
HAL Id: hal-00547440
https://hal.science/hal-00547440v1

Preprint submitted on 16 Dec 2010 (v1), last revised 2 Jan 2014 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Size-Change Termination Principle for Constructor
Based Languages

Pierre Hyvernat

To cite this version:
Pierre Hyvernat. The Size-Change Termination Principle for Constructor Based Languages. 2010.
�hal-00547440v1�

https://hal.science/hal-00547440v1
https://hal.archives-ouvertes.fr

THE SIZE-CHANGE TERMINATION PRINCIPLE FOR

CONSTRUCTOR BASED LANGUAGES

PIERRE HYVERNAT

Abstract. By keeping track of constructors and destructors inside the argu-
ments of recursive calls, we are able to improve the size-change termination

principle of Lee, Jones and Ben-Amram. The points of interest are that the
new principle is able to ignore impossible compositions and detect which spe-
cific sub-arguments decrease even when the whole argument doesn’t.

Introduction

Lee, Jones and Ben-Amram’s size-change termination principle ([1]) is a simple,
yet surprisingly strong termination checker for generic programming languages.
The ingredients are a very general notion of size on values, a static analysis of the
program to get a “call-graph” of the recursive definitions and a conceptually simple
“transitive closure” computation on this graph. The static analysis is independent
of the test, as long as it yields a safe description of the possible calls among the
recursive functions.

The implementation described below was done in Caml for the PML program-
ming language ([3]). The termination checker is crucial in this context because PML
has notions of specification and proof. While non terminating programs are useful
in practice, or at least programs whose termination proof is beyond any automated
tool, proofs on the other hand must terminate.

The kind of programs validated by the improved principle is described via exam-
ples and “counter-examples” in sections 5.6 and 5.7. Readers not interested in the
theoretical justification can skip directly to these sections and proceed to testing
the termination checker with the PML language ([4]). The code is available in the
PML distribution1 or as a single file on the author’s webpage for easy perusal.

The main difference with the original principle is that we do not reduce a recur-
sive call to a single size information. Instead, we keep a (bounded) term representing
the call. This makes it possible to ignore some compositions which do not occur in
practice and allows to detect precisely which part of an argument decreases.

The context: an ML-style language. We are interested in automatically check-
ing that (some) programs always terminate. The ambient programming language
is a very generic language in ML-style with:

• variant constructors and pattern-matching,
• tuples and projections,
• (mutual) recursive definitions.

Since we do only inspect first-order argument of the definitions, λ-abstraction
doesn’t play any role in the sequel.

The syntax should be obvious to anyone familiar with an ML-style language
with one proviso: all variant constructors are unary and written as C[u]. The
argument u can be an n-ary tuple, where n can be 0. Other features like let

Date: Winter 2010.
1http://lama.univ-savoie.fr/~pml/

1

http://lama.univ-savoie.fr/~pml/

2 PIERRE HYVERNAT

expressions, exceptions, subtyping, specification, proofs, etc. are of no concern
here. Some of them are described in more details in [2]. As an example, here is the
function computing the length of arbitrary lists:

val rec length l =

match l with

Nil[] -> Zero[]

| Cons[_,l] -> Succ[length l]

The PML language has a rather advanced constraint checking algorithm which
only accepts “safe” programs, i.e. programs which do not provoke an error of the
evaluation machine. As far as this work is concerned, this could be replaced by any
sound typing algorithm.

The other important property of the language should be that non-termination
may only come from an infinite sequences of calls to recursive functions, which is
indeed the case for the PML language ([2]). Because of that it seems mostly useful
for typed programming languages.

Vocabulary and notation. We will deal quite a lot with function definitions.
In the rest of this paper, the following convention will be used: for a recursive
definition of the form:

val rec f x1 x2 x3 =

... g u1 u2 ...

and g x1 x2 = ...

where x1, x2 and x3 are variables and u1 and u2 are terms,

• g u1 u2 is a call from f to g,
• x1, x2 and x3 are the parameters,
• u1 and u2 are the arguments of the call.

For simplicity, we assume that each function has an arity and is always fully applied.

For b ≥ 1, Zb will denote the set {−b,−b + 1, ..., 0, ..., b − 1,∞}; and Z∞ will
denote the set Z ∪ {∞}. Addition on Z∞ is defined as expected and w − m is a
synonym for w + (−m). There is a natural projection ⌊ ⌋b : Z∞ → Zb:

⌊n⌋b =





n if −b ≤ n < b

−b if n < −b

∞ if n ≥ b .

