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Abstract. This paper describes an automatic termination checker for a generic first-
order call-by-value language in ML style. We use the fact that value are built from variants
and tuples to keep some information about how arguments of recursive call evolve during
evaluation.

The result is a criterion for termination extending the size-change termination prin-

ciple of Lee, Jones and Ben-Amram [4] that can detect size changes inside subvalues of
arguments. Moreover the corresponding algorithm is easy to implement, making it a good
candidate for experimentation.

Introduction

Our goal is to automatically check the termination of (some) mutually recursive definitions
written in a first-order call-by-value language in ML style. The problem is of course unde-
cidable in general but there is a constant struggle for finding stronger sufficient conditions
that are decidable. Lee, Jones and Ben-Amram’s size-change termination principle (SCT)
is a simple, yet surprisingly strong sufficient condition for termination of programs [4]. It
relies on a notion of size of values and a static analysis interpreting a recursive program
as a control-flow graph with information about how the size of arguments evolves during
recursive calls. The algorithm checking that such a graph is “terminating” amounts to a
(conceptually) simple transitive closure computation.

We specialize and extend this principle to an ML-like language where first-order values
have a specific shape: they are built with n-tuples and variant constructors. It is then
possible to record more information about arguments of recursive calls than “decreases
strictly” or “decreases”. The main requirement is that the set of possible informations is
finite, which we get by choosing bounds for the depth and the weight of the terms describing
this information. We obtain a parametrized criterion for checking termination of first-order
recursive programs. The weakest version of this criterion corresponds to the original SCT
where the size of a value is its depth. An important points is that because we know some of
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2 PIERRE HYVERNAT

the constructors present in the arguments, it is possible to ignore some path in the control-
flow graph because they can not correspond to real evaluation steps. Moreover, it makes
it possible to inspect subvalues of the arguments and detect “local” size change. Another
important point is that there is a corresponding powerful syntax directed static analysis
that can be done in linear time.

The criterion has been implemented as part of the PML [7] language, where it plays a
central role: PML has a notion of proofs, which need, obviously, to be well founded. As far
as usability is concerned, this was a success: the criterion is strong enough, its output is
usually easy to predict, and its implementation was rather simple.1

The paper is organized as follows: after introducing the ambient programming language
and some paradigmatic examples, we first define an abstract interpretation for calls and
look at their properties. This makes it possible to give an abstract interpretation for sets
of recursive definitions as a control-flow graph. A subtle issue arises when we try to make
the set of possible interpretations finite, making the notion of composition not associative
in general. We then look at the actual criterion. We finish with an appendix giving some
details about the implementation and describing a simple static analysis.

Comparison with other works. Using the size-change termination principle for a language
with tuples and variants was already done by A. Abel, who implemented a termination
checker for the Agda programming language2 based on the “foetus” termination checker [1].
This implementation incorporates a part of SCT which unfortunately isn’t described in the
corresponding publication.

Similar ideas appeared in in [2] and [6] (see Section 2.4). What seems to be new here
is that the algorithm for testing termination is, like for the original SCT, “finitary”. Once
the static analysis is done –and this can be as simple a linear syntactical analysis of the
definitions– one needs only compute a transitive closure of the control-flow graph and inspect
some loops. This makes it particularly easy to implement from scratch as it needs not rely
on external automatic proof-checker (as in [6]) or integer linear programming libraries (as
in [2]). One advantage of this minimalistic approach is that a formal proof of the criterion
(bootstrap of the proof assistant) is probably easier.

This criterion is particularly well-suited for proof-assistants like Coq3 or Agda. It should
be noted that native datatypes (integers with arithmetic operations for example) are not
addressed in this paper. This is not a problem as proof assistant seldom rely on such native
types. Complementing the present approach with such internal datatypes and analysis of
higher-order programs as in [8] is the subject of future research.

Ambient Programming Language. The programming language we are considering is a
first-order call-by-value language in ML-style. It has variants, pattern-matching, tuples and
projections. The language is described briefly in Figure 1 and the syntax should be obvious
to anyone familiar with an ML-style language. The only proviso is that all variants are
unary and written as “C[u]”. Other features like let expressions, exceptions, (sub)typing
etc. can easily be added as they don’t interfere with the criterion. (They might make the
static analysis harder though.)

1The core consists of about 600 lines of OCaml code and doesn’t use any external library.
2A language based on dependent type theory, see http://wiki.portal.chalmers.se/agda/pmwiki.php
3A type theory based proof assistant with inductive types, see http://coq.inria.fr/

http://wiki.portal.chalmers.se/agda/pmwiki.php
http://coq.inria.fr/
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program ::= val rec def (and def )∗

def ::= f x1 x2 . . . xn = term

term ::= x | cste | f | term term+ |

C[term] | (term, . . . , term) |

term.i | match term with branch+

branch ::= | C[x] -> term

Figure 1: syntax of the programming language

The operational semantics is the usual one and we only consider safe programs, i.e.,
those whose semantics is well defined. This can be achieved using traditional type checking
or type inference or as in PML [7], a constraint checking algorithm ensuring that

• a variant is never projected,
• a tuple is never matched,
• an n-tuple is only projected on its i-th component if 1 ≤ i ≤ n.

To simplify the presentation, we also assume that functions have an arity and are always fully
applied and that the arguments of functions are all first-order values. These constraints need
not be present in the actual implementation: we can η-expand the functions that are not
fully applied and ignore higher-order arguments (including some of the newly η-expanded
arguments).

An important property of this language is that non-termination can only be the result
of evaluation going through an infinite sequences of calls to recursive functions, see [7].
Because of that, it is not possible to use the notions described in this paper directly for
languages where a fixed point combinator can be defined without recursion. Extensions
along the lines of [3] might be possible, at the cost of a greatly increased complexity of
implementation.

A first-order value is a closed term built only with variants and (possibly empty) tuples.
Examples include unary natural numbers built with variants “Z” and “S” or lists built with
variants “Nil” and “Cons”. The depth of a value is

depth(C[u])
def

= 1 + depth(u)

depth
(
(u1, . . . , un)

)
def

= max
16i6n

(
1 + depth(ui)

)
.

To make examples easier to read, we will deviate from the grammar of Figure 1 and
write the example using ML-like deep pattern-matching, including pattern-matching on
tuples. Moreover, parenthesis around tuples will be omitted when they are the argument
of a variant. For example, here is how we write the usual map function:

val rec map l = match l with Nil[] -> Nil[]

| Cons[a,l] -> Cons[f a, map l]

Without this convention, the definition would be

val rec map l = match l with Nil[x] -> Nil[()]

| Cons[x] -> Cons[(f x.1, map x.2)]

Note that because we restrict to first-order arguments, we cannot formally make f an
argument of map. We thus assume that f is a predefined function...
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Vocabulary and notation. For a set of mutual recursive definitions

val rec f x1 x2 x3 = ... g t1 t2 ...

and g y1 y2 = ...

where x1, x2 and x3 are variables and u1 and u2 are terms,

• “x1”, “x2” and “x3” are the parameters of the definition of f,
• “g t1 t2” is a call site from f to g,
• “t1” and “t2” are the arguments of g at this call site.

We usually abbreviate those to parameters, call and arguments.

Examples. Here are some examples of recursive (ad-hoc) definitions that are accepted by
our criterion.

• All the structurally decreasing inductive functions, like the map function given pre-
viously are accepted.

• Because our criterion generalizes the original SCT (where we use the depth of a value
as its size), all the examples from [4] are accepted. For example, the Ackermann
function is accepted as:

val rec ack x1 x2 = match (x1,x2) with

(Z[],Z[]) -> S[Z[]]

| (Z[],S[n]) -> S[S[n]]

| (S[m],Z[]) -> ack m S[Z[]]

| (S[m],S[n]) -> ack m (ack S[m] n)

• In the original SCT, as soon as the size of a value increased, all information would
be lost. We do support a local increase of size as in

val rec f1 x = g1 A[x]

and g1 x = match x with A[A[x]] -> f1 x

| _ -> ()

The call from f1 to g1 (that increases the depth by 1) is harmless because it is
followed by a call from g1 to f1 (that decreases the depth by 2).

• In the definition

val rec f2 x = match x with A[x] -> f2 B[x]

| B[x] -> f2 x

| _ -> ()

the size of the argument is constant in the first recursive call. This alone would
make it non size-change terminating for the original SCT. However, because of the
constructors, the first recursive call is necessarily followed by the second one, where
the size decreases. This function is accepted by the improved criterion.

• In the definition

val rec push_left t =

match t with Leaf[] -> Leaf[]

| Node[t, Leaf[]] -> Node[t, Leaf[]]

| Node[t1, Node[t2,t3]] -> push_left Node[Node[t1,t2],t3]

the depth of the argument does not decrease, but the depth of the right subtree
does. In the original SCT, the user could choose the ad-hoc notion of size “depth
of the right-subtree”, but in our case, the algorithm will discover it automatically.
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Idea of the Algorithm. Just like the original SCT, our algorithm works by making an ab-
stract interpretation of the recursive definitions as a control-flow graph. This part is done
by a static analysis, independent of the actual algorithm described in this paper. A simple,
syntactical static analysis that allows to deal with the examples of the paper is described
in the appendix. This control-flow graph represents the evolution of arguments of recursive
call, and nothing more. For example both the map function and the last function

val rec last l = match l with Cons[a,Nil[]] -> a

| Cons[_,l] -> last l

have the same control-flow graph: when applied to a non-empty list, they make a recursive
call to its tail. Ideally, each argument to a call should be represented by a transformation
describing how the argument is obtained from the parameters of the defined function. To
make the problem tractable, we restrict to transformations described by a simple term
language. For example, the argument of the map/last functions is described by “π2Cons

-l”:
starting from parameter l, we remove a Cons- variant and take the second component of
the resulting tuple. For a call to a function with several argument, a substitution is used:
each parameter of the called function is described by a term with free variables among the
parameter of the calling function.

Checking terminations is done by finding a sufficient condition for the following property
of the control-flow graph: no infinite path of the graph may come from an infinite sequence
of real calls. The two main reasons for a path to not come from a real sequence of calls are:

• there is an incompatibility in the path: for example, it is not possible to remove
a Cons from the Nil value,

• they would make the depth of some value negative: for example, it is not possible
to remove infinitely many Cons from a list.

In order to do that, we will identify loops that every infinite path must go through, and
check that for all of these “coherent” loops, there is some part of an argument that decreases
strictly. For example, in the definition of push left (page 4), the right subtree of the
argument is a decreasing argument, while neither the left subtree, nor the argument itself
is decreasing.

1. Interpreting Calls

1.1. Terms and Reduction. The first definition gives a way to describe how an argument
of a recursive calls is obtained from the parameters of the calling function:

Definition 1.1. The term language is described by the following grammar

t ∈ T ::= x | Ct | (t1, . . . , tn)
︸ ︷︷ ︸

constructors

| C-t | πit
︸ ︷︷ ︸

destructors

| t1 + t2 | 0 | 〈w〉t

where x can be any variable, n > 0, i > 1 and w ∈ Z∞ = Z∪ {∞}. We write T (x1, . . . , xn)
for the set of terms whose variables are chosen among x1, . . . , xn.
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We enforce linearity (or n-linearity for the n-tuple formation rule) for all term formation
operations with the following equations:

C0 = 0 C(t1 + t2) = Ct1 + Ct2
(. . . ,0, . . . ) = 0 (. . . , t1 + t2, . . . ) = (. . . , t1, . . . ) + (. . . , t2, . . . )

C-0 = 0 C-(t1 + t2) = C-t1 + C-t2
πi0 = 0 πi(t1 + t2) = πit1 + πit2

〈w〉0 = 0 〈w〉(t1 + t2) = 〈w〉t1 + 〈w〉t2 .

Moreover, we implicitly quotient T by associativity, commutativity, neutrality of 0, and
idempotence of +:

t1 + (t2 + t3) = (t1 + t2) + t3
t1 + t2 = t2 + t1
t+ 0 = t

t+ t = t .

The intuition is that:

• x is a parameter of the calling function,
• C is a variant constructor and (_, . . . , _) is a tuple constructor,
• πi is a projection, giving to access the ith component of a tuple,
• C- corresponds to a branch of pattern matching: it removes the C from a value,
• t1+t2 can be seen as as a non-deterministic choice: we don’t know which of t1 and t2
is going to be chosen. Such sums will play a central role when analysing definitions
even when the initial static analysis doesn’t introduce them.

• 0 is an artifact used to represent an error during evaluation. Because we only look
at safe definitions, any 0 that appears during analysis can be ignored as it cannot
come from an actual computation.

• 〈w〉 stands for anything that acts on values in such a way that the depth is increased
by at most w. In particular, if w < 0, then the depth must decrease. For example,
both Ct and Dt can be approximated by 〈1〉t, even though we loose information when
doing so.

There is a natural notion of reduction on terms:

Definition 1.2. We define a reduction relation between terms:

(1) C-Ct → t πi(t1, . . . , tn) → ti if 1 6 i 6 n

(2) 〈w〉Ct → 〈w + 1〉t 〈w〉(t1, . . . , tn) →
∑

16i6n〈w + 1〉ti if n > 0
(2) C-〈w〉t → 〈w − 1〉t πi〈w〉t → 〈w − 1〉t
(2) 〈w〉〈v〉t → 〈w + v〉t

(3) πiCt → 0 πi(t1, . . . , tn) → 0 if i > n

(3) C-(t1, . . . , tn) → 0 C-Dt → 0 if C 6= D

The symbol “+” (addition) used for elements of Z∞ has nothing to do with the symbol “+”
(non-deterministic choice) used for terms.4

This reduction extends the evaluation of the ambient language: the two rules from
group (1) correspond to the evaluation mechanism and the four rules from group (3) cor-
respond to unreachable states of the evaluation machine. The five rules from group (2)
explain how approximations behave. Note in particular that:

4adding elements in Z∞ is defined in the obvious way
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• a 〈w〉 absorbs constructors on its right and destructors on its left,
• because a 〈w〉 may approximates some projections, we don’t know which of the
components of a tuple it may access, which explains why non-deterministic sums
appear.

Lemma 1.3. The reduction → is strongly normalizing and confluent.

Proof. Strong normalization is easy as the depth of terms decreases strictly during reduction.
Confluence thus follows from local confluence which follows from examination of the critical
pairs:

D-〈w〉Ct D-〈w〉(t1, . . . , tn) C-〈w〉〈v〉t
πi〈w〉Ct πi〈w〉(t1, . . . , tn) π1〈w〉〈v〉t
〈w〉〈v〉Ct 〈w〉〈v〉(t1, . . . , tn) 〈w〉〈v〉〈u〉t

Call a term t ∈ T simple if it is in normal form and doesn’t contain + or 0. We have:

Lemma 1.4. Every term t ∈ T reduces to a (possibly empty) sum of simple terms,

Proof. This follows from the fact that all term constructions are linear and that the reduc-
tion is strongly normalizing. Note that because of confluence, associativity, commutativity
and idempotence of +, this representation is essentially unique.

Because of the way reduction is defined, simple terms have a very constrained form: all
the constructors are on the left and all the destructors are on the right. More precisely:

Lemma 1.5. The simple terms of T are generated by the grammar

t ::= Ct | (t1, . . . , tn) | d | 〈w〉d

d ::= x | πid | C-d

The length |d | of a destructor sequence is the number of destructors C-/πi it contains.

We now introduce a preorder describing approximations between terms.

Definition 1.6. The relation 4 is the least contextual preorder on T satisfying

• 4 is compatible with reduction: if t → u then u 4 t and t 4 u,
• 4 is compatible with + and 0 : 0 4 t and t 4 t+ u,
• if v 6 w then 〈v〉t 4 〈w〉t,
• t 4 〈0〉t.

When t 4 u, we say that “t is finer than u” or that “u is an approximation of t”. When
both t 4 u and u 4 t, we say that t and u are equivalent, and write t ≈ u.

This definition implies for example that Cx 4 〈0〉Cx ≈ 〈1〉x, and thus, by contextuality,
that Ct 4 〈1〉t. The next lemma gives some facts about the preorder (T ,4). They may help
get an intuition about the objects, but are not necessary for the rest of the paper. Their
proof is omitted.

Lemma 1.7. We have

• 0 is the least element,
• + is a least-upper bound, i.e., t1 + t2 4 u iff t1 4 u and t2 4 u,
• if t and u are simple, then t 4 u and u 4 t iff t = u,
• a term t is an atom iff it reduces to a simple terms without any 〈w〉.
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1.2. Substitutions and Control-Flow Graphs. Just like a term is meant to represent a
single argument of a recursive call, a substitution [ x1 := u1 ; . . . ; xn := un ] is meant to rep-
resent all the arguments of a recursive call to an n-ary function. In order to follow the evolu-
tion of arguments along several recursive calls, we need to compose substitutions: given some
terms t, u1, . . . ,un in T , we define t [x1 := u1 ; . . . ; xn := un ] as the parallel substitution
of each xi by ui. The composition τ ◦ σ of two substitutions τ = [x1 := u1 ; . . . ; xn = un ]
and σ is simply the substitution τ ◦ σ = [x1 := u1σ ; . . . ; xn := unσ ].

Lemma 1.8. Composition of substitutions is associative and monotonic (for the pointwise
order) on the right and on the left.

Proof. Associativity is obvious. Monotonicity follows from the fact that 4 is contextual.

We can now define what the abstract interpretations for our programs will be:

Definition 1.9. A control-flow graph for some mutually recursive definitions is a labeled
graph where:

• vertices are function names,
• if the parameters of f are y1, . . . , ym and the parameters of g are x1, . . . , xn, the
labels of arcs from f to g are substitutions [ x1 := u1 ; . . . ; xn := un ] of terms
in T (y1, . . . , ym).

That a control-flow graph is safe (Definition 1.11) means that it gives approximations
of the real evolution of arguments of the recursive calls during evaluation. Those arguments
are first-order values of the ambient language (see page 2) and we can embed them in T ().

Definition 1.10. A first-order value is a simple term of T (). An atomic value is a value
which doesn’t contain any 〈w〉.

Note that first-order values of the ambient language correspond exactly to atomic values
in T . We can now define safety formally:

Definition 1.11. Let G be a control-flow graph for some recursive definitions,

(1) suppose we have a call site from f to g:

val rec f x1 x2 ... xn =

... g u1 ... um

...

An arc f
σ

−→ g in G is safe with respect to this particular call site if for all substi-
tutions of values ρ = [ x1 := v1 ; . . . ; xn := vn ], we have

[ x1 = [[u1]]ρ ; . . . ; xm = [[um]]ρ ] 4 σ ◦ ρ

where each [[ui]]ρ is the semantics of ui in context ρ.
(2) A set of mutually inductive definitions is safely represented by a control-flow graph

if each call site is safely represented by at least an arc in the graph.

For example, an exact control-flow graph for f1 and g1 from page 4 could be:

f1 g1

x := Ax

x := 〈−1〉A-x
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while a safe control-flow graph for the Ackermann function could be:

ack
[

m := S
-
m ; n := SZ()

]

[

m := S
-
m ; n := 〈∞〉()

]

[

m := SS
-
m ; n := S

-
n

]

1.3. Collapsing. For combinatorial reasons, we will need the labels of the control-flow
graph (substitutions) to live in a finite set. Because there can only be finitely many variant
constructors used in a control-flow graph, the two obstructions for finiteness of the term
language are that the depth of terms is unbounded and that there are infinitely many
possible weights for the 〈w〉s.

Given B > 0 (fixed once and for all), it is easy to collapse all the weights appearing in
a simple term into ZB = {−B, . . . , 0, 1, . . . , B − 1,∞}: for each 〈w〉 we replace w by:

⌈w⌉
B

def

=







w if −B 6 w < B

−B if w < −B

∞ if w > B .

Collapsing to ensure that the depth is bounded is more subtle. Given D > 0 (fixed
once and for all) and t ∈ T in normal form, we want to make sure that the constructor
part of t has depth less than D and that the destructor parts of t have length less than D.
This is achieved with the following definition acting on simple terms (see Lemma 1.5) and
extended by linearity. Note that the clauses are not disjoint and only the first appropriate
one is used:

(Ct)↾i
def

= C(t↾i−1
) if i > 0

(t1, . . . , tn)↾i
def

=
(
t1↾i−1

, . . . , tn↾i−1

)
if i > 0

(
〈w〉d

)

↾i

def

= 〈w〉
(
d ⇂D

)
if i > 0

d ↾i

def

= d ⇂D if i > 0

t↾0
def

= (〈0〉t)⇂D (∗)

d ⇂D

def

= d if |d | 6 D
(
C-d

)

⇂D

def

= 〈−1〉
(
d ⇂D

)
if |C-d | > D

(
πid

)

⇂D

def

= 〈−1〉
(
d ⇂D

)
if |πid | > D

Note that the definition of t↾i is done by double induction on i and t while the definition

of d ⇂D is only by induction on d , and that we need to compute a normal form for clause (∗).
The function t 7→ t↾D does several things:

• it keeps the constructors up to depth D (the first four clauses),
• it removes the remaining constructors with t 7→ 〈0〉t (clause (∗)),
• it keeps a suffix of at most D destructors in front of each variable and incorporates
the additional destructors into the preceding 〈w〉 (the last three clauses).
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We have:

Lemma 1.12. The collapsing function t 7→ ⌈t↾D⌉B is inflationary and monotonic:

• t 4 ⌈t↾D⌉B,
• if t 4 u then ⌈t↾D⌉B 4 ⌈u↾D⌉B,

Proof. We have

• by definition of 4, that ⌈_⌉
B

is inflationary and monotonic follows from the fact
that ⌈_⌉ : Z∞ → ZB is inflationary and monotonic.

• The proof that _↾D is inflationary is a direct inductive proof. It relies on the fact
that t 4 〈0〉t and that C-t 4 〈−1〉t and πit 4 〈−1〉t.

• The proof that _↾D is monotonic is a tedious inductive proof. It is omitted for sake
of brevity.

Together, these facts imply that ⌈_↾D⌉B is both inflationary and monotonic.

Definition 1.13. Define the constructor depth of simple terms as:

depthC
(
Cv

)
def

= 1 + depthC(v)

depthC
(
(u1, . . . , vn)

)
def

= max
1≤i≤n

(
1 + depthC(vi)

)

depthC
(
d
)

def

= 0

depthC
(
〈w〉d

)
def

= 0

and the destructor depth of simple terms as:

depthD
(
Cv

)
def

= depthD(v)

depthD
(
(u1, . . . , vn)

)
def

= max
1≤i≤n

(
depthD(vi)

)

depthD
(
d
)

def

= |d |

depthD
(
〈w〉d

)
def

= |d |

The depth of a sum of simple terms is the maximum of the depth of the summands.
We write TD,B for the subset of all t ∈ T s.t.

• t is in normal form
• each 〈w〉 appearing in t has w ∈ ZB,
• the constructor depth and the destructor depth of t are less or equal than D.

If σ = [ x1 := t1 ; . . . ; xn := tn ] and τ = [ y1 := u1 ; . . . ; ym := um ] are substitutions,

then τ ⋄ σ is defined as the pointwise collapsing
⌈

(τ ◦ σ)↾D

⌉

B

.

The next lemma justifies the use of this collapsing function. Because it is not necessary
in this paper, we only sketch the proof.

Lemma 1.14. For each t ∈ T , we have ⌈t↾D⌉B ∈ TD,B. Moreover, ⌈t↾D⌉B is the least term
in TD,B that approximates t. In particular, the function t 7→ ⌈t↾D⌉B idempotent

⌈

⌈t↾D⌉B↾D

⌉

B

= ⌈t↾D⌉B .

Because it is also monotonic and inflationary, ⌈_↾D⌉B is thus a closure operator.
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Proof. We already know that collapsing is inflationary and monotonic. It is easy to show
that both ⌈_⌉

B
and _↾D are idempotent. Idempotence of ⌈_↾D⌉B follows from the fact

that ⌈t↾D⌉B↾D
= ⌈t↾D⌉B. That ⌈t↾D⌉B ∈ TD,B follows directly from the definition. The proof

that ⌈t↾D⌉B is the least term in TD,B that approximates t is a tedious inductive proof.

This implies in particular that collapsing is monotonic with respect to the bound D

and B:

Corollary 1.15. If 0 6 D′ 6 D and 0 < B′ 6 B, then ⌈t↾D⌉B 4
⌈
t↾

D′

⌉

B
′ .

Composition “⋄” is a binary operation on TD,B. Unfortunately, it is not associative!
For example, when B = 2, the composition

[ y := 〈−1〉z ] ⋄ [x := 〈1〉y ] ⋄ [ r := 〈1〉x ]

can give [ r := 〈1〉z ] or [ r := 〈∞〉z ] depending on which composition we start with. Simi-
larly, when D = 1, the composition

[ y := C-z ] ⋄ [x := Cy ] ⋄ [ r := Dx ]

can give [ r := Dz ] or [ r := D〈0〉z ].5 We have however the following:

Definition 1.16. Two terms u and v are called compatible, written u ¨ v, if there is
some t 6≈ 0 such that t 4 u and t 4 v. Two substitutions are compatible if they are
pointwise compatible.

Lemma 1.17. If σ1, . . . , σn is a sequence of composable substitutions, and if τ1 and τ2 are
the results of computing σn ⋄ . . . ⋄ σ1 in different ways, then τ1 ¨ τ2.

Proof. We have σn ◦ . . . ◦ σ1 4 τ1 and σn ◦ . . . ◦ σ1 4 τ2.

In order to simplify notations, we omit parenthesis and make this operation associate
on the right: σ1 ⋄ σ2 ⋄ σ3 = σ1 ⋄ (σ2 ⋄ σ3).

2. Size-Change Combinatorial Principle

2.1. Combinatorial Lemma. The heart of our criterion is the following combinatorial
lemma

Lemma 2.1. Let G be a control-flow graph with substitution components in TD,B; then, for
every infinite path of composable substitutions

f0
σ0−→ f1

σ1−→ . . .
σn−→ fn+1

σn+1
−→ . . .

in the control-flow graph G, there is a node f such that the path can be decomposed as

f0
σ0−→ . . .

σn0−1

−→
︸ ︷︷ ︸

initial prefix

f
σn0−→ . . .

σn1−1

−→
︸ ︷︷ ︸

τ

f
σn1−→ . . .

σn2−1

−→
︸ ︷︷ ︸

τ

f . . .

where:

• all the σnk+1−1 ⋄ . . . ⋄ σnk
are equal to the same τ : f → f,

• τ is coherent: τ ⋄ τ ¨ τ .

5There is a special case: when D = 0 and B = 1, the operation ⋄ is indeed associative! This was the
original case of SCT [4].
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The idea of this decomposition (together with its proof) seems to go back to [5]. The
proof is very similar to the one appearing in [4], with only a slight modification to deal with
the fact that ⋄ isn’t associative in general.

Proof. This is a consequence of the infinite Ramsey theorem. Let (σn)n>0 be an infinite path
in G. We associate a “color” c(m,n) to each pairs (m,n) of natural numbers where m < n:

c(m,n)
def

=
(

fm , fn , σn−1 ⋄ · · · ⋄ σm

)

.

Because the number of possible colors for a given control-flow graph is finite, the infinite
Ramsey theorem asserts the existence of an infinite set I ⊆ N such all the (i, j) for i < j ∈ I

have the same color (f, f’, τ). Write I = {n0 < n1 < · · · < nk < · · · }. If i < j < k ∈ I, we
have: (

f , f′ , τ
)

=
(

fi , fj , σj−1 ⋄ · · · ⋄ σi

)

=
(

fj , fk , σk−1 ⋄ · · · ⋄ σj

)

=
(

fi , fk , σk−1 ⋄ · · · ⋄ σi

)

which implies that f = f′ = fi = fj = fk and

τ = σj−1 ⋄ · · · ⋄ σi

= σk−1 ⋄ · · · ⋄ σj

= σk−1 ⋄ · · · ⋄ σj ⋄ σj−1 ⋄ · · · ⋄ σi

τ ⋄ τ =
(
σk−1 ⋄ · · · ⋄ σj

)
⋄
(
σj−1 ⋄ · · · ⋄ σi

)
.

In the original size-change termination principle, composition was associative and we could
deduce that τ ⋄ τ = τ . Here however, τ and τ ⋄ τ differ only in the order of compositions,
and we only get that τ ¨ τ ⋄ τ (Lemma 1.17).

2.2. Transitive Closure. The transitive closure of a control-flow graph G is the graph G+

with the same vertices as G and edges between a and b in G+ correspond exactly to path
between a and b in G. In our case, the graph is labeled with substitutions and the label of
a path is the composition of the labels of its edges.

Definition 2.2. If G is a control-flow graph with labels in T , the graph G+, the transitive
closure of G, is the control-flow graph defined as follows:

• G0 = GD,B the collapsing of G into TD,B,
• in Gn+1, the edges between f and g are

Gn+1(f, g) = Gn(f, g) ∪
{
σ ⋄ τ | τ ∈ Gn(f, h), σ ∈ G0(h, g)

}

where h ranges over all vertices of G,
• G+ =

⋃

n>0G
n.

Because all the TD,B(x1, . . . , xm) are finite,6 we have

Lemma 2.3. G+ is finite and can be computed in finite time. More precisely, Gn = Gn+1

for some n, and G+ is equal to this Gn.

6more precisely, because the number of variables and variants that can appear is finite
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The transitive closure of G is is the graph of path of GD,B , and for each path σ1 · · · σn in G,
it contains an edge for σn ⋄ . . . ⋄ σ1. (Recall that “⋄” associates on the right.)

As an example, here is the first step of the computation of the transitive closure of the
control-flow graph for the functions f1 and g1 (page 4) when D = B = 1:

f1 g1x := A〈−1〉A-x x := 〈−1〉x

x := Ax

x := 〈−1〉A-x

For example, the substitution x := 〈−1〉x is obtained as the normal form of the composi-
tion [ x := 〈−1〉A-x ]◦ [ x := Ax ]. Note that no collapsing is necessary here because the result
already lives in TD,B. The next iteration gives the following compositions:

• [ x := A〈−1〉A-x ] composed with itself, giving [ x := A〈−1〉A-A〈−1〉A-x ] which reduces
to [ x := A〈−2〉A-x ] and collapses to [ x := A〈−1〉A-x ],

• [ x := 〈−1〉x ] composed with itself, which collapses to [ x := 〈−1〉x ],
• [ x := 〈−1〉x ] composed with [ x := 〈−1〉A-x ] which collapses to [ x := 〈−1〉A-x ],
• [ x := 〈−1〉A-x ] composed with [ x := A〈−1〉A-x ] which collapses to [ x := 〈−1〉A-x ],
• [ x := Ax ] composed with [ x := 〈−1〉x ] which collapses to [ x := A〈−1〉x ],
• [ x := A〈−1〉A-x ] composed with [ x := Ax ] which also collapses to [ x := A〈−1〉x ].

The first four composition do not contribute to the transitive closure, as they already exist
in the control-flow graph. The last two compositions are equal, and an arc [ x := A〈−1〉x ]
should be added from f1 to g1.. The resulting control-flow graph with 5 arcs is in fact the
transitive closure of the initial graph (page 9).

2.3. Size-Change Termination Principle. In order to say that a part of an argument
decreases during a call, we must be able to track it before and after the call. The next
definition formalizes this: we use a branch of destructors to specify a subterm of an ar-
gument and require that the same subterm exists after composition with the substitution
representing the call. Because this is enough for the rest, we only do that for loops, i.e., for
calls to f inside f.

Definition 2.4. If τ = [ x1 := t1 ; . . . ; xn := tn ] is a substitution from f to itself. A de-
creasing parameter for τ is given by a substitution ξ =

[
p := d xi

]
such that 0 6≈ ξ◦τ 4 〈w〉ξ

with w < 0 and d is minimal (i.e., no strict suffix of d satisfies the same conditions). A
substitution τ is called decreasing when it has a decreasing parameter.

For example, for the push left function (page 4), ξ = [ t := π2Node
-t ] is a decreasing

argument: it accesses the right subtree of t. The only loop in the control flow-graph is
approximated by τ = [ t := Node(〈∞〉Node-t, 〈−1〉π2Node

-t) ] and the composition ξ ◦ τ

collapses to [ t := 〈−1〉π2Node
-t ].

The minimality condition means that when computing the normal form of d τ(xi), we
only use reduction rules from group (1) in Definition 1.2. If this were not the case we
could cut d to strict suffix. For example, for the loop τ = [ x := A〈0〉B-A-x ], we don’t
want ξ = [ p := X-A-x ] to be a decreasing argument, even though ξ ◦ τ ≈ [ p := 〈−1〉B-A-x ].
The reason is that the terms we will apply ξ may not have an X constructor. We should
instead use ξ = [ x := A-x ]. The minimality condition is important for the following lemma,
which will be of crucial importance in the proof of soundness of the termination criterion.



14 PIERRE HYVERNAT

Lemma 2.5. If ξ is a decreasing parameter for τ , we have:

0 6≈ σ 4 τ ◦ ρ ⇒ 0 6≈ ξ ◦ σ 4 ξ ◦ τ ◦ ρ .

In particular, under the same hypothesis ξ ◦ τ ◦ ρ 6≈ 0.

Proof. The important part is that under the hypothesis of the lemma, we have 0 6≈ ξ ◦ σ.
The substitution ξ ◦ σ is of the form

[
p := d σ(xi)

]
. Suppose by contradiction that this

reduces to 0. Suppose also that all the substitutions are in normal forms.
If we look at the only reduction sequence of dσ(xi), we can find a reduction from

group (3) of Definition 1.2: the sequence d reaches an incompatible constructor in σ(xi).
Because σ(xi) 4 τ ◦ρ(xi) = τ(xi)ρ, all the constructors reachable in τ(xi)ρ are also reachable
in σ(xi). Note that σ(xi)ρ starts with the same constructors as σ(xi) and so, the reduction
of d τ(xi)ρ must have reached the end of the constructors in σ(xi) before the end of d .
(Otherwise, we would have 0 ≈ ξ ◦ τ .) This implies that d is not minimal.

Proposition 2.6 (Size-Change Termination Principle with Constructors). If G safely rep-
resents some recursive definitions and all coherent loops τ ¨ τ ⋄ τ in GD,B

+ are decreasing,
then the evaluation of the functions on values cannot produce an infinite sequence of calls
to other functions.

First, a small lemma:

Lemma 2.7. If v is a value, v 4 〈w〉() if and only if w > depth(v).

Proof. If we take the normal form of the value v, we can prove the result inductively using
Lemma 1.5:

• if v = (): we have () 4 〈w〉() ⇒ 〈0〉() 4 〈w〉(). This implies that 0 6 w.
• if v = Cv′: we have Cv′ 4 〈w〉() ⇒ v′ 4 〈w − 1〉(). By induction hypothesis, we
have w − 1 > depth(v′), which implies w > depth(v).

• if v = (v1, . . . , vn) with n > 0, we have (v1, . . . , vn) 4 〈w〉() ⇒ vi 4 〈w − 1〉() for
all i = 1, . . . , n. This implies that w − 1 > depth(vi) for all i = 1, . . . , n, which
implies that w > depth(v).

Proof of Proposition 2.6. Suppose the conditions of the proposition are satisfied and sup-
pose that function h on values v1, . . . , vm provokes an infinite sequence of calls c1 · · · cn · · · .
Write ρn for the arguments of call cn. The ρn’s contain first-order values and in particular, ρ0
corresponds to the initial arguments of h: ρ0 = [ x1 := v1 ; . . . ; xm := vm ]. Let σ1 · · · σn · · ·
be the substitutions that label the edges of GD,B corresponding to the calls c1c2 · · · . We
can use Lemma 2.1 to decompose this sequence as:

h
σ0−→ . . . −→
︸ ︷︷ ︸

initial prefix

f
σn0−→ . . . −→
︸ ︷︷ ︸

τ

f
σn1−→ . . . −→
︸ ︷︷ ︸

τ

f . . .

where:

• all the σnk+1−1 ⋄ . . . ⋄ σnk
are equal to the same τ : f → f,

• τ is coherent: τ ¨ τ ⋄ τ .

Because G, and thus Gd,b is safe, we have

ρn+1 4 σn ◦ ρn
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and so, because ◦ is monotonic, starting from n0 until n1:

ρn1
4 σn1−1 ◦ · · · ◦ σn0

◦ ρn0
.

By associativity of ◦, and because collapsing and composition are monotonic, we get

ρn1
4 (σn1−1 ⋄ · · · ⋄ σn0

) ◦ ρn0
= τ ◦ ρn0

.

Repeating this, we obtain:
ρnk

4 τ ◦ · · · ◦ τ
︸ ︷︷ ︸

k

◦ ρn0

By hypothesis, τ has a decreasing parameter: some ξ =
[
p := d x

]
s.t. ξ ◦ τ 4 〈w〉ξ

with w < 0. We thus have

ξ ◦ ρnk
4 ξ ◦ τ ◦ · · · ◦ τ ◦ ρn0

4 · · · 4 〈w + · · · + w〉ξ ◦ ρn0

By Lemma 2.5, the right side of the inequality cannot be 0 and the substitution ξ ◦ ρn0

thus consists of a single value [ p := v ]. We can now choose k large enough to ensure
that depth(v)+kw < 0. Because ξ◦ρnk

is also a first-order value, this contradicts Lemma 2.7.

Definition 2.8. A control-flow graph G that satisfies the condition of Proposition 2.6 is
said to be size-change terminating for D and B.

This gives a family of criteria indexed by D > 0 and B > 0 of criteria. We have:

Proposition 2.9. If G is size-change terminating for some D > 0 and B > 0, then G is
also size-change terminating for all D′ > D and B′ > B.

Proof. Let G be an uncollapsed control-flow graph, and let B′ > B and D′ > D. Sup-
pose GD,B is size-change terminating; we want to show that GD′,B′ is also size-change
terminating.

Let τ ′ be a coherent loop in G+
D′,B′ . By construction, τ ′ is equal to σ′

1 ⋄D′,B′ · · · ⋄D′,B′ σ′
n

for a path σ′
1 . . . σ

′
n in GD′,B′ . Because each σ′

k is a collapsing of some arc in G, there is a
corresponding arc σk in GD,B . Thus, we can find a loop τ = σ1 ⋄D,B · · · ⋄D,B σn in GD,B .

Because collapsing is monotonic in D and B (Lemma 1.15), we have that each σ′
k 4 σk

and so τ ′ 4 τ . Moreover, τ ′ ⋄D′,B′ τ ′ 4 τ ⋄D,B τ . Because τ ′ is coherent, τ is also coherent.
By hypothesis, τ has a decreasing parameter ξ: we have ξ ◦ τ 4 〈w〉ξ, with w < 0. This ξ
is also a decreasing parameter for τ ′: ξ ◦ τ ′ 4 ξ ◦ τ 4 〈w〉ξ.

Failure of Completeness. The original SCT satisfied a notion of completeness stating roughly
that “all infinite path are infinitely decreasing iff all (idempotent) loops have a decreasing
parameter”. We capture more programs (Section 2.4) than the original SCT, but complete-
ness doesn’t hold anymore. Here is a counter example for D = 0 and B = 2:

val rec b1 x = match x with A[x] -> b2 x

and b2 x = match x with A[x] -> b3 x

and b3 x = match x with A[x] -> c1 x

and c1 x = c2 A[X]

and c2 x = b1 A[X]
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The corresponding control-flow graph is

b1

b2

b3c1

c2

x := 〈−1〉x

x := 〈−1〉x

x := 〈−1〉x

x := 〈1〉x

x := 〈1〉x

Whatever our definition of “decreasing path”, all the infinite path in G0,2 ought to decrease
infinitely. However, because there are two “〈1〉x” arcs in sequence, we will get some 〈∞〉x
in the transitive closure, and thus some coherent loops 〈∞〉x around each node. Those are
not decreasing.

The previous example is however size-change terminating whenever B > 2. However,
completeness doesn’t even hold in this weaker sense. Call a graph G decreasing if no
infinite path comes from actual computation. More precisely, a graph is decreasing if for
every infinite path (σk)k>0 and substitution ρ of values, there is a finite prefix σ1 · · · σn
s.t. ρ ◦ σ1 ◦ · · · σn ≈ 0.

The combing function transforming a binary tree into a right-leaning tree terminates
for a subtle reason. Its definition is

val rec comb t = match t with

Leaf[] -> Leaf[]

| Node[t,Leaf[]] -> Node[comb t,Leaf[]]

| Node[t1,Node[t2,t3]] -> comb Node[Node[t1,t2],t3]

and it is safely represented by the graph with a single node comb and two loops:

• [ t := π1Node
-t ]

•
[
t := Node

(
Node(π1Node

-t, π1Node
-π2Node

-t)
)
, π2Node

-π2Node
-t

]
.

This graph is terminating in the above sense, exactly for the same reason that comb ter-
minates, but it can be shown that whatever the values of D and B, this graph is never
size-change terminating. Here is a sketch of why this is the case: for each bound D

and sequence d of length D, it is possible to find a tree for which the depth of the sub-
tree d t increases arbitrarily during a sequence of recursive calls. For example, at D = 4
for d = π1Node

-π2Node
-, consider the tree on the left:

T

second call
−→

T

.

By the second recursive call, the tree on the right will be used as the new argument.
While π1Node

-π2Node
- corresponds to the empty tree on the left, it corresponds to T on

the right! Note that it is the conjunction of the two recursive calls that makes this possible:
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for π2Node
-π2Node

-, we need to use the second call and then the first call:

T

second call

−→

T

first call

−→

T

.

This implies that during the transitive closure, all sequences of destructors of length D will
reach a weight of ∞ because they can be composed with such a tree.

Even if this is rather unfortunate, this example can be dealt with by adding additional
arguments. The function comb size with a second parameter for the size of the tree passes
the termination test:

val rec comb_size t s = match t,s with

Leaf[],_ -> Leaf[]

| Node[t,Leaf[]],S[n] -> Node[comb_size t n,Leaf[]]

| Node[t1,Node[t2,t3]],n -> comb_size Node[Node[t1,t2],t3],n

| _,_ -> raise Error[]

It is then possible to prove (in the system or in the meta language) that the comb function
is equal to:

val comb t = comb_size t (size t)

One would of course like to tag the additional parameter s as “computationally irrelevant”
so that it isn’t used during real computation.

2.4. Comparison with other SCT-Based Criterion. In the original SCT, an arc in
the control-flow graph is a bipartite graph with the parameters of the calling function on
the left and the arguments of the called function on the right. A link from x to u can have
label:

• ↓=, meaning that the size of u is strictly smaller than the size of x,
• ↓, meaning that the size of u is smaller or equal than the size of x.

Such a graph is said to be fan-in free if no u is the target of more than one arc. We can
encode such a bipartite graph as a substitution σ = [ y1 := t1 ; . . . ; ym := tm ] where:

• tk = 〈−1〉xi if there is an arc ↓ from xi to ui,
• tk = 〈0〉xi if there is an arc ↓= from xi to ui,
• tk = 〈∞〉() otherwise.

It can be checked that when D = 0 and B = 1, composition and the size-change termina-
tion condition on G+ correspond exactly to composition and the size-change termination
condition from [4]. Note in particular that composition is associative in this context. Thus,
our criterion with D = 0 and B = 1 is roughly equivalent to the original SCT for fan-in
free graph and with “depth” as the notion of size.

SCT with Difference Constraints. Amir Ben-Amram considers in [2] a generalisation of the
original SCT which, in our terminology, could be seen as choosing the bounds D = 0 but
allowing unbounded weights in the control-flow graphs, i.e. choosing “B = ∞”. The general
problem is undecidable, but the restriction to fan-in free graph is decidable. The cost of
this generality is the introduction of arithmetic in the decision procedure. In particular,
deciding if a graph is size-change terminating involves integer linear programming. Our
control-flow graphs are fan-in free and the criterion avoids arithmetics by putting a bound
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on the weights. We loose completeness as shown by the example on page 16, but this is
seldom a problem in practice because the user may increase the bound B (at the cost of
speed). It would nevertheless be interesting to see if the approach of [2] can be combined
with our approach to get a criterion for B = ∞ and arbitrary D.

Using “Calling Contexts”. The authors of [6] use control-flow graphs where arcs are labeled
with “calling contexts”. A calling context from f to g amounts to:

• a substitution describing the arguments of g as terms with free variables among the
parameters of f,

• a set of expressions whose free variables are among the parameters of f.

Note that the permutations are build from the ambient language, as are the expressions in
the set. The intuition of having such a calling context from f to g is that if all the expressions
of the set evaluate to True, then there can be a call to g from f, and the arguments of g are
given by the permutation.

The drawback of this approach is that an automatic theorem prover is necessary to deal
with the conditions appearing in the contexts. Our approach uses a similar idea but restricts
to the “constructors/destructors contexts” that were necessary to build the arguments of a
call. This simplifies the problem so that everything can be handled internally in a uniform
way.

2.5. Extensions.

Weighted constructors. At the moment, each variant has weight 1, as can be seen from the
reduction 〈w〉Ct → 〈w + 1〉t. Choosing different weights for constructors could be useful in
cases such as

val rec f = fun

A[A[A[A[A[B[x]]]]]] -> f A[A[A[A[A[C[C[x]]]]]]]

| A[A[A[A[A[C[x]]]]]] -> f A[A[A[A[A[x]]]]]

| _ -> A[]

This function does pass the termination test if we choose D > 7. If the definition contained
other recursive calls, it can make the test use more resources than reasonable. Giving a
weight of 3 to B and 1 to C would be enough to see this is terminating, even when D = 0.
Trying to choose the appropriate weights automatically might not be worth the trouble,
but this is still an interesting question.

Counting abstractions. The PML language is much more complete than the ambient lan-
guage we have been using and in particular, function abstraction is possible. Like OCaml,
the PML language computes weak-head normal forms. Because partially applied functions
are allowed, it is possible to extend the principle to detect that functions such as

val rec glutton x = glutton

terminate: when applied to n arguments, it “eats” through all of them and stop on the
weak-head normal form fun x -> glutton.

In order to do that, it is enough to add a virtual argument to all recursive functions:
it counts the difference between the number of abstraction and the number of applications.
Think of it as an additional “x0 := 〈w〉x0” in all substitutions. Note that an abstraction
counts positively and an application counts negatively so that in effect, it amounts to having
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a constructor for abstraction and a destructor for application. This is interesting because
adding dummy abstractions and applications is the usual way to freeze evaluation and define
“infinite” data structures in OCaml.7 In this context, the size-change termination principle
can be used to detect productivity.
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Appendix A. Implementation Issues

In order to make the presentation readable, the paper followed a rather “high-level” de-
scription of the criterion. Because the initial goal was to get a concrete termination checker
for the PML language [7], ease of implementation was very important. The main points
that make the task relatively straightforward are the following:

(1) we only manipulate terms in normal forms and use a representation similar to the
grammar given in Lemma 1.5,

(2) computing whether t 4 u and whether t ¨ u is easy for those normal forms,
(3) checking if a loop is decreasing (Definition 2.4) is easy.

Even for terms in normal forms, we need a uniform way to deal with sums. Because n-
tuples are n-linear, applying linearity to get sums of simple terms can lead to an exponential
blow-up and was ruled out. We instead start by making sure the initial control-flow graph
doesn’t contain any sum. In order to do that, we replace each arc labeled by a sum with
as many arcs as summands. Because PML’s static analysis doesn’t introduce many sums,
no exponential blow-up occurs in practice. Then, sums only appear through collapsing of
substitutions, i.e. from the reduction rule 〈w〉(t1, . . . , tn) →

∑

i〈w + 1〉ti. In particular,
sums can always be pushed under all constructors implying that all summands start with
a 〈w〉. We thus use the following grammar for terms:

t ::= Ct | (t1, . . . , tn) | d |
∑

i

〈wi〉d i

d ::= x | πid | C-d

where the sums are not empty. This can be represented by the following inductive type
(Caml syntax):

type z_infty = Number of int | Infty

type destructor = Project of string | RemoveVariant of string

type parameter = int

type term = Variant of string*argument

| Tuple of argument list

| Epsilon of (destructor list)*parameter

| Sum of (z_infty*(destructor list)*parameter) list

Because the substitutions are in normal form, composition needs to do some reduction.
This is done using the rules from Definition 1.2, with a particular proviso for group (3):

• rules πiCt → 0, C-(t1, . . . , tn) → 0 and πi(t1, . . . , tn) → 0 (when i > n) all raise
an error TypingError. Encountering such a reduction means that the definitions
where not safe to begin with and that the initial type-checking / constraint solving
of the definitions is broken.

• the rule C-Dt → 0 raises an exception ImpossibleCase. Even safe definitions may
introduce such reductions, but we know evaluation will never go along such a path:
evaluation of match v with ... may only enter a branch if the corresponding pat-
tern matches v. Compositions raising this exception are simply ignored.

A.1. Order and Compatibility. When the terms are in the form given by the above
grammar, we can give an inductive definition of both the order and compatibility.

Lemma A.1. The relation 4 on terms as above is the least preorder satisfying:
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• d 4 d ,
• t 4 u ⇒ Ct 4 Cu,
• ∀i, ti 4 ui ⇒ (t1, . . . , tn) 4 (u1, . . . , un),
• ∀j, 〈vj〉e j 4

∑

i〈wi〉d i ⇒
∑

j〈vj〉e j 4
∑

i〈wi〉d i,

• ∃i, d 4 〈wi〉d i ⇒ d 4
∑

i〈wi〉d i,

• t 4
∑

i〈wi − 1〉d i ⇒ Ct 4
∑

i〈wi〉d i,

• ∀j, tj 4
∑

i〈wi − 1〉d i ⇒ (t1, . . . , tn) 4
∑

i〈wi〉d i,

• 〈0〉e 4 〈w〉d ⇒ e 4 〈w〉d ,
• if e is a suffix of d and v − |e | 6 w − |d | then 〈v〉e 4 〈w〉d .

This follows rather directly from the definition of 4, but the proof is a little tedious to
write out in full detail. Checking compatibility is done in a similar way:

Lemma A.2. Compatibility on terms as above is the least symmetrical relation satisfying:

• t ¨ u ⇒ Ct ¨ Cu,
• ∀i, ti ¨ ui ⇒ (t1, . . . , tn) ¨ (u1, . . . , un),
• d ¨ d ,
• t ¨

∑

i〈wi − 1〉d i ⇒ Ct ¨
∑

i〈wi〉d i,

• ∀j, tj ¨
∑

i〈wi − 1〉d i ⇒ (t1, . . . , tn) ¨
∑

i〈wi〉d i,

• ∃i, d 4 〈wi〉e i ⇒ d ¨

∑

i〈wi〉e i,

• ∃i, j, 〈wi〉d i ¨ 〈vj〉e j ⇒
∑

i〈wi〉d i ¨
∑

j〈vj〉e j ,

• if d is a suffix of e or e is a suffix of d , then 〈w〉d ¨ 〈v〉e .

Both lemmas can be implemented easily using pattern matching. For example, here is
the beginning of the Caml definition of compatibility:

let rec compatible t1 t2 = match t1,t2 with

Variant(c1,t1), Variant(c2,t2) -> c1=c2 && compatible t1 t2

| Tuple(l1), Tuple(l2) ->

List.length l1 = List.length l2 && List.for_all2 compatible l1 l2

| Epsilon(ds,x), Epsilon(es,y) -> ds=es && x=y

| Variant(_,t), Sum(s)

| Sum(s), Variant(_,t) ->

let s_minus = List.map (fun (w, ds, x)->(decr w, ds, x)) in

compatible t (Sum(s_minus))

...

...

| _,_ -> false

A.2. Complexity. The authors of [4] showed that deciding whether a graph is size-change
terminating is P-space complete. The same is true here, and this can be shown by encoding
the same problem. Because this encoding works for D = 0 and B = 1, all versions of SCT
are P-space complete by Proposition 2.9.

In practice however, mutually recursive definitions written by hand do not contain
enough functions and enough calls to make that a problem. Complexity comes when the
bounds D and B get bigger. The following two points make the problem more tractable:

• make sure sums are minimal by keeping only maximal summands: d is equivalent
(“≈”) to d + 〈12〉d + 〈−1〉C-d and is a much better choice;
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• during the construction of G+, remove the arcs that are approximated by some
other arc (“subsumption”).

In practice, choosing a bound B > 1 is rarely necessary; but there are example where D

needs to be more than 4. The default is to have D = 2 and B = 1, and let the user change
the bounds. This is strong enough to detect most function as terminating with almost
no overhead: parsing and type checking take more than an order of magnitude more than
termination analysis.

Appendix B. Static Analysis

The simplest interesting static analysis simply records pattern matching and projection: for
each call-site “g u1 ... um” in the definition of “f x1 ... xn”, we use the substitu-
tion [y1 := u1; . . . ; ym := um] where each ui ∈ T (x1, . . . , xn) is

• a simple term without 〈w〉s if ui is syntactically built from projections and pattern-
matching variable coming from x1, . . . , xn;

• 〈∞〉() otherwise.

For example, all the examples map, f1, g1, f2 and push left (page 3 and 4) yield substitu-
tions without 〈∞〉(). For the ack function however, the three recursive calls are represented
by:

• [x1 := S-x1; SZ()],
• [x1 := SS-x1; x2 := S-x2],
• [x1 := S-x1; x2 := 〈∞〉()].

The “〈∞〉()” comes from the call “ack m (ack ...)”: because the second argument is an
application, it isn’t syntactically built from the parameters. Note that this doesn’t prevent
the criterion from tagging the ack function as terminating.

It should be noted that this static analysis is just a syntactical analysis of the code for
the recursive definitions. In particular, it can be done in linear time.

It is also possible to think of smarter static analysis. As an example, the following piece
of code is accepted as terminating in the PML language:

val rec map f l = (* map on lists *)

match l with

Nil[] -> Nil[]

| Cons[a,l] -> Cons[f a, map f l]

type rec rose_tree A = [ Node[A * list(rose_tree A)] ]

val rec rmap f t = (* map on rose trees *)

match t with

Node[a,l] -> Node[ f a , map (rmap f) l ]

Note that this definition isn’t strictly speaking in our ambient language because it contains
higher-order arguments (f) and the functions are not fully applied (rmap). Those constraints
are not fundamental and were only added to simplify the presentation.

The static analysis from PML is rather involved and we refer to [7] for the details.
What is important, is that it will detect that the list l contains smaller trees than t, giving
us the following interpretation for the unique recursive call: [f := f; t := π1Cons

-π2Node
-t].

This will be enough for the termination criterion to accept the function.
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