• , w•]] ∪ fl∞ ∪
[[ρx, x]])\{x,w•}, so that the points in T −1

∞ (y) are increase points of C∞. By Lemma 10, we can
find a subtree9 τ , not containing y, satisfying infτ L∞ < L∞(y) and rooted on the path p.

We consider a discrete approximation τn rooted on pn. Because the loop γn is contractible,
all the labels of the points in the same domain as xn are larger than infγn

ln. Indeed, the labels
represent the distances (up to an additive constant) in qn to the base point, and every geodesic
path from such a point to the base point has to intersect γn. For n large enough, it holds that
infτn ln < infγn

ln. As a consequence, τn cannot entirely be included in the domain containing xn.
Therefore, the set γn ∩ τn is not empty, so that we can find zn ∈ γn ∩ τn. Up to extraction, we

8Depending on the case, the path pn will be of one of the following forms

⋄ [[xn, yn]], with yn ∈ [[ρxn , xn]],

⋄ [[xn, ρxn ]] ∪ [[ρxn , yn]], with yn ∈ fln,

⋄ [[xn, ρxn ]] ∪ [[ρxn , e
+
1 ]] ∪ [[e2]] ∪ · · · ∪ [[ek]] ∪ [[e+

k
, yn]] for some half-edges e1, e2, . . . , ek of sn satisfying

e+i = e−i+1, with yn ∈ fln,

⋄ [[xn, ρxn ]]∪ [[ρxn , e
+
1 ]]∪ [[e2]]∪ · · ·∪ [[ek]]∪ [[e+

k
, ρw•

n
]]∪ [[ρw•

n
, yn]] for some half-edges e1, e2, . . . , ek of sn

satisfying e+i = e−i+1, with yn ∈ [[ρw•

n
, w•

n]].

9Here again, we need to distinguish between some cases.

⋄ if y ∈ [[ρx, x]], then p = [[x, y]] and τ is a tree on the left or right of [[ρx, x]] rooted at some point in
[[x, y]]\{x, y},

⋄ if y ∈ fl∞\{ρx}, then τ is a tree of T∞ rooted on (p ∩ fl∞)\{y},

⋄ if y ∈ [[ρw• , w•]]\{ρw•}, then τ is a tree on the left or right of [[ρw• , y]].
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may suppose that zn → z.
On the one hand, δ(n)(yn, zn) ≤ diam(γn), so that y ∼∞ z. On the other hand, z ∈ τ and

y /∈ τ , so that y 6= z. Because y is not a leaf, this contradicts Theorem 8.

γn

pn xn

yn zn

τn

inf ln < ln(yn)
ln ≥ inf

γn

ln

Figure 12: The path γn intersects τn. This figure represents the case where yn ∈ [[ρxn , xn]].

When y = w•, we use a different argument. Let an = ṫn(αn) and bn = ṫn(βn) be respectively
in the inner and outer domain of γn, such that their distance to γn is maximal. Because an
and bn do not belong to the same domain, we can find

t1n ∈ −−−−−→
Jαn, βnK and t2n ∈ −−−−−→

Jβn, αnK

such that ṫn(t
1
n), ṫn(t

2
n) ∈ γn. Up to extraction, we suppose that

αn

2n
→ α,

βn

2n
→ β,

t1n
2n

→ t1 ∈ −−−→
[α, β] and

t2n
2n

→ t2 ∈ −−−→
[β, α].

Because diam(γn) → 0, we have T∞(t1) = T∞(t2) = w•. Moreover, the argument we used to
prove that x 6= y yields that T∞(α) 6= w• and T∞(β) 6= w•. As a result, we obtain that t1 6= t2.
This contradicts Lemma 9. �

It remains to deal with general loops that are not necessarily made of edges. We reason on
the set of full probability where Lemmas 21 and 22 hold. We fix 0 < ε < diam(q∞)/4. Let ε0 be
as in Lemma 21 and δ as in Lemma 22. For k sufficiently large, the conclusion of both lemmas

hold, together with the inequality δ γ n
1/4
k ≥ 12. Now, take any loop L drawn in Snk

with
diameter less than δ/2. Consider the union of the closed faces10 visited by L . The boundary of
this union consists in pairwise disjoint simple loops made of edges in Snk

. Let us call Λ the set
of these simple loops.