Some of its obvious properties are:

• ⌊ ⌋b is monotonic,
• n ≤ ⌊n⌋b.

One last word about proofs: the lemmas of sections 3 and 4 have rather “pedes-
trian” induction proofs. Care has been taken to give the definitions and lemmas in
the appropriate order to make everything as straightforward as possible. To keep
the size of the paper reasonable, only the most interesting cases are spelled out.

1. The Combinatorial Part

The heart of the size-change termination principle is the following:

Proposition 1.1. If G is a finite category,2 for every infinite chain of arrows

(∗) A0
c0−→ A1

c1−→ . . .
cn−→ An+1

cn+1

−→ . . .

2since we don’t need identities, this amounts to a labeled graph where consecutive arcs can be
composed in an associative manner.

SIZE-CHANGE TERMINATION FOR CONSTRUCTOR BASED LANGUAGES 3

there is an A such that we can decompose the chain as

A0
c0−→ . . .

cn0−1

−→︸ ︷︷ ︸
initial prefix

A
cn0−→ . . .

cn1−1

−→︸ ︷︷ ︸
c

A
cn1−→ . . .

cn2−1

−→︸ ︷︷ ︸
c

A . . .

where:

• all the compositions cnk+1−1 ◦ . . . ◦ cnk
are equal to the same c : A → A,

• c is idempotent: c = c ◦ c.

Proof. this is a consequence of the infinite Ramsey theorem. The argument from [1]
is repeated for completeness: let (cn)n≥0 be an infinite chain in C. Define an
equivalence relation on pairs (m,n) of natural numbers where m < n:

(m1, n1) ≈ (m2, n2) iff





cn1−1 ◦ . . . ◦ cm1
= cn2−1 ◦ . . . ◦ cm2

and Am1
= Am2

and An1
= An2

.

Because C is finite, the corresponding equivalence classes form a partition of the
set {(m,n) | m < n} into a finite collection of “colors”. By the infinite Ramsey
theorem, there is an infinite set I ⊆ N such all the (i, j) for i < j ∈ I are in the
same class. Write I = {n0 < n1 < · · · < nk < . . . }. Those satisfy the conditions of
the lemma.

Note that for this to work for a specific chain (∗), we only need that

• only finitely many different Ai’s appear,
• there are finitely many different compositions cm+n ◦ . . . ◦ cm.

Then we don’t actually need the initial category (labeled graph) to be finite.
�

A consequence is that it is sometimes possible to deduce properties of infinite
chains only by looking at the finite idempotent cycles. A very crude explanation of
the size-change termination principle is then:

• compute the “call-graph” of the recursive definitions: a graph with function
names as vertices and “size information” as label for each call between
functions,

• compute its “transitive closure”,
• check that for all idempotent loops (in the transitive closure), “something”
decreases.

We refer to [1] (or the rest of this paper) for the details.

2. A Language for Arguments

For the “obvious” notion of size, the original principle doesn’t keep much infor-
mation. For example, the Ackermann function contains three recursive calls:

val rec ack x1 x2 = ... ack 1 (x2-1)

... ack (x1-1) (ack x1 (x2-1))

The information kept in [1] is
(
? ?

? <

)
,

(
< ?

? ?

)
,

(
= ?

? <

)
: ack → ack .

Each matrix represents a recursive call. For example, the third matrix corresponds
to the last recursive call “ack x1 (x2-1)” and contains the following size informa-
tion:

• the entry (1, 1) is “=” because argument 1 (“x1”) of the recursive call is at
most of the same size as parameter 1 (“x1”) of the definition,

4 PIERRE HYVERNAT

• the entry (2, 2) is “<” because argument 2 (“x2-1”) of the recursive call is
strictly smaller than parameter 2 (“x2”) of the definition,

• the other entries are “?” as we don’t know anything about the size rela-
tionship between arguments and parameters.

In general, for a recursive call

val rec f x1 x2 x3 =

... g u1 u2 ...

the entry (2, 3) represents the relation between the size of parameter “x3” and the
size of argument “u2”.

Even with this restricted knowledge, the size-change termination principle is able
to infer termination of many functions (including the Ackermann function). In a
language with constructors and pattern-matching, it is relatively easy to obtain
more information, even with a naive and straightforward static analysis: the ar-
guments u1 and u2 are built from pieces of the parameters x1, x2 and x3, and
such pieces are obtained using projections and pattern-matching. The following
term language describes the possible ways of constructing such arguments from
parameters:

Definition 2.1. The language L̂(x1, . . . , xm) is defined as:

u, ui ::= ⊥ | xi︸︷︷︸
i=1,...,m

| Cu | (u1, . . . , un)︸ ︷︷ ︸
constructors

| πiu | C−u︸ ︷︷ ︸
destructors

where the C’s are taken from a finite set of variant constructors and tuples may be
empty.

The intended semantics of those terms is obvious, except perhaps for:

• “⊥” represents impossible cases. It would be the least element of the ap-
propriate domain of values.3

• “C−u” represents a branch of a case analysis. Its semantics would be:

[[C−u]] =

{
e if [[u]] = C e

⊥ otherwise .

Let’s look at the Ackermann function again, written this time in full with unary
numbers:

val rec ack x1 x2 =

match (x1,x2) with

(Z[],Z[]) -> S[Z[]]

| (Z[],S[n]) -> S[n]

| (S[m],Z[]) -> ack m S[Z[]]

| (S[m],S[n]) -> ack m (ack S[m] n)

The second argument to the last call: “n” is represented by S−x2 while the first
argument: “S[m]” is represented by SS−x1. For reasons that will become clear later,
arguments which contain an unknown number of variant, the second argument to
the second call will be represented by “()”.4

There is an obvious notion of reduction on L̂:

Definition 2.2. ⊲ is the contextual closure of:

• πi(u1, . . . , un) ⊲ ui,
• C−Cu ⊲ u.

The other reduction rules deal with “impossible cases”, either by introducing them:

3Values would be interpreted in a domain D ≃ List(D) +
∑

C D.
4More precisely, by a variant of ”()” to be introduced in the next section.

SIZE-CHANGE TERMINATION FOR CONSTRUCTOR BASED LANGUAGES 5

• πi(u1, . . . , un) ⊲⊥ if i > n,
• C−Du ⊲⊥ if C 6= D,
• πiCu ⊲⊥,
• C−(u1, . . . , un) ⊲⊥,

or by propagating them:

• ⊥u ⊲⊥, u⊥ ⊲⊥ and (. . . ,⊥, . . .) ⊲⊥.

We write L(x1, . . . , xn) for the normal forms of L̂(x1, . . . , xn) different from ⊥.

Lemma 2.1. This reduction is strongly normalizing. When restricted to terms
which do not reduce to ⊥, it is also confluent.

Proof. Strong normalization is trivial: the size of terms decreases along reduction.
For confluence, the only problematic critical pair is: πi(. . . , ui, . . . ,⊥, . . .) which
reduces either to ui or to ⊥.

�

A note on “⊥”. Arguments which reduce to ⊥ can be ignored because they do
not correspond to actual computations in the ambient language. More precisely,
the two rule C−Du⊲⊥ and πiCu⊲⊥ never occur because they correspond to ill-typed
terms. Similarly, the rule πi(u1, . . . , un) ⊲ ⊥ if i > n would have been detected by
the typing algorithm.

The last rule C−(u1, . . . , un) ⊲⊥ is more interesting: it is “well-typed” and does
occur in practice. It is the evaluation mechanism that prevents it from ever being
used during computation: for a “match u with ...”, the evaluation mechanism
uses the first matching branch (a kind of C−C . . .) and raises an error if no such
branch is found. This explains why we can safely ignore all terms reducing to ⊥.
In the actual implementation, the first three rules provoke an error while the last
one raises an exception Impossible composition.

3. A Bounded Language for Arguments

Finiteness is crucial for proposition 1.1. We thus need to devise a finite version
of L. In order to do that, we introduce “weighted approximations” of terms.

3.1. Weighted terms.

Definition 3.1. The terms of F̂(x1, . . . , xm) are generated by:

u, ui ::= ⊥ | xi︸︷︷︸
i=1,...,m

| δwu︸︷︷︸
w∈Z∞

| Cu | (u1, . . . , un) | πiu | C−u .

We usually leave the variables implicit and write F̂ whenever possible.

The intuition is that δw is a prefix for a term of weight bounded by w: it contains
at most w more variant constructors than destructors. We can use those terms to
approximate elements of L: for example, δ1u is an approximation of Cu, Du, or
even C D−u.

We can identify several “canonical” subsets of F̂ :

• The set B of terms “without constructors”:

b ::= ~d xi | () | δw ~d xi | δw()

where w ∈ Z∞ and ~d is a sequence of destructors (C− and πi). In this

case, ||~d|| is the number of variant destructors in the sequence.

6 PIERRE HYVERNAT

• The set F of normal forms:5

u, ui ::= b ∈ B | Cu | (u1, . . . , un) .

where the tuples are not empty.

The presence of the δ’s makes the definition of reduction more subtle than before.
In particular, we will need the following definition:

Definition 3.2. “sup0(b1, b2)” is defined for any b1, b2 ∈ B as:6

• sup0(b, b) = b for any b ∈ B,

• sup(b1, b2) = δ∞() if b1 and b2 are “incompatible”: either they end with xi
and xj with i 6= j, or one ends with xi and the other with (),

• sup0(b1, b2) = δk ~a xi whenever

– b1 is of the form δw~b·~a xi,
– b2 is of the form δw′~c·~a xi,

where
– ~a is the longest common suffix,

– k = max(w − ||~b||, w′ − ||~c||).
• sup0(δw(), δw′()) = δmax(w,w′)(),

• sup0(δw~ay, b) = sup0(b, δw~ay) = sup0(δw~ay, δ0b) if b doesn’t start with a δw,
• sup0(b1, b2) = sup0(δ0b1, δ0b2) if neither b1 nor b2 starts with a δw.

This operation is associative and the n-ary version is written sup0,1≤i≤n{bi}.

As a first approximation, it is safe to replace any ~dxi ∈ B (resp. ()) by δ0 ~dxi
(resp. δ0()). Doing so simplifies the definition of sup0 and reduction and yields a
sound but slightly weaker termination principle.

Definition 3.3. ⊲ is the contextual closure of:

• πi(u1, . . . , un) ⊲ ui,
• C−Cu ⊲ u,
• propagation of impossible cases (see definition 2.2),
• introduction of impossible cases (see definition 2.2),

with the added clauses:

• δwδw′u ⊲ δw+w′u,
• πiδwu ⊲ δwu,
• C−δwu ⊲ δw−1u,
• δwCu ⊲ δw+1u,
• if n ≥ 1, δw(u1, . . . , un) ⊲ sup0,1≤i≤n

{
nf(δwui)

}
,

where in the last clause, “nf(u)” is the normal form of u with respect to ⊲.

It is interesting to note that the definition of reduction assumes it is normalizing
and that nf(δwu) ∈ B . Both this properties are trivially true, making this definition
well-founded. Since the reduction is not strictly confluent, the last clause is non-
deterministic in general. In practice however, we will be in the confluent fragment.

It will be useful in the sequel to define the following notation:

δw ~d ·u := nf(δw ~d u)

whenever u is in normal form.

Variant constructors have a “weight” of 1 as can be seen in C−δwu ⊲ δw−1u
and δwCu ⊲ δw+1u. Tuple constructors on the other hand have a weight of 0. This
could be changed but isn’t interesting in practice: programming languages usually
require the use of variants in order to define inductive types.

5reduction and normalization will be defined shortly
6This definition is rather tedious. The Caml code might be even easier to read, see on page 26.

SIZE-CHANGE TERMINATION FOR CONSTRUCTOR BASED LANGUAGES 7

Just like before, we have:

Lemma 3.1. This reduction is strongly normalizing. Moreover, this reduction is
confluent on terms which do not reduce to ⊥.

Proof. Strong normalization is trivial as the size of terms decreases during reduc-
tion. For the other part, note that the critical pairs which do not involve ⊥ are:

δwδw′δw′′u δwδw′Cu δwδw′(u1, . . . , un)
πiδwδw′u πiδw′Cu πiδw′(u1, . . . , un)
C−δwδw′u C−δw′Cu C−δw′(u1, . . . , un) .

For the first two columns, the diagrams can be closed directly. For the last column,
since δw·u doesn’t contain constructors, we have:

• πi sup0,1≤i≤n{δw′·ui} ⊲ sup0,1≤i≤n{δw′·ui},
• C− sup0,1≤i≤n{δw′ ·ui} ⊲ sup0,1≤i≤n{δw′−1·ui},
• δw sup0,1≤i≤n{δw′ ·ui} ⊲ sup0,1≤i≤n{δw+w′ ·ui}

which closes the remaining critical pairs.
�

The δ’s absorb constructors on the right (except for the empty tuple) and de-
structors on the left. The normal forms for this reduction have a simple shape: it
may help to picture them as:

xj

δ0
δ−1





constructors: (, . . . ,) or C

xj
xi

δ42

()




destructors: πi or C−

Definition 3.4. F(x1, . . . , xn) consists of the normal forms of F̂(x1, . . . , xn) dif-
ferent from ⊥.

Lemma 3.2. F(x1, . . . , xm) is exactly the set defined on page 6.

Since the main object really is F , the implementation defines a type for the
normal forms and a kind of “restricted” reduction: we need only normalize terms
of the form u[x := v] where u and v are already in F . (See appendix C.)

We can now extend the definition of sup0 to a total (binary) function on normal
forms:

Definition 3.5. “sup(u, v)” is defined for all u, v ∈ F :

• sup(u, v) = sup0(u, v) if u, v ∈ B,
• sup(Cu, Cv) = C

(
sup(u, v)

)
,

• sup
(
(u1, . . . , un), (v1, . . . , vn)

)
=

(
sup(u1, v1), . . . , sup(un, vn)

)
,

• sup(u, v) = sup0(δ0·u, δ0· v) for all other cases.
7

This function satisfies the requirements to be a suppremum operation:

7That is, when u and v start with incompatible constructors, or when one of u and v is in B

and the other is not.

8 PIERRE HYVERNAT

Lemma 3.3.

• sup is commutative: sup(u, v) = sup(v, u);
• sup is idempotent: sup(u, u) = u;
• sup is associative: sup

(
u, sup(v, t)

)
= sup

(
sup(u, v), t

)
.

Proof. The first two points are direct induction proofs. For associativity, the com-
plete proof rather tedious and delayed to the appendix on page 24.

�

We can now define the corresponding notion of order:

Definition 3.6. We write u ⊑ v for sup(u, v) = v. This is read “v approximates u”.

Lemma 3.4. The relation ⊑ is a partial order on F , with sup the suppremum
operation. Moreover, the order has a greatest element: δ∞().

Proof. That ⊑ is a partial order and sup is the suppremum is a direct consequence
of lemma 3.3. To check that δ∞() is a greatest element, we only need to check
that sup

(
u, δ∞()

)
= δ∞(). This is obvious for any u ∈ B, and all other cases

reduce to this one...
�

It is now straightforward to expand the definition of ⊑ to find the following
characterization:

Lemma 3.5. For all u, v, u1, . . . , we have:

• Cu ⊑ Dv iff C = D and u ⊑ v,
• (u1, . . . , um) ⊑ (v1, . . . , vn) iff m = n and ui ⊑ vi for all i = 1, . . . , n,
• if b ⊑ v with b ∈ B, then v ∈ B,
• if u ⊑ b with u 6= b and b ∈ B, then b starts with a δw,
• if u ⊑ b with b ∈ B, then δ0·u ⊑ b,
• Cu ⊑ b with b ∈ B iff δ1·u ⊑ b iff u ⊑ δ−1· b,
• (u1, . . . , un) ⊑ b with b ∈ B iff δ0·ui ⊑ b for all i = 1, . . . , n iff ui ⊑ b for

all i = 1, . . . , n,
• Cu 6⊑ (v1, . . . , vn) and (u1, . . . , um) 6⊑ Cv.

We close this section by a technical lemma:

Lemma 3.6. For all u, v ∈ F and w ∈ Z∞:

u ⊑ δ0·u

and

u ⊑ v =⇒ δw·u ⊑ δw· v .

Proof. For the first point, we need to show that sup(u, δ0·u) = δ0u. This holds
trivially by idempotence of sup0 and by definition of sup.

For the second point, we need the following fact:

Fact.
δw+w′ ·u = δw· (δw′ ·u)

sup
(
δw+w′·u , δw+w′′ · v

)
= δw· sup

(
δw′ ·u , δw′′ · v

)
.

We can then proceed by induction on v:

• if v = (v1, . . . , vn), then u is of the form (u1, . . . , un) with ui ⊑ vi for
each i = 1, . . . , n (by lemma 3.5); we know by induction that

sup
(
δw·ui, δw· vi

)
= δw· vi

SIZE-CHANGE TERMINATION FOR CONSTRUCTOR BASED LANGUAGES 9

for all i = 1, . . . , n. By associativity and commutativity of sup, we get

sup
(
δw· (u1, . . . , un) , δw· (v1, . . . , vn)

)

= sup
(
sup1≤i≤n{δw·ui} , sup1≤i≤n{δw· vi}

)

= sup
(
sup1≤i≤n

{
sup(δw·ui, δw· vi)

})

= sup
(
sup1≤i≤n{δw· vi}

)

= δw·
(
sup1≤i≤n{δ0· vi}

)

= δw· (v1, . . . , vn) .

• if v = Cv′, then u is necessarily of the form Cu′, with u′ ⊑ v′ (by lemma 3.5);
we thus need to show that sup(δw·u, δw· v) = δw· v. By induction hypoth-
esis, we know that δw·u

′ ⊑ δw· v
′. By the previous fact, we have

sup
(
δw·u, δw· v

)
= sup

(
δw+1·u′, δw+1· v′

)

= δ1· sup
(
δw·u′, δw· v′

)

= δ1· (δw· v′)
= δw+1· v′

= δw· v

• if v ∈ B and u ∈ B, the result is trivially true because δw· doesn’t change
the shape of its argument.

• the last case is when v ∈ B and u /∈ B. Since v necessarily starts with a δ,
we have v = δ0· v. By lemma 3.5, we have

u ⊑ v iff δ0·u ⊑ δ0· v

which implies that δw·u ⊑ δw· v.

�

3.2. Bounding the weight and depth. The set F is still infinite. We will now
ensure finiteness by approximating each element of F by an element of bounded
depth and by restricting the possible weights of the δ’s.

Definition 3.7. The set Fd,b(x1, . . . , xn) is the finite subset of F(x1, . . . , xn) of
elements s.t.

(1) all the δ’s have weights in Zb,
(2) the destructor depth is less than d,
(3) the constructor depth is less than d.

The figure on page 7 should make it clear what is meant by “constructor depth”
and “destructor depth”, but a formal definition is of course possible. Note that
both tuple and variant constructors are taken into account for this notion of depth.

Collapsing a term in F so that it satisfies the first condition is easy: replace
each δw by δ⌊w⌋b . We write p1,b(u) for the term resulting from u.

Collapsing to ensure the second condition is also easy: we replace each δw~a ·~b xi
by δw−||~a||

~b xi where ~b is chosen of length d. We write p2,d(u) for the term obtained
from u.

The third function to collapse constructors is called p3,d. It “merges” just enough
constructors into each δw to reduce the depth. It is defined by induction on d:

• p3,d+1(Cu) = C p3,d(u),

• p3,d+1

(
(u1, . . . , un)

)
=

(
p3,d(u1), . . . , p3,d(un)

)
,

• p3,d(b) = b whenever b ∈ B,
• p3,0(u) = δ0·u.

10 PIERRE HYVERNAT

Definition 3.8. The collapsing function ⌊ ⌋d,b : F → Fd,b is defined by

F(x1, . . . , xm) → Fd,b(x1, . . . , xm)
u 7→ ⌊u⌋d,b = p1,b p2,d p3,d(u) .

Because p2 deals with destructors and p3 deals with constructors, they commute,
so that the collapsing function could equivalently be defined as u 7→ p1,b p3,d p2,d(u).
Note that since L(x1, . . . , xm) is a subset of F(x1, . . . , xm), this collapsing function
can be restricted to L(x1, . . . , xm) → Fd,b(x1, . . . , xm).

The important result is that this is compatible with the approximation order:

Lemma 3.7. For any u ∈ F we have

• u ⊑ ⌊u⌋d,b,
• ⌊ ⌋d,b is monotonic.

Proof. It is enough to show that the same holds for each of p1,b, p2,d and p3,d. It
is fairly easy for both p1,b and p2,d.

We prove that u ⊑ p3,d(u) by induction on d: when d = 0, this is just point 1 of
lemma 3.6 and when d > 0, this is a direct application of the induction hypothesis.

We prove the monotonicity of p3,d by induction on d, v and u. If d = 0, this is
just point 2 of lemma 3.6, with w = 0. If d > 0, we do a case analysis on v:

• if v = (v1, . . . , vn), then u is of the form (u1, . . . , un) with ui ⊑ vi for
each i = 1, . . . , n. By induction, we know that each p3,d−1(ui) ⊑ p3,d−1(vi)
and since

p3,d

(
(v1, . . . , vn)

)
=

(
p3,d−1(v1), . . . , p3,d−1(vn)

)

p3,d
(
(u1, . . . , un)

)
=

(
p3,d−1(u1), . . . , p3,d−1(un)

)
,

we can conclude by lemma 3.5.
• if v = Cv′, then u is necessarily of the form Cu′, with u′ ⊑ v′. By induc-

tion, we know that p3,d−1(u
′) ⊑ p3,d−1(v

′) and since p3,d(u) = C p3,d−1(u
′)

and C p3,d(v) = p3,d−1(v
′), we can conclude by lemma 3.5.

• If u, v ∈ B, we can conclude as p3,d(u) = u and p3,d(v) = v.
• If v ∈ B and u = (u1, . . . , un), we know by lemma 3.5 that each ui ⊑ v. We

can use the induction hypotheses for d− 1, ui and v to get

p3,d−1(ui) ⊑ p3,d−1(v) = v

for all i = 1, . . . , n. This implies that

p3,d(u) ⊑ δ0· p3,d(u)
= sup1≤i≤n p3,d−1(ui)
⊑ v
= p3,d(v) .

• If v ∈ B and u = Cu′, we use the induction hypothesis for d−1, u′ and δ−1· v
(which has the same shape as v and satisfies u′ ⊑ δ−1· v by lemma 3.5).
We get

p3,d−1(u
′) ⊑ δ−1· v

which implies that

p3,d(u) = C p3,d−1(u
′) ⊑ δ1· δ−1· v = v = p3,d(v) .

�

Even if the next lemma isn’t necessary for the correctness of the termination
checker, it is nevertheless interesting to know this collapsing gives the best approx-
imation possible:

SIZE-CHANGE TERMINATION FOR CONSTRUCTOR BASED LANGUAGES 11

Lemma 3.8. For any u ∈ F ,

⌊u⌋d,b = inf
{
v ∈ Fd,b | u ⊑ v

}
.

More precisely, each projection p1,b, p2,d and p3,d is optimal for the corresponding
criterion.

The proof is omitted...

4. Call-Graphs

From now on, we suppose a fixed bound b for the weights of the δ’s and a fixed
bound d for the depth has been chosen.

4.1. Graphs and composition.

Definition 4.1. A call-graph for a set of mutually recursive definitions is a labeled
graph where:

• vertices are function names,
• each call from f to g corresponds exactly to one arc from “f” to “g”,
• if the arity of f is m and the arity of g is n, the label of such an arc is a

substitution (x1 := u1, . . . , xn := un) of terms of F(x1, . . . , xm).

Here is for example the call-graph corresponding to the Ackermann function as
defined on page 4:

• there is a singe node: ack,
• there are three loops from ack to itself:

–
(
x1 := S−x1 , x2 := Z()

)
,

–
(
x1 := S−x1 , x2 := δ∞()

)
,

–
(
x1 := SS−x1 , x2 := S−x2

)
.

An example of call-graph for two mutually recursive definition is the following:

val rec f x y = match x with Z[] -> y | S[x] -> g S[y] x

and g x y = match y with Z[] -> x | S[y] -> f S[y] S[x]

• the call-graph contains two nodes: f and g,
• there is one arc from f to g:

(
x1 := Sx2 , x2 := S−x1

)
,

• there is one arc from g to f: (x1 := SS−x2 , x2 := Sx1).

The static analysis of the code will probably produce, as in the above examples,
a call-graph with labels in L (see for example appendix B). To be able to apply
proposition 1.1, we need to work in Fd,b. If G is a call-graph, we write Gd,b for the
graph where all labels have been collapsed by pointwise application of the collapsing
function:

(x1 := u1, . . . , x := un) 7→
(
x1 := ⌊u1⌋d,b, . . . , xn := ⌊un⌋d,b

)
.

Definition 4.2. The composition of two consecutive substitutions

σ =
(
x1 := u1, . . . , xn := un

)
: f → g

and
τ =

(
x1 := v1, . . . , xm := vm

)
: g → h

is
τ ◦ σ =

(
x1 := nf(v1[σ]), . . . , xm := nf(vm[σ])

)
: f → h

where v[σ] is the syntactical substitution of all the xi’s by ui. If any of the vi[σ]
reduces to ⊥, the composition isn’t defined; otherwise, the normal form is unique
by lemma 3.1.

The collapsed substitution of two consecutive substitutions is

τ ⋄ σ = ⌊τ ◦ σ⌋d,b : f → h

12 PIERRE HYVERNAT

where the collapsing function is applied pointwise.

Because of the impossible cases (⊥), composition of substitutions isn’t total.
Slightly more bothering for the rest is that the collapsed composition “⋄” isn’t
associative because the operation ⊕ on Zb defined as

w ⊕ w′ = ⌊w + w′⌋b

isn’t associative, except when b = 1, as in the original principle (see section 5.4).
Consider for example

∞ =
(
(b−1)⊕ 1

)
⊕−1 6= (b−1)⊕ (1⊕−1) = b− 1 .

This translates in F into such compositions as

(x := δb−1x) ⋄ (x := δ1x) ⋄ (x := δ−1x) .

Collapsed composition will however be associative up-to the weights inside δ’s. If
we define

σ ≃ τ iff

{
σ = τ when b = 1

σ and τ only differ on weights of δ’s otherwise;

we have:

Lemma 4.1. Composition ◦ is associative. Collapsed composition ⋄ is associative
up-to ≃. In particular, it is strictly associative when b = 1.

Proof. That ◦ is associative follows from confluence (lemma 3.1). Since collapsing
respects ≃, ⋄ is associative up-to ≃.

�

The order ⊑ is extended pointwise to substitutions, with the implicit assumption
that ρ ⊑ σ means that if the expression ρ is defined, so is the expression σ.

Proposition 4.1. The order on substitutions is compatible with composition:

• if ρ ⊑ σ then τ ◦ ρ ⊑ τ ◦ σ,
• if ρ ⊑ σ then ρ ◦ τ ⊑ σ ◦ τ .

Because collapsing is monotonic (lemma 3.7), the same holds for collapsed compo-
sition ⋄.

Proof. This is once more a proof by induction. We decompose it and show

u1 ⊑ u2 =⇒ nf(v[x := u1]) ⊑ nf(v[x := u2])
u1 ⊑ u2 =⇒ nf(u1[x := v]) ⊑ nf(u2[x := v])

For the first point, the only interesting case is when v is δw~ax. Since δw ·
is monotonic (lemma 3.7), we only need to show that nf(C−) and nf(πi) are
monotonic. Those are straightforward inductive proofs.

The second point is proved by induction:

• direct application of the induction hypothesis when u2 /∈ B,
• When u2 ∈ B and u1 /∈ B, u2 necessarily starts with a δ (lemma 3.5). We

thus have u2 = δ0·u2. By confluence of reduction, we also have that

nf
(
(δ0·ui)[x := v]

)
= δ0·

(
nf(ui[x := v])

)
.

By definition, we have

sup
(
nf(u1[x := v]) , nf(u2[x := v])

)

= sup0

(
δ0· nf(u1[x := v]) , δ0· nf(u2[x := v])

)

= sup
(
nf

(
(δ0·u1)[x := v]

)
, nf

(
(δ0·u2)[x := v]

))

= nf
(
sup

(
δ0·u1 , δ0·u2)[x := v]

)
.

SIZE-CHANGE TERMINATION FOR CONSTRUCTOR BASED LANGUAGES 13

• The last case is when u1, u2 ∈ B. We need yet another tedious induction
proof, namely that

nf(δw ~dv) ⊑ nf
(
δ
w−||~d||v

)
.

This implies that

δw~ax ⊑ δw′
~bx =⇒ nf(δw~av) ⊑ nf(δw′

~bv)

which is the missing part for the case u1, u2 ∈ B.

�

4.2. Transitive closure. The transitive closure of a graph G is the graph G+ with
the same vertices as G and arcs between a and b in G+ correspond exactly to path
between a and b in G. In our case, the graph is labeled, and the label of a path is
the composition of the labels of its arcs.

Definition 4.3. If G is a call-graph with labels in Fd,b, the graphG+, the transitive
closure of G, is the call-graph defined as follows:

• G0 = G,
• in Gn+1, the arcs between f and g are

Gn+1[f, g] = Gn[f, g] ∪
{
σ ⋄ τ | τ ∈ Gn[f, h], σ ∈ Gn[h, g]

}

where g ranges over all vertices of Gn,
• G+ =

⋃
n≥0 G

n.

Because all the Fd,b(x1, . . . , xm) are finite, we have

Lemma 4.2. G+ is finite and can be computed in finite time. More precisely, there
is an n such that Gn = Gn+1 and G+ is equal to this Gn.

This is indeed the graph of “path” of Gd,b, and for any path σ1, . . . , σn in G, it
contains all the possible ways of computing σn ⋄ . . . ⋄ σ1. (Recall that “⋄” isn’t
associative, except when b = 1.)

5. The Size-Change Principle

5.1. Values, safety and diagonal nodes. Given a sequence of substitutions,
their composition models the actual reduction of the corresponding calls. Proposi-
tion 4.1 ensures that by collapsing the initial terms and using the “compose then
collapse” reduction, we end up with an approximation of the sequence of calls.
To link that with the actual computations performed by the language, we need a
notion of value:

Definition 5.1. A value is an element of L(∅).

Those values correspond exactly to first-order values of the programming lan-
guage. They are built from tuples, variant constructors and constants (nullary
variant constructors) but cannot use destructors. Approximations of values live
in F(∅) and do not contains destructors. It is relatively easy to characterize all the
possible approximations of a value:

Lemma 5.1. We have:

(1) If v is a value, v ⊑ δw() if and only if w ≥ h where h is the “variant-
constructor” height of u.

(2) If v is a value, then v ⊑ u if and only if u is obtained from v by replac-
ing some sub-values v′ by δw′() with w′ ≥ h′ where h′ is the “variant-
constructor” height of v′.

14 PIERRE HYVERