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December 16, 2010

Abstract

The statistical properties of the likelihood ratio test statistic (LRTS)
for mixture-of-expert models are addressed in this paper. This ques-
tion is essential when estimating the number of experts in the model.
Our purpose is to extend the existing results for simple mixture models
(Liu and Shao, [13]) and mixtures of multilayer perceptrons (Olteanu
and Rynkiewicz, [14]). In this paper we first study a simple example
which embodies all the difficulties arising in such models. We find
that in the most general case the LRTS diverges but, with additional
assumptions, the behavior of such models can be totally explicated.

keyword Mixture of experts, likelihood ratio statistic test, asymptotic
statistic

1 Introduction

Derived from neural networks literature, Mixtures of Experts (ME) (Ja-
cobs et. al., [9]) and Hierarchical Mixtures of Experts (HME) (Jordan and
Jacobs,[11]) generalize linear regression models. HME are mixtures of “ex-
perts” (for example, linear regression models) organized in a tree-structured
network. The network assigns a weight to each expert and then produces
an output which combines the outputs produced by all experts according to
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their weights. Unlike mixtures of regression models, the weights depend on
the input x. The ME discussed in this paper is a particular case of HME,
where the network has only one layer. The conditional density of a ME can
be generally written as:

g (y|x, φ) = ∑p

i=1 πνi(x)gθi(y|x),

where φ =
(
νT1 , ..., ν

T
p , θ

T
1 , ..., θ

T
p

)
is the parameter of the model. Usually, the

weights or “gating functions” are chosen to be logistic type

πνi(x) =
exp(νTi x)

∑p
j=1 exp(νTj x)

,

while gθ may be Poisson, Binomial or Gaussian distributions.
When the model is assumed to be correctly specified, the maximum like-

lihood estimates converge to the true values of the parameters and are nor-
mally distributed (Jiang and Tanner,[10] ). However, the true model is not
usually known and the true parameter is unidentifiable. This paper studies
the asymptotic behavior of the likelihood ratio test statistic (LRTS) for mix-
tures of experts and extends the results for simple mixtures models (Liu and
Shao [13]). In Section 2, we present the model and illustrate, on a simple
example, the cases of divergence and, under some additional assumptions,
convergence. Section 3 deals with the asymptotic of the LRTS in a more
general frame.

2 The model and a simple example

Let (Xk, Yk)k∈Z be a sequence of independent and identically distributed
random vectors defined on a probability space (Ω,K,P) and let us denote by
µ the probability distribution of the vector (Xk, Yk). Let P = {gθ, θ ∈ Θ} be
a set of densities with respect to some positive measure λ, where Θ is a finite-
dimensional set. Let us consider an observed sample {(x1, y1), ..., (xn, yn)} of
the sequence (Xk, Yk). For every xk, the true density of Yk conditionally to
Xk = xk is

g0 (yk | xk) =
∑p0

i=1 πνi0(xk)gθi0 (yk | xk),

where gθ0i ∈ P, πνi0(xk) ≥ 0,
∑p0

i=1 πνi0(xk) = 1 and φ0 =
(
θ01, ..., θ

0
p0
, ν01 , ..., ν

0
p0

)T

is the global parameter of the model. Let us remark that this model is the
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general parameterization of mixtures of experts.
The set of possible conditional densities is

G =

{

g (yk | xk) =
p

∑

i=1

πνi(xk)gθi (yk | xk) , πνi(xk) ≥ 0 ,

p
∑

i=1

πνi(xk) = 1 , gθi ∈ P , p0 ≤ p ≤ P

}

where P ∈ N
⋆ is fixed, sufficiently large.

For g ∈ G, let

ln (g) =
∑n

k=1 ln g (Yk | Xk)

be the conditional log-likelihood function of ((X1, Y1), · · · , (Xn, Yn)). In order
to select the dimension p0 of the true model, we need to look at the likelihood
ratio test statistic (LRTS). The LRTS is defined as:

2λn = 2

(

sup
g∈G

ln(g)− ln(g
0)

)

(1)

For regular statistical models, the LRTS converges to a χ2 distribution. This
is no longer the case with this model. Let us first recall a result which gives
an approximation of the LRTS.

2.1 Approximation of the LRTS

In the classical statistical theory, the approximation of the log-likelihood and
the LRTS use a Taylor expansion in a neighborhood of the true parameter by
computing the first derivatives and second derivatives of the log-likelihood,
for example if the distribution g depends on a parameter θ, and the true
parameter of g0 is θ0:

ln(g) ≃ ln(g
0) + (θ − θ0)

∂ln(g)

∂θ
(θ0) +

1

2
(θ − θ0)2

∂2ln(g)

∂θ2
(θ0)

The first derivative ∂ln(g)
∂θ

(θ0) is called the score function. However, our
model is no more identifiable (the true parameter is not unique), so we can not
use this expansion. Instead we define a new “extended set of score-functions”
which allows us to give an approximation of the LRTS in a neighborhood of
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the set of true parameters (the parameters giving the true log-likelihood
function).

In order to get such approximation, we have to control the size of the term
λn, which can be done thanks the “empirical processes theory” (see van der
Vaart [15]). This theory deals with “law of large number” and “asymptotic
normality” for set of functions. To get the law of large number, the considered
set of function has to be not too big, we say “Glivenko-Cantelly” (see van
der Vaart [15], page 269). This means that the set of function can be covered
by a finite set of balls, i.e. the covering number (see below) of the set of
function is finite. The assumptions for the “asymptotic normality” is more
restrictive, now the covering number, which depends of the diameter ε of the

balls, has to be of order e
1
ε2 when ε goes to 0. We call such set a Donsker set

(see van der Vaart [15], page 269).
Now, we have to introduce some definitions and properties.

• We recall that µ is the probability distribution of the vector (Xk, Yk).
For a function f such that f(Xk, Yk) is square integrable,
let ‖f(Xk, Yk)‖L2(µ) be

√
∫

f 2(Xk, Yk)dµ(Xk, Yk)

• For η > 0, let us denote Gη :=
{

g ∈ G, ‖ g

g0
− 1‖L2(µ) ≤ η

}

, Gη is then

the set of conditional density functions in a neighborhood of the true
conditional density function g0. In this neighborhood let us define the
extended set of score-functions Sη as:

Sη =
{

sg =
g

g0
−1

∥

∥

∥

g

g0
−1

∥

∥

∥

L2(µ)

, g ∈ Gη
}

.

• Consider the extended set of score-functions Sη endowed with the norm
‖·‖L2(µ). For every ε > 0, we define an ε-bracket by
[l, u] = {f ∈ Sη, l ≤ f ≤ u} such that ‖u− l‖L2(µ) < ε. The ε-bracketing
entropy is

H[·]

(

ε,Sη, ‖·‖L2(µ)

)

= ln
(

N[·]

(

ε,Sη, ‖·‖L2(µ)

))

,
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where N[·]

(

ε,Sη, ‖·‖L2(µ)

)

is the minimum number of ε-brackets neces-

sary to cover Sη. N[·]

(

ε,Sη, ‖·‖L2(µ)

)

is also called “covering number”.

• With the previous notations, we introduce the following assumption
(B): Assume that G is Glivenko-Cantelli and that there exists η > 0
such that ∫ 1

0

√

H[·]

(

ε,Sη, ‖·‖L2(µ)

)

dε <∞.

Then the set Sη is Donsker under (B).

• Let us also define the limit-set of scores D
{

d ∈ L
2(µ) | ∃(gn) ∈ G, ‖ gn−g0

g0
‖L2(µ) −−−→

n→∞
0, ‖d− sgn‖L2(µ) −−−→

n→∞
0
}

.

By putting gt = gn for t ∈ [0, 1] and n ≤ 1
t
< n+1, we obtain that, for

all d ∈ D, there exists a parametric path (gt)0≤t≤1 such that ∀t ∈ [0, 1],

gt ∈ G, t → ‖ gt−g0
g0

‖L2(µ) is continuous in 0, ‖ gt−g0
g0

‖L2(µ) −−→
t→0

0 and

‖d− sgt‖L2(µ) −−→
t→0

0.

The following theorem can be stated (Gassiat, 2002):

Theorem 1 : Under the assumption (B),

2λn = supd∈D

(

max
{

1√
n

∑n

i=2 d(Yi, Xi); 0
})2

+ oP (1)

Using this result, we may study a simple example of such model.

2.2 Simple mixture of experts

In this section, we shall test one against two components in the mixture of
experts.
Let G be the set of possible conditional densities:

G =
{
g (y | x) = πν(x)gθ (y | x) + (1− πν(x))g

0 (y | x) , πν(x) ∈ [0; 1], gθ ∈ P
}
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with P =
{

gθ(y|x) = 1√
2π
e−

1
2
(y−θx)2 , θ ∈ Θ ⊂ R

}

the set of conditional den-

sities and g0 (y | x) = 1√
2π
e−

1
2
y2 . This model is clearly a particular case of

the general mixture of expert model and is a simple example of mixture of
regressions with Gaussian noise. Note that when it comes to the decision
about the number of components, if the true conditional density function is
in set set of possible parameter, say G∗, then G ⊂ G∗ and

2

(

sup
g∈G∗

ln(g)− ln(g
0)

)

≥ 2

(

sup
g∈G

ln(g)− ln(g
0)

)

So, if the behavior of λn is bad for g ∈ G, it is worst for a more general case.
Within this frame, the test may be rewritten as θ 6= 0 and πν(x) 6= 0 (two

components) against θ = 0 and πν(x) = 0 , ∀x (one component).
The LRTS is defined as:

2λn = 2

(

sup
g∈G

ln(g)− ln(g0)

)

= 2 sup
g∈G

n∑

k=1

ln
πgθ (Yk | Xk) + (1− π)g0 (Yk | Xk)

g0 (Yk | Xk)

(2)
In order to derive the behavior of the LRTS, two cases have to be an-

alyzed. The first one is if there exists a sequence of parameters ν1, · · · , νk
such that limk→∞E [πνk(X)] = 0. The second one is when ∃δ > 0 such that
∀ν, E [πν(X)] ≥ δ.

2.2.1 Divergence of LRTS

The LRTS can be divergent if there exists a sequence of parameters ν1, · · · , νk, · · ·
such that limk→∞E [πνk(X)] = 0. Indeed, for such sequence we can have
‖ ln(g)− ln(g0)‖ → 0 with θ 6= 0.

For sake of simplicity, assume that the probability function πν(X) is con-
stant. Then, the corresponding score functions are :

g

g0
− 1

∥
∥
∥
g

g0
− 1

∥
∥
∥
L2(µ)

=
exp

(

−θ2

2
X2 + θY X

)

− 1
∥
∥exp

(
−θ2

2
X2 + θY X

)
− 1

∥
∥
L2(µ)

(3)

and if the quantity∥
∥
∥exp

(

−θ2

2
X2 + θY X

)

− 1
∥
∥
∥
L2(µ)

is finite, the score functions are well defined.

Let us study
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∥
∥
∥exp

(

−θ2

2
X2 + θY X

)

− 1
∥
∥
∥

2

L2(µ)
=

1
2π

∫ ∫ (

exp
(

−θ2

2
x2 + θyx

)

− 1
)2

exp
(
−1

2
x2
)
exp

(
−1

2
y2
)
dxdy =

1
2π

∫ ∫ (

exp (−θ2x2 + 2θyx)− 2 exp
(

−θ2

2
x2 + θyx

)

+ 1
)

exp
(
−1

2
x2
)
exp

(
−1

2
y2
)
dxdy

The integral of the dominant term (the first) is:

I (θ) = 1
2π

∫ ∫
exp (−θ2x2 + 2θyx) exp

(
−1

2
x2
)
exp

(
−1

2
y2
)
dxdy

= 1
2π

∫ ∫
exp

(
−
(
θ2 + 1

2

)
x2 + 2θxy − 1

2
y2
)
dxdy

=
∫

1√
2π

exp
(
−1

2
x2 (1− 2θ2)

) (∫
1√
2π

exp
(
−1

2
(y − θx)2

)
dy

)

dx

= 1√
1−2θ2

Thus, for − 1√
2
< θ < 1√

2
,
∥
∥
∥exp

(

−θ2

2
X2 + θY X

)

− 1
∥
∥
∥
L2(µ)

< +∞ and the

score function is well defined. The set of limit score functions contains the
score functions:

{

sθ (X, Y ) =
gθ(Y |X)

g0(Y |X)

‖ gθ(Y |X)

g0(Y |X)
‖L2(µ)

, θ ∈]− 1√
2
; 1√

2
[

}

Suppose that an arbitrary number of “almost” uncorrelated random vari-
ables in C can be found, then λn can take an arbitrarily large value since
the maximum of m independent samples from standard normal distribution
is approximately

√
2 logm. According to Fukumizu (2003), if a sequence

θ1, · · · , θm, · · · exists so that

limm→∞ sθm (X, Y )
P→ 0

then the likelihood ratio diverges to infinity. Here, we get

limθ→ 1√
2
,θ< 1√

2

∥
∥
∥exp

(

−θ2

2
X2 + θY X

)

− 1
∥
∥
∥
L2(µ)

= +∞

So, for each sphere B of R2, centered on the origin, if (x, y) ∈ B:

limθ→ 1√
2
,θ< 1√

2

exp
(

− θ2

2
x2+θyx

)

−1
∥

∥

∥
exp

(

− θ2

2
X2+θY X

)

−1
∥

∥

∥

L2(µ)

= 0

and
exp

(

− θ2

2
X2+θY X

)

−1
∥

∥

∥
exp

(

− θ2

2
X2+θY X

)

−1
∥

∥

∥

L2(µ)

converges to 0 in probability for θ → 1√
2
, θ <

1√
2
. With the choice θm = 1√

2
− 1

m
, we get limm→∞ sθm (x, y)

P→ 0 and the
LRTS is divergent.
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2.2.2 Convergence of LRTS

In this section we suppose that (∃)δ > 0 such that (∀)ν, E (πν(X)) ≥ δ > 0.
Since πν(X) ≥ 0, then (∃)A ⊆ R such that λ(A) = η > 0 and πν(x) > δ for
any x ∈ A. In such case, the maximum likelihood estimator θ̂ converges to
θ0 = 0, otherwise limn→∞ λn = supg∈G Eµ (ln(g)− ln(g0)) can not be close to
0.

Here, the generalized score-function can be rewritten using the following:

g

g0
− 1 = πν(X)gθ(Y |X)+(1−πν(X))g0(Y |X)

g0(Y |X)
− 1

= πν(X)
(
gθ(Y |X)
g0(Y |X)

− 1
)

sg =
g

g0
−1

‖ g

g0
−1‖

L2(µ)
=

πν(X)
(

gθ(Y |X)

g0(Y |X)
−1

)

‖πν(X)
(

gθ(Y |X)

g0(Y |X)
−1

)

‖
L2(µ)

The model is parameterized by φ = (θ, ν) ∈ Θ × V ⊆ R
2 compact set

and θ0 belongs to the interior of Θ. Since E (πν(X)) ≥ δ > 0, we have that
g = g0 ⇔ θ = θ0. Thus, the model is identifiable in θ and unidentifiable in
ν. For any fixed ν ∈ V , we have the following Taylor expansion around θ0:

l(θ,ν) − 1 = (θ − θ0)
∂
∂θ
l(θ0,ν) + o (|θ − θ0|)

where l(θ,ν) =
gθ
g0
. Hence,

sg = sφ=(θ,ν) =
g

g0
−1

‖ g

g0
−1‖

L2(µ)

=
πν(X)[(θ−θ0) ∂∂θ l(θ0,ν)+o(|θ−θ0|)]

‖πν(X)[(θ−θ0) ∂∂θ l(θ0,ν)+o(|θ−θ0|)]‖L2(µ)

= β
πν(X)[ ∂∂θ l(θ0,ν)+o(1)]

‖πν(X)[ ∂∂θ l(θ0,ν)+o(1)]‖L2(µ)

where |β| = 1.
In the Gaussian case, gθ(y|x) = 1√

2π
exp

(
−1

2
(y − θx)2

)
, the first deriva-

tive of l(θ,ν) is
∂
∂θ
l(θ0,ν)(x, y) = xy, hence the directional score functions are

not linearly correlated (βπν(x)
∂
∂θ
l(θ0,ν)(x, y) 6= 0 for any β and ν ∈ V ) and

we may apply Lemma 4.1 in Liu and Shao [13]. According to this lemma,
when |θ − θ0| → 0, the set of limit score functions is F , where

F =
{
Ω
(
βπν(X) ∂

∂θ
l(θ0,ν)(X, Y )

)
, |β| = 1, ν ∈ V

}

and Ω(f) = f

‖f‖L2(µ)
. According to Theorem 3.1 in Liu and Shao [13], the

LRTS satisfies:
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lim 2λn = supsg∈F
(
Wsg ∨ 0

)2

where
{
Wsg , sg ∈ F

}
is a centered Gaussian process with continuous sample

paths and covariance kernel E (Ws1Ws2) = E (s1s2). In our case,

F = {Ω (βπν(X)XY ) , |β| = 1, ν ∈ V }

and

E (s1s2) =
E(X2Y 2πν1 (X)πν2 (X))

‖πν1 (X)XY ‖
L2(µ)‖πν2 (X)XY ‖

L2(µ)

3 General case

This section describes the asymptotics of the LRTS in the general frame
introduced in the beginning of the previous section. We shall prove that
assumption (B) holds for mixtures of experts (ME) under some general hy-
pothesis. Furthermore, we shall prove that the limit set of scores D is com-
plete and has continuous parametric paths. Hence, the asymptotic behavior
of the LRTS may be completely explicated.

Assumptions for the tightness of LRTS

H-1 The set G is Glivenko-Cantelli and the set of possible parameters con-
tains a neighborhood of the parameters defining the true conditional
density g0.

H-2 There exists η > 0 such that for all g ∈ G with ‖g − g0‖L2(µ) ≤ η,
∥
∥
∥
g

g0
− 1

∥
∥
∥
L2(µ)

<∞

H-3 By denoting lθi :=
gθi
g0

and, with a slight abuse of notation, ∂q

∂θ
q
j
the

derivative of order q with respect to all components of θj , we assume the
existence of a square-integrable function h such that, for all (θ1, · · · , θp),

∣
∣
∣
∣

∂lθj

∂θj
(θj)

∣
∣
∣
∣
≤ h,

∣
∣
∣
∣

∂2lθj

∂θ2j
(θj)

∣
∣
∣
∣
≤ h and

∣
∣
∣
∣

∂3lθj

∂θ3j
(θj)

∣
∣
∣
∣
≤ h.
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H-4 With the following notations:

l′j :=
∂lθj

∂θj

(
θ0j
)
, l′′ :=

∂2lθj

∂θ2j

(
θ0j
)

we assume that for distinct (θi)1≤i≤p
{

(lθi)1≤i≤p , (l
′
i)1≤i≤p0 , (l

′′
i )1≤i≤p0

}

are linearly independent in the Hilbert space L2(µ).

The key assumption (H-2) guarantees that the score functions are well
defined. This assumption failed in the example of divergence of the LRTS.
In the general case, one way to get this assumption to hold is to have the
expected values of mixture weights E‖πν(X)‖L2(µ) greater than some positive
constant (see the previous example).

Let us define Ω : L2(P ) → L2(µ) by Ω(g) = g

‖g‖2 , for g 6= 0.
We can state the following theorem, which generalizes theorem 4.1 of Liu

and Shao [13] :
Theorem 2 :

Let D be the parametric dimension of the regression functions. Under the as-
sumptions (H-1), (H-2), (H-3) and (H-4), there exists a centered Gaus-
sian process {WS, S ∈ F} with continuous sample path and covariance kernel
P (WS1WS2) = P (S1S2) such that

lim
n→∞

2λn = sup
S∈F

(max(WS, 0))
2
.

The index set F is defined as F = ∪tFt, with the union running over
t = (t0, · · · , tp0) ∈ N

p0+1 with 0 = t0 < t1 < · · · < tp0 ≤ p and

Ft =
{

Ω
(
∑p0

i=1 ζi(X)lθ0i +
∑p

i=p0+1 ζi(X)lθi+
∑p0

i=1 λ
T
i (X)l′i + δ

∑p0
i=1

∑ti
j=ti−1+1 γ

T
j (X)l′′i γj(X)

)

,

for all x, λ1(x), · · · , λp0(x), γ1(x), · · · , γtp0 (x) ∈ R
d ; ζ1(x), · · · , ζp(x) ∈ R,

θtp0+1, · · · , θp ∈ Θ−
{
θ01, · · · , θ0p0

}}

where δ = 1 if there exists a vector q such that:
qj(x) ≥ 0,

∑ti
j=ti−1+1 qj(x) = 1,

∑ti
j=ti−1+1

√

qj(x)γ
t
j(x) = 0 for i = 1, · · · , p0;

and δ = 0 otherwise.
Note that the asymptotic law of the LRTS depends on the true parameters

of the model. The proof of this theorem is postponed in the appendix.
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4 Conclusion

Summary of the findings Mixtures of Experts and Hierarchical Mixtures
of Experts are powerful tools to deal with regression models, maybe too
powerful, indeed, for models like :

g (y|x, φ) =
p

∑

i=1

πνi(x)gθi(y|x),

The divergence of the LRTS shows that strong overfitting problem plagues
theses models. But if we consider the restricted models :

g (y|x, φ) =
p

∑

i=1

πνi(x)gθi(y|x), with πνi(x) ≥ η

for a small constant η > 0 the theorem 2 shows that the overfitting will be
moderated. This conditions means that the user can introduce new regression
in the mixture density if the probability of the new regression is not too small.
Practically, η = 0.01 or η = 0.001 seems to be a reasonable choice.

As a conclusion The example of this paper illustrates the two main be-
haviors that one can expect: moderate overfitting if the mixing probabilities
are bounded from below and strong overfitting if the mixing probabilities can
be as small as possible. Moreover, the main interest of the general theorem
2 is to show that the LRTS is tight under some general assumptions, such
that the true number of components of the mixture may be selected thanks
to classical penalized log-likelihood criteria like BIC. So, if the user seeks to
minimize

ln (g) +D × log(n)

where D is the number of parameter of the models, then it will automatically
select the true number of components of the mixture of expert if n, the
number of observations, is large enough.

Appendix : Proof of Theorem 2

Let η > 0 be a real number. Consider Ĝn 6= ∅ the set of functions which
maximize the log-likelihood. Since, under (H-1), G is Glivenko-Cantelli, for

11



n large enough, ‖g − g0‖L2(µ) < η for g ∈ Ĝn so Ĝn ⊂ Gη. Let us remark
that, under assumption (H-2), the score function sg ∈ Sη is well defined in
a compact neighborhood of the true density function g0.

Proving that for an η > 0, a parametric family like Sη is Donsker is not
straightforward. The problems arise when g → g0 and the limits of sg in
L2 (µ) have to be computed. To achieve our proof, let us split S into two
classes of functions.

For a sufficiently small ε > 0, we consider F0 ⊂ Gη, a neighborhood of g0,

F0 =

{

g ∈ G,
∥
∥
∥
g

g0
− 1

∥
∥
∥
L2(µ)

≤ ε, g 6= g0
}

. Sη is split into S0 = {sg, g ∈ F0}
and Sη \ S0.

On Sη \ S0, it can be easily seen that

∥
∥
∥
∥
∥
∥
∥

g1
g0

− 1
∥
∥
∥
g1
g0

− 1
∥
∥
∥
L2(µ)

−
g2
g0

− 1
∥
∥
∥
g2
g0

− 1
∥
∥
∥
L2(µ)

∥
∥
∥
∥
∥
∥
∥
L2(µ)

≤ 2

∥
∥
∥
g1
g0

− g2
g0

∥
∥
∥
L2(µ)

∥
∥
∥
g1
g0

− 1
∥
∥
∥
L2(µ)

for every g1, g2 ∈ Gη \ F0 and, moreover, by the definition of S0,

∥
∥
∥
∥
∥
∥
∥

g1
g0

− 1
∥
∥
∥
g1
g0

− 1
∥
∥
∥
L2(µ)

−
g2
g0

− 1
∥
∥
∥
g2
g0

− 1
∥
∥
∥
L2(µ)

∥
∥
∥
∥
∥
∥
∥
L2(µ)

≤ 2

ε

∥
∥
∥
∥

g1

g0
− g2

g0

∥
∥
∥
∥
L2(µ)

On the other hand, by the assumption (H-3), g

g0
has square-integrable

partial-derivatives of order one and, using the result 19.7 on parametric
classes of functions in [15], we get:

N[·] (ε,S \ S0, ‖·‖2) = O
(

1

ε2

)D

,

where D is the number of parameters in the model.
It remains to prove that the bracketing number is a polynomial of (1

ε
) for

S0. The idea is to reparameterize the model in a convenient manner which
will allow a Taylor expansion around the identifiable part of the true value
of the parameters.

Let us recall that it is assumed that p0 < p.
When g

g0
−1 = 0, by the linear independence of the functions gθj , a vector

of positive integers t = (ti)0≤i≤p0 , t0 = 0 exists so that:

12



θti−1+1 = ... = θti = θ0i ,

ti∑

j=ti−1+1

πνj (x) = π0
νi
(x), i ∈ {1, ..., p0}

With this remark, one can define in the general case s(x) = (si(x))1≤i≤p0
and q(x) = (qj(x))1≤j≤p so that, for every i ∈ {1, ..., p0} , j ∈ {ti−1 + 1, ..., ti},

si(x) =

ti∑

j=ti−1+1

πνj (x)− π0
νi
(x), qj(x) =

πνj (x)
∑ti

l=ti−1+1 πνl(x)

and a new parameterization will be

Θt = (φt, ψt) , φt =
(

(θj)1≤j≤tp0
, (si(x))1≤i≤p0−1 ,

(
πνj (x)

)p

j=tp0+1

)

,

ψt =
(

(qj(x))1≤j≤p , (θj)
p

j=tp0+1

)

with φt containing all the identifiable parameters of the model and ψt the
non-identifiable ones. Then, for g = g0, we will have:

φ0
t = (θ01, ..., θ

0
1

︸ ︷︷ ︸
, ..., θ0p0, ..., θ

0
p0

︸ ︷︷ ︸
, 0, ..., 0

︸ ︷︷ ︸
0, ..., 0
︸ ︷︷ ︸

t1 tp0 − tp0−1 p0 − 1 p− tp0

)T

This reparameterization allows to write a second-order Taylor expansion
of g

g0
− 1 at φ0

t .

With the notations introduced in assumptions (H1)-(H4), the density
ratio becomes:

g

g0
− 1 =

p0∑

i=1

(
si(x) + π0

νi
(x)

)
ti∑

j=ti−1+1

qj(x)lθj +

p
∑

j=tp0+1

πνj (x)lθj − 1

and since sp0(x) = −∑p0−1
i=1 si(x),

g

g0
− 1 =

∑p0−1
i=1

(
si(x) + π0

νi
(x)

)∑ti
j=ti−1+1 qj(x)lθj+(

π0
νp0

−∑p0−1
i=1 si(x)

)
∑tp0

j=tp0−1+1 qj(x)lθj
+
∑p

j=tp0+1 πνj (x)lθj − 1

13



By remarking that when φt = φ0
t ,

g

g0
does not vary with ψt, we will study

the variation of this ratio in a neighborhood of φ0
t and for fixed ψt.

We can state the following result:. The proof is an easy application of

Taylor’s formula and will be omitted.
Proposition 3

Let us denote D (φt, ψt) =
∥
∥
∥
g(φt,ψt)

g0
− 1

∥
∥
∥
L2(µ)

. With the notations of as-

sumptions (H-3) and (H-4), for any fixed ψt, the second-order Taylor ex-
pansion at φ0

t exists such as

g

g0
−1 =

(
φt − φ0

t

)T
l′
(φ0t ,ψt)

+
1

2

(
φt − φ0

t

)T
l′′
(φ0t ,ψt)

(
φt − φ0

t

)
−1+o (D (φt, ψt))

with

(
φt − φ0

t

)T
l′
(φ0t ,ψt)

=

p0∑

i=1

π0
νi
(x)





ti∑

j=ti−1+1

qj(x)θj − θ0i





T

l′i +

p0∑

i=1

si(x)lθ0i

+

p
∑

j=tp0+1

πνj(x)lθj

and

(
φt − φ0

t

)T
l′′(φ0t ,ψt)

(
φt − φ0

t

)
=

p0∑

i=1



2si(x)





ti∑

j=ti−1+1

qj(x)θj − θ0i





T

l′i+

+π0
νi
(x)

ti∑

j=ti−1+1

qj(x)
(
θj − θ0i

)T
l′′i
(
θj − θ0i

)





Moreover,
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(
φt − φ0

t

)T
l′
(φ0t ,ψt)

+
1

2

(
φt − φ0

t

)T
l′′
(φ0t ,ψt)

(
φt − φ0

t

)
= 0 ⇔ φt = φ0

t

Using the Taylor expansion above, we can now show that S0 \ {g0} is a
Donsker class, using the next result:

Proposition 4
Let d be the dimension of the parameter indexing the functions gθ. The

number of ε-brackets N[·] (ε,S0, ‖·‖2) covering S0 is O
(
1
ε

)p0×(2d)+p
.

Proof of Proposition 4
The idea of this proof is to bound N[·] (ε,S0, ‖·‖2) by the number of ε-

brackets covering a wider class of functions. For every g ∈ F0, we will
consider the reparameterization Φ = (φt, ψt) which allows to write a second-
order development of the density ratio:

g(φt,ψt)

g0
−1 =

(
φt − φ0

t

)T
l′(φ0t ,ψt)

+
1

2

(
φt − φ0

t

)T
l′′(φ0t ,ψt)

(
φt − φ0

t

)
+o (D (φt, ψt))

Then, by remarking that the first two terms in the Taylor expansion are
linear combinations of lθ0i , l

′
i, l

′′
i , i = 1, ..., p0 and lθj , j = tp0 + 1, · · · , p, the

density ratio can be written also as:

g(φt,ψt)

g0
− 1 =

∑p0
i=1 αi(X)lθ0i +

∑p

j=tp0+1 αj(X)lθj +
∑p0

i=1 β
T
i (X)l′i

+
∑p0

i=1 γ
T
i (X)l′′i γi(X) + o (D (φt, ψt))

where, for all x, (αi(x))1≤i≤p ∈ R, (βi(x))1≤i≤p0 and (γi(x))1≤i≤p0 ∈ R
d.

Now, using the linear independence, ∃m > 0 ,so that, for every

(
αj(x), j = 1, · · · , p, βi(x), γi(x)γTi (x), i = 1, · · · , p0

)

of norm 1,

∥
∥
∥
∥
∥
∥

p0∑

i=1

αi(X)lθ0i +

p
∑

j=tp0+1

αj(X)lθj +

p0∑

i=1

βTi (X)l′i +

p0∑

i=1

γTi (X)l′′i γi(X)

∥
∥
∥
∥
∥
∥
L2(µ)

≥ m.
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At the same time, since

∥
∥
∥
∥
∥
∥
∥

g(φt,ψt)

g0
− 1

∥
∥
∥
g(φt,ψt)

g0
− 1

∥
∥
∥
L2(µ)

∥
∥
∥
∥
∥
∥
∥
L2(µ)

= 1

we will obtain that the Euclidean norm of the coefficients in the second-

order development of

g(φt,ψt)

g0
−1

∥

∥

∥

g(φt,ψt)

g0
−1

∥

∥

∥

L2(µ)

is upper bounded by 1
m
. This fact im-

plies that S0 can be included in

H =

{
∑p0

i=1

(

αi(x)lθ0i + βTi (x)l
′
i + γTi (x)l

′′
i γi(x)

)

+
∑p

j=tp0+1 αj(x)lθj + o (1) ,
∥
∥
(
αj(x), j = tp0 + 1, · · · , p, βi(x), γi(x)γTi (x), i = 1, · · · , p0

)∥
∥ ≤ 1

m

}

and then obviously N[·] (ε,H, ‖·‖2) = O
(
1
ε

)p0×2d+p+1
. �

Since the set Sη was proven to be Donsker, it remains to identify the
asymptotic index set of score functions.

Asymptotic index set. The set of limit score functions F is defined as the
set of functions d so that one can find a sequence gn satisfying ‖ gn−f

f
‖2 → 0

and ‖d− sgn‖2 → 0.
Let us define the two principal behaviors for the sequences gn which in-

fluence the form of functions d :

• If the second order term is negligible with respect to the first one :

gn

g0
− 1 = (Φn − Φ0)T l′(Φ0

t ,ψn)
+ o(D(Φn, ψn)).

• If the second order term is not negligible with respect to the first one :

gn
g0

− 1 = (Φn − Φ0)T l′
(Φ0
t ,ψn)

+

0.5(Φn − Φ0)T l′′(Φ0,ψn)
(Φn − Φ0) + o(D(Φn, ψn)).

In the first case, a set t = (t0, · · · , tp0) exists so that the limit function of sgn
will be in the set:

D
t
1 =

{

Ω
(
∑p0

i=1 ζ
T
i (X)lθ0i +

∑p

i=p0+1 ζ
T
i (X)lθi +

∑p0
i=1 λ

T
i (X)l′i

)

for all x λ1(x), · · · , λp0(x) ∈ R
d ; ζ1(x), · · · , ζp(x) ∈ R

θtp0+1, · · · , θp ∈ Θ−
{
θ01, · · · , θ0p0

}}
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In the second case, an index i exists so that :

ti∑

j=ti−1+1

qj(x)(θj − θ0i ) = 0,

Otherwise, the second order term will be negligible compared to the first one,
so

ti∑

j=ti−1+1

√

qj(x)×
√

qj(x)(θj − θ0i ) = 0.

Hence, a set a set t = (t0, · · · , tp0) exists so that the set of functions d
will be:
{

Ω
(
∑p0

i=1 ζi(X)lθ0i +
∑p

i=p0+1 ζi(X)lθi +
∑p0

i=1 λ
T
i (X)l′i

+δ
∑p0

i=1

∑ti
j=ti−1+1 γ

T
j (X)l′′i γj(X)

)

for all x, λ1(x), · · · , λp0(x), γ1(x), · · · , γtp0 (x) ∈ R
d ; ζ1(x), · · · , ζp(x) ∈ R

θtp0+1, · · · , θp ∈ Θ−
{
θ01, · · · , θ0p0

}}

where δ = 1 if there exists a vector q(x) exists so that:
qj(x) ≥ 0,

∑ti
j=ti−1+1 qj(x) = 1,

∑ti
j=ti−1+1

√
qj(x)γ

t
j(x) = 0 for i = 1, · · · , p0;

and δ = 0 otherwise.
So, the limit functions will belong to F. Conversely, let d be an element of

F, as functions d belong to the Hilbert sphere, one of their components is not
equal to 0. Let us assume that this component is ζ1(x), but the proof would
be similar with any other component. The norm of d is 1, so any component
of d is determined by the ratio: ζ2(x)

ζ1(x)
, · · · , 1

ζ1(x)
γp0(x).

Then, by assumption (H-1), the set of possible parameters contains a
neighborhood of the parameters realizing the true conditional density func-
tion g0, we can chose the parameters of gn so that:

∀i ∈ {2, · · · , p0} :

∑ti
j=ti−1+1 π

n
νj

(x)−π0
νi
(x)

∑t1
j=1 π

n
νj

(x)−π0
ν1

(x)

n→∞−→ ζi(x)
ζ1(x)

,

∀i ∈ {1, · · · , p0} :

∑ti
j=ti−1+1 q

n
j (x)(θnj −θ0i )

∑t1
j=1 π

n
νj

(x)−π0
ν1

(x)

n→∞−→ 1
ζ1(x)

λi(x),

∀j ∈ {1, · · · , tp0} :

√
qnj (x)

∑t1
j=1 π

n
νj

(x)−π0
ν1

(x)

(
θnj − θ0i

) n→∞−→ 1
ζ1(x)

γj(x),

∀i ∈ {p0 + 1, · · · , p} :
πnνi

(x)
∑t1
j=1 π

n
νj

(x)−π0
ν1

(x)

n→∞−→ 1
ζ1(x)

ζi(x).

�
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