Because every face of Snk
has diameter less than 3/γ n

1/4
k , we see that for all λ ∈ Λ, diam(λ) ≤

diam(L ) + 6/γ n
1/4
k ≤ δ. Then, by Lemma 21, λ is contractible and, by Lemma 22, its inner

domain is of diameter less than ε. By definition, for all λ ∈ Λ, L entirely lies either inside
the inner domain of λ, or inside its outer domain. We claim that there exists one loop in Λ
such that L lies in its inner domain. Then, it will be obvious that L is homotopic to 0 in its
ε-neighborhood.

10We call closed face the closure of a face.
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Let us suppose that L lies in the outer domain of every loop λ ∈ Λ. Then, every face of Snk

is either visited by L , or included in the inner domain of some loop λ ∈ Λ. As a result, we

obtain that diam(q∞) ≤ diam(L ) + 2 supλ∈Λ diam(λ) + 6/γ n
1/4
k ≤ 3δ. This is in contradiction

with our choice of δ.

6 Transfering results from the planar case through Cha-

puy’s bijection

In order to prove Lemmas 9, 10, 12, and 13, we rely on similar results for the Brownian snake
driven by a normalized excursion (e, Z). This means that e has the law of a normalized Brownian
excursion, and, conditionally given e, the process Z is a Gaussian process with covariance

cov(Zx, Zy) = inf
[x∧y,x∨y]

e.
We first focus on the proofs of Lemmas 9 and 10. Lemmas 3.1 and 3.2 in [19] state that, a.s., Z
reaches its minimum at a unique point, and that, a.s., IP(e) and IP(Z) are disjoint sets. We will
use a bijection due to Chapuy [7] to transfer these results to our case.

6.1 Chapuy’s bijection

Chapuy’s bijection consists in “opening” g-trees into plane trees. We briefly describe it here.
See [7] for more details. Let t be a g-tree whose scheme s is dominant. Such a g-tree will be
called dominant in the following. As usual, we arrange the half-edges of s according to its facial
order: e1 = e∗, . . . , e2(6g−3). Let v be one of the nodes of t. We can see it as a vertex of s.

Let us call ei1 , ei2 , and ei3 the three half-edges starting from v (i.e. v = e−i1 = e−i2 = e−i3), where
i1 < i2 < i3. We say that v is intertwined if the half-edges ei1 , ei2 , ei3 are arranged according
to the counterclockwise order around v (see Figure 13). When v is intertwined, we may slice

it: we define a new map, denoted by t  v, by slicing the node v into three new vertices v1, v2,
and v3 (see Figure 13).

ei1ei1

ei2
ei2

ei3ei3 v1

v2

v3v

Figure 13: Slicing an intertwined node v.

The map obtained by such an operation turns out to be a dominant (g − 1)-tree. After
repeating g times this operation, we are left with a plane tree. In that regard, we call opening
sequence of t a g-uple (v1, . . . , vg) such that vg is an intertwined node of t, and for all 1 ≤ i ≤
g − 1, the vertex vi is an intertwined node of t  vg  · · ·  vi+1. We can show that every g-tree
has exactly 2g intertwined nodes, and thus 2gg! opening sequences.

To reverse the slicing operation, we have to intertwine and glue back the three vertices
together. We then need to record which vertices are to be glued together. This motivates the
following definition: we call tree with g triples a pair (t, (c1, . . . , cg)), where

⋄ t is a (rooted) plane tree,
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⋄ for 1 ≤ i ≤ g, ci = {v1i , v2i , v3i } ⊆ V (t) is a set of three vertices of t,

⋄ the vertices vji , 1 ≤ i ≤ g, 1 ≤ j ≤ 3, are pairwise distinct,

⋄ the vertices of the tree
⋃

i,i′,j,j′

[[

vji , v
j′

i′

]]

have degree at most 3 and the vji ’s have degree exactly 1 in that tree. (As in the case of
g-trees, the set [[a, b]] represents the range of the unique path linking a and b in the tree.)

Let t be a g-tree together with an opening sequence (v1, . . . , vg). For all 1 ≤ i ≤ g, let us call ci
the triple of vertices obtained from the slicing of vi, as well as t := t  vg  · · ·  v1 the plane
tree. We define Φ(t, (v1, . . . , vg)) := (t, (c1, . . . , cg)). Then Φ is a bijection from the set of all
dominant g-tree equipped with an opening sequence into the set of all trees with g triples.

Now, when the g-tree is well-labeled, we can do the same slicing operation, and the three
vertices we obtain all have the same label. We call well-labeled tree with g triples a tree
with g triples (t, (c1, . . . , cg)) carrying a labeling function l : V (t) → Z such that

⋄ l(e−) = 0, where e is the root of t,

⋄ for every pair of neighboring vertices v ∼ v′, we have l(v)− l(v′) ∈ {−1, 0, 1},

⋄ for all 1 ≤ i ≤ g, we have l(v1i ) = l(v2i ) = l(v3i ).

We call Wn the set of all well-labeled trees with g triples having n edges. The bijection Φ then
extends to a bijection between dominant well-labeled g-trees equipped with an opening sequence
and well-labeled trees with g triples.

6.2 Contour pair of an opened g-tree

The contour pair of an opened g-tree can be obtained from the contour pair of the g-tree itself
(and vice versa). The labeling function is basically the same, but read in a different order. The
contour function is slightly harder to recover, because half of the forests are to be read with the
floor directed “upward” instead of “downward.” Because we will deal at the same time with
g-trees and plane trees in this section, we will use a Gothic font for objects related to g-trees,
and a boldface font for objects related to plane trees. In the following, we use the notations of
Section 2.2.

Let (t, l) be a well-labeled dominant g-tree with scheme s and (t, l) be one of the 2gg! cor-
responding opened well-labeled trees. The intertwined nodes of the g-tree correspond to inter-
twined nodes of its scheme, so that the opening sequence used to open (t, l) into (t, l) naturally
correspond to an opening sequence of s. Let s be the tree obtained by opening s along this
opening sequence. We identify the half-edges of s with the half-edges of s, and arrange them
according to the facial order of s: e1 = e∗, e2, . . . , e2(6g−3). (Beware that this is not the usual
arrangement according to the facial order of s.) Now, the plane tree t is obtained by replacing
every half-edge e of s with the corresponding forest fe of Proposition 4, as in Section 2.2.2.

We call (Ce, Le) the contour pair of (fe, le), we let Ce := Ce − σe, and we define Le by (4).
For any edge {ei, ej} 6= {e∗, ē∗} with i < j, we will visit the forest fei while “going up” and the
forest fej while “coming down” when we follow the contour of t. Precisely, we define

C
ei := Cei − 2Cei and C

ej := Cej . (15)
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The first function is the concatenation of the contour functions of the trees in fei with an extra
“up step” between every consecutive trees. The second one is the concatenation of the contour
functions of the trees in fej with an extra “down step” between every consecutive trees. It is
merely the contour function of fej shifted in order to start at 0. What happens to the forests fe∗

and fē∗ is a little more intricate. Let us first call (see Figure 14)

x := inf {s : Ce∗(s) = Ce∗ (u)} and y := inf
{

s : Cē∗(s) = −σe∗ − Ce∗ (u)
}

. (16)

When visiting the forest fē∗ , the floor is directed downward up to time y and then upward:

C
ē∗ :=

Å

Cē∗(s)

ã

0≤s≤y

•
Å

Cē∗ (y + s)− 2 inf
[y,y+s]

Cē∗ + Cē∗ (y)

ã

0≤s≤mē∗−y

. (17)

Finally, the forest fe∗ is visited twice. The first time (when beginning the contour), it is visited
between times u and me∗ , and the floor is directed upward:

C
e∗,1 :=

Å

Ce∗ (u+ s)− 2 inf
[u,u+s]

Ce∗ + Ce∗ (u)

ã

0≤s≤me∗−u

. (18)

The second time (when finishing the contour), we visit it between times 0 and x with the floor
directed downward, then we visit a part of the tree containing the root between times x and u:

C
e∗,2 :=

Å

Ce∗(s)

ã

0≤s≤x

•
Å

Ce∗ (x+ s)− 2 inf
[x+s,u]

Ce∗ + Ce∗ (u)

ã

0≤s≤u−x

. (19)

The contour pair of (t, l) is then given by

®

C := C
e1,1 •Ce2 •Ce3 • · · · •Ce2(6g−3) •Ce1,2,

L :=
(

Le1(u+ s)− Le1(u)
)

0≤s≤me1−u
• Le2 • Le3 • · · · • Le2(6g−3) •

(

Le1(s)
)

0≤s≤u
.

(20)

e1 = e∗

e2

e3 e4
e5

e6 = ē∗

e7

e8

e9

e10

e11

e12
e13

e14

e15

e16

e17

e18 fe17

xy

Figure 14: Opening of a 2-tree. The squares form one triple and the triangles the other one. The (blue)
short dashes correspond to the upward-directed floors and the (green) long dashes to the downward-directed
floors. The (red) solid line on the right of the root corresponds to the part of the tree containing the root
that has to be visited at the end. The forest fe17 is also represented on this figure.
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6.3 Opened uniform well-labeled g-tree

As in Section 2.3, we let (tn, ln) be uniformly distributed over the set Tn of well-labeled g-
trees with n edges, and, applying Skorokhod’s theorem, we assume that the convergence of
Proposition 5 holds almost surely. Let (in)n∈N be a sequence of i.i.d. random variables uniformly
distributed over J1, 2gg!K and independent of (tn, ln)n∈N. With any dominant scheme s ∈ S∗ and
integer i ∈ J1, 2gg!K, we associate a deterministic opening sequence. When (tn, ln) is dominant,
we may then define (tn, ln) as the opened tree of (tn, ln) according to the opening sequence
determined by the integer in. In this case, we call (Cn,Ln) the contour pair of (tn, ln). When
(tn, ln) is not dominant, we simply set (Cn,Ln) = (02n,02n), where we write 0ζ : x ∈ [0, ζ] 7→ 0.
We also let

C(n) :=

Å

Cn(2nt)√
2n

ã

0≤t≤1

and L(n) :=

Ç

Ln(2nt)

γ n
1
4

å

0≤t≤1

be the rescaled versions of Cn and Ln.
We now work at fixed ω for which Proposition 5 holds, s∞ ∈ S∗, and such that for all

i ∈ J1, 2gg!K, |{n ∈ N : in = i}| = ∞. Note that the set of such ω’s is of full probability. For n
large enough, sn = s∞ ∈ S∗, so that (tn, ln) is well-defined. For all n such that sn = s∞ and
in = i, we always open the g-tree (tn, ln) according to the same opening sequence, so that the
ordering e1, e2, . . . , e2(6g−3) of the half-edges of sn is always the same. As a result, we obtain
that

(C(n),L(n))
n: in=i−−−−→
n→∞

(Ci
∞,Li

∞),

where (Ci
∞,Li

∞) is defined by (15), (16), (17), (18), (19), and (20) when replacing every oc-
currence of Ce by Ce

∞ := Ce
∞ − σe

∞ and every occurrence of Le by Le
∞. Note that (C(n),L(n))

has exactly 2gg! a priori distinct accumulation points, each corresponding to one of the ways of
opening the real g-tree T∞.

Now, because every Le
∞ goes from 0 to 0, it is easy to see that for all i, the points where

L∞ reaches its minimum are in one-to-one correspondence with the points where Li
∞ reaches its

minimum. Moreover, we can see that if C∞ and L∞ have a common increase point, then at least
one of the pairs (Ci

∞,Li
∞) will also have a common increase point. Indeed, let us suppose that

C∞ and L∞ have a common increase point. Then, there exists e ∈ ~E(s∞) such that Ce
∞ and Le

∞

have a common increase point s ∈ [0,me
∞]. We use the following lemma:

Lemma 23 Let f : [0,m] → R be a function.

⋄ If s ∈ [0,m) is an increase point of f , then s is an increase point of f − 2f as well.

⋄ If s ∈ (0,m] is an increase point of f , then s is an increase point of r 7→ f(r)− 2 inf [r,m] f .

We postpone the proof of this lemma and finish our argument. If s < me
∞, then s is a common

increase point of Ce
∞ and L

e
∞ thanks to Lemma 23. When e = e∗, this fact remains true if we

define C
e
∞ := C

e,2
∞ •Ce,1

∞ . Note that x is an increase point of Ce
∞, even if 0 is not an increase

point of the second function defining C
e,2
∞ in (19). In this case, for all i, Ci

∞ and L
i
∞ have a

common increase point.
Let us now suppose that s = me

∞, and let us fix i ∈ J1, 2gg!K. We consider the opening
corresponding to i. If ei = e is visited while coming down in the contour of the opened tree, then
we conclude as above. If both ei and ei+1 are visited while going up, then 0 will be an increase
point of C

ei+1
∞ , so that Ci

∞ and L
i
∞ will still have a common increase point. In the remaining

case where ei is visited while going up and ei+1 is visited while coming down (i.e. ei+1 = ēi), we
cannot conclude that Ci

∞ and L
i
∞ have a common increase point. This, however, only happens
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when the node e+ belongs to the opening sequence. But when we pick an opening sequence,
we can always choose not to pick a given node, because at each stage of the process, we have
at least 2 intertwined nodes. This implies that at least one of the opening sequences will not
contain e+, and the corresponding pair (Ci

∞,Li
∞) will have a common increase point.

Proof of Lemma 23. Let s ∈ [0,m) be an increase point of f . If s is a right-increase point
of f , then f(r) ≥ f(s) when s ≤ r ≤ t for some t > s. For such r’s, f(r) = f(s), so that
f(r)− 2f(r) ≥ f(s)− 2f(s), and s is a right-increase point of f − 2f .

If s is a left-increase point of f , then f(r) ≥ f(s) when t ≤ r ≤ s for some t < s. If
f(s) > f(s), then, using the fact that f(s) = f(r) ∧ inf [r,s] f , we obtain that f(r) = f(s) when
t ≤ r ≤ s and conclude as above that s is a left-increase point of f − 2f . Finally, if f(s) = f(s),

then for all r ≥ s, we have f(r) − 2f(r) =
(

f(r) − f(r)
)

− f(r) ≥ 0 − f(s) = f(s)− 2f(s), and
because s < m, we conclude that s is a right-increase point of f − 2f .

We obtain the second assertion of the lemma by applying the first one to m − s and the
function x 7→ f(m− x). �

6.4 Uniform well-labeled tree with g triples

Conditionally on the event Dn := {(Cn,Ln) 6= (02n,02n)}, the distribution of (Cn,Ln) is that
of the contour pair of a uniform well-labeled tree with g triples. We use this fact to see that the
law of (C(n),L(n)) converges weakly toward a law absolutely continuous with respect to the law
of (e, Z). Let (τn, λn) be uniformly distributed over the set T 0

n of all well-labeled plane trees
with n edges. We call (Γn,Λn) the contour pair of (τn, λn), and define as usual the rescaled
versions of both functions:

Γ(n) :=

Å

Γn(2nt)√
2n

ã

0≤t≤1

and Λ(n) :=

Ç

Λn(2nt)

γ n
1
4

å

0≤t≤1

. (21)

For all n ≥ 1, k ∈ Z and x ∈ R, we define

Xn(k) := |{v ∈ τn : λn(v) = k}| and X(n)(x) :=
1

n
γ n

1
4 Xn

Äö

γ n
1
4x
ùä

,

respectively the profile and rescaled profile of (τn, λn). We let I be the one-dimensional ISE
(random) measure defined by

〈I, h〉 :=
∫ 1

0

dt h(Zt)

for every non-negative measurable functions h. By [5, Theorem 2.1], it is known that I a.s. has
a continuous density fISE with compact support. In other words, 〈I, h〉 =

∫

R
dx h(x)fISE(x) for

every non-negative measurable function h.

Proposition 24 The triple
(

Γ(n),Λ(n), X(n)

)

converges weakly toward (e, Z, fISE) in the space
C([0, 1],R)2 × Cc(R) endowed with the product topology.

Proof. It is known that the pair
(

Γ(n),Λ(n)

)

converges weakly to (e, Z): in [9, Theorem 5],
Chassaing and Schaeffer proved this fact with ⌊2nt⌋ instead of 2nt in the definition (21). The
claim as stated here easily follows by using the uniform continuity of (e, Z). Using Bousquet-
Mélou and Janson [5, Theorem 3.6] and the fact that fISE is a.s. uniformly continuous [5,
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Theorem 2.1], we also obtain that the sequence X(n) converges weakly to fISE. As a result, the
sequences of the laws of the processes Γ(n), Λ(n) and X(n) are tight. The sequence (νn) of the
laws of

(

Γ(n),Λ(n), X(n)

)

is then tight as well, and, by Prokhorov’s lemma, the set {νn, n ≥ 0}
is relatively compact. Let ν be an accumulation point of the sequence (νn). There exists a
subsequence along which

(

Γ(n),Λ(n), X(n)

)

converges weakly toward a random variable (e′, Z ′, f ′)
with law ν. Thanks to Skorokhod’s theorem, we may and will assume that this convergence holds
almost surely along this subsequence. We know that

(e′, Z ′)
(d)
= (e, Z) and f ′ (d)

= fISE.

It remains to see that f ′ is the density of the occupation measure of Z ′, that is

∫ 1

0

dt h(Z ′
t) =

∫

R

dx h(x)f ′(x), (22)

for all h continuous with compact support. First, notice that

1

n

∑

k∈Z

Xn(k)h
Ä

γ−1n− 1
4 k
ä

=
1

n

∫

R

dx Xn (⌊x⌋)h
Ä

γ−1n− 1
4 ⌊x⌋

ä

=

∫

R

dx X(n)(x)h
Ä

γ−1n− 1
4

ö

γ n
1
4x
ùä

→
∫

R

dx f ′(x)h(x)

by dominated convergence, a.s. as n → ∞ along the subsequence we consider. It is convenient
to introduce now the notation 〈〈s〉〉n defined as follows: for s ∈ [0, 2n), we set

〈〈s〉〉n :=

ß ⌈s⌉ if Γn(⌈s⌉)− Γn(⌊s⌋) = 1,
⌊s⌋ if Γn(⌈s⌉)− Γn(⌊s⌋) = −1.

Then, if we denote by τn(i) the i-th vertex of the facial sequence of τn, and by ρn the root of τn,
we obtain that the time the process

(

τn(〈〈s〉〉n)
)

s∈[0,2n)
spends at each vertex v ∈ τn\{ρn} is

exactly 2. So we have

1

n

∑

k∈Z

Xn(k)h
Ä

γ−1n− 1
4 k
ä

=
1

n

∑

v∈τn\{ρn}

h
Ä

γ−1n− 1
4λn(v)

ä

+
1

n
h(0)

=
1

2n

∫ 2n

0

ds h
Ä

γ−1n− 1
4Λn (〈〈s〉〉n)

ä

+
1

n
h(0)

=

∫ 1

0

ds h
Ä

γ−1n− 1
4Λn (〈〈2ns〉〉n)

ä

+
1

n
h(0)

→
∫ 1

0

dt h(Z ′
t)

a.s. along the subsequence considered. We used the fact that γ−1n− 1
4Λn (〈〈2ns〉〉n) → Z ′

s, which
is obtained by using the uniform continuity of Z ′.

This proves that (e′, Z ′, f ′) has the same law as (e, Z, fISE). Thus the only accumulation
point ν of the sequence (νn) is the the law of the process (e, Z, fISE). By relative compactness
of the set {νn, n ≥ 0}, we obtain the weak convergence of the sequence (νn) towards ν. �
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We define

W :=

(∫

f3
ISE

)g

E
[(∫

f3
ISE

)g] .

This quantity is well-defined, by [7, Lemma 10]. We also define the law of the pair (C∞,L∞) by
the following formula: for every bounded Borel function ϕ on C([0, 1],R)2,

E [ϕ(C∞,L∞)] = E [W ϕ(e, Z)] . (23)

Proposition 25 The pair
(

C(n),L(n)

)

converges weakly toward the pair (C∞,L∞) in the space
(

C([0, 1],R)2, ‖ · ‖∞
)

of pair of continuous real-valued functions on [0, 1] endowed with the uni-
form topology.

Proof. Let f be a bounded continuous function on C([0, 1],R)2. We have

E
[

f
(

C(n),L(n)

)]

= P(Dn)
∑

(τ,λ)∈T 0
n

(τ,λ)↔(C,L)

f(C,L) P ((τn, λn) = (τ, λ) |Dn) + P
(

Dn

)

f
(

02n,02n

)

where we used the notation (τ, λ) ↔ (C,L) to mean that the well-labeled tree (τ, λ) is coded
by the contour pair (C,L). It was shown in [7, Lemma 8] that the number of well-labeled trees
with g triples having n edges is equivalent to the number of well-labeled plane trees having n
edges, together with g triples of vertices (not necessarily distinct and not arranged) such that all
the vertices of the same triple have the same label. More precisely, we have

P ((τn, λn) = (τ, λ) |Dn) =
1

|Wn|

(

∑

k∈Z

|{v ∈ τ : λ(v) = k}|3
)g

+O
Ä

n− 1
4

ä

.

And, because f is bounded and P(Dn) → 1, we obtain that

E
[

f
(

C(n),L(n)

)]

∼ |T 0
n |

|Wn|
E

[(

∑

k∈Z

Xn(k)
3

)g

f
(

Γ(n),Λ(n)

)

]

.

Using the asymptotic formulae |T 0
n | ∼

√
π 12n n−3/2 and |Wn| ∼ cg 12

n n(5g−3)/2 for some posi-
tive constant cg only depending on g ([7, Lemma 8]), as well as the computation

n−5/2
∑

k∈Z

Xn(k)
3 = n−5/2

∫

R

dx Xn (⌊x⌋)3 = γ−2

∫

R

dx X(n)(x)
3,

we see that there exists a positive constant c such that

E
[

f
(

C(n),L(n)

)]

∼ c E

ïÅ∫

R

dx X(n)(x)
3

ãg

f
(

Γ(n),Λ(n)

)

ò

.

Now, let ǫ > 0. Thanks to [7, Lemma 10], we see that both quantities E
[(∫

f3
ISE

)g]
and

supn E
[

Ä

∫

X3
(n)

äg+1
]

are finite. Then, using the fact that

E

ïÅ∫

X3
(n)

ãg 1{∫
X3

(n)
>L
}

ò

≤ 1

L
E

ñ

Å∫

X3
(n)

ãg+1
ô

,
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we obtain that, for L sufficiently large,

sup
n

E

ïÅ∫

R

dx X(n)(x)
3

ãg

f
(

Γ(n),Λ(n)

)1{∫
X3

(n)
>L
}

ò

< ǫ

and

E

ïÅ∫

f3
ISE

ãg

f (e, Z)1{∫
f3
ISE

>L
}

ò

< ǫ.

Thanks to the Proposition 24, for n sufficiently large,

∣

∣

∣

∣

E

ïÅ∫

R

dx X(n)(x)
3

ãg

f
(

Γ(n),Λ(n)

)1{∫
X3

(n)
≤L
}

ò

− E

ïÅ∫

f3
ISE

ãg

f (e, Z)1{∫
f3
ISE

≤L
}

ò
∣

∣

∣

∣

< ǫ.

This yields the existence of a constant C such that

E
[

f
(

C(n),L(n)

)]

−−−−→
n→∞

C E

ïÅ∫

f3
ISE

ãg

f (e, Z)

ò

,

and we compute the value of C by taking f ≡ 1. �

Thanks to (23), we see that the properties that hold almost surely for the pair (e, Z) also
hold almost surely for (C∞,L∞). We may now conclude thanks to [19, Lemma 3.1] that

P
(

∃ s 6= t : L∞(s) = L∞(t) = minL∞

)

≤ 1

2gg!

2gg!
∑

i=1

P
(

∃ s 6= t : Li
∞(s) = L

i
∞(t) = minLi

∞

)

= P
(

∃ s 6= t : L∞(s) = L∞(t) = minL∞

)

= 0,

and, by [19, Lemma 3.2],

P
(

IP(C∞) ∩ IP(L∞) 6= ∅
)

≤
2gg!
∑

i=1

P
(

IP(Ci
∞) ∩ IP(Li

∞) 6= ∅
)

= 2gg! P
(

IP(C∞) ∩ IP(L∞) 6= ∅
)

= 0.

This concludes the proof of Lemmas 9 and 10.

6.5 Remaining proofs

6.5.1 Proof of Lemma 12

Chapuy’s bijection may naturally be transposed in the continuous setting. Let i ∈ J1, 2gg!K be an
integer corresponding to an opening sequence, and Ti

∞ the real tree coded by C
i
∞. The interval

[0, 1] may be split into 2g+ 1 intervals coding the two halves of fe∗∞ and the other forests of T∞.
Through the continuous analog of Chapuy’s bijection, these intervals are reordered into an order
corresponding to the opening sequence. We call ϕi : [0, 1] → [0, 1] the bijection accounting for
this reordering. It is a cadlag function with derivative 1 satisfying L∞(s) = L

i
∞(ϕi(s)) for all

s ∈ [0, 1].
In order to see that Lemma 12 is a consequence of [17, Lemma 2.4], let us first see what

happens to subtrees of T∞ through the continuous analog of Chapuy’s bijection. It is natural to
call root of T∞ the point ∂ := T∞(u∞), where the real number u∞ was defined in Proposition 5
as the limit of the integer coding the root in tn, properly rescaled. Using classical properties of

37



the Brownian motion together with Proposition 5, it is easy to see that, almost surely, ∂ is a leaf
of T∞, so that τ∂ is well-defined. Any subtree of T∞ not included in τ∂ (these subtrees require
extra care, we will treat them separately) is transformed through Chapuy’s bijection into some
subtree of the opened tree Ti

∞ (that is into some tree on the left or right of some branch of Ti
∞).

This is easy to see when the subtree is not rooted at a node of T∞, and we saw at the end of
Section 3.1 that, almost surely, all the subtrees are rooted outside the set of nodes of T∞.

We reason by contradiction to rule out these subtrees. We call L the Lebesgue measure on
[0, 1]. Let us suppose that there exist η > 0, and some subtree τ , coded by [l, r], not included
in τ∂ , such that inf [l,r] L∞ < L∞(l)− η, and

lim inf
ε→0

ε−2
L

({

s ∈ [l, r] : L∞(s) < L∞(l)− η + ε ; ∀x ∈ [C∞(l),C∞(s)],

L∞(sup{t ≤ s : C∞(t) = x}) > L∞(l)− η +
ε

8

})

= 0. (24)

Note that, by definition of Ci
∞, the function s 7→ C∞(s) − C

i
∞(ϕi(s)) is constant on [l, r].

Let us call l′ := ϕi(l) and r′ := ϕi(r). It is easy to see that (24) remains true when replacing
respectively l, r, C∞ and L∞ with l′, r′, Ci

∞ and L
i
∞. Thanks to Proposition 25, the conclusion

of [17, Lemma 2.4] is also true for the opened tree Ti
∞, and the fact that [l′, r′] codes a subtree

of the opened tree yields a contradiction.

We then use a re-rooting argument to conclude. With positive probability, τ∂ is no longer
the tree containing the root in the uniformly re-rooted g-tree. Let us suppose that, with positive
probability, there exists a subtree of T∞ included in τ∂ , satisfying the hypotheses but not the
conclusion of Lemma 12. Then, with positive probability, there will exist a subtree not included
in the tree containing the root of the uniformly re-rooted g-tree, satisfying the hypotheses but
not the conclusion of Lemma 12. The fact that the uniformly re-rooted g-tree has the same law
as T∞ yields a contradiction.

6.5.2 Proof of Lemma 13

Using the same arguments as in [18], we can see that Lemma 13 is a consequence of the following
lemma (see [18, Corollary 6.2]):

Lemma 26 For every p ≥ 1 and every δ ∈ (0, 1], there exists a constant cp,δ < ∞ such that, for
every ε > 0,

E

ñÇ

∫ 1

0

1{L∞(s)≤minL∞+ε} ds

åpô

≤ cp,δ ε
4p−δ.

Proof. This readily comes from [18, Lemma 6.1] stating that for every p ≥ 1 and every δ ∈
(0, 1], there exists a constant c′p,δ < ∞ such that, for every ε > 0,

E

ñÇ

∫ 1

0

1{Zs≤minZ+ε} ds

åpô

≤ c′p,δ ε
4p−δ.

38



Obviously, this still holds for δ ∈ (1, 2]. Using the link between L∞ and L∞, as well as Proposi-
tion 25, we see that, for p ≥ 1 and δ ∈ (0, 1],

E

ñÇ

∫ 1

0

1{L∞(s)≤minL∞+ε} ds

åpô

= E

ñÇ

∫ 1

0

1{L∞(s)≤minL∞+ε} ds

åpô

= E

ñ

W

Ç

∫ 1

0

1{Zs≤minZ+ε} ds

åpô

≤
(

E
[

W 2
]

c′2p,2δ
)

1
2 ε4p−δ = cp,δ ε

4p−δ,

where cp,δ :=
Ä

E
[

W 2
]

c′2p,2δ

ä
1
2
< ∞, by [7, Lemma 10]. �
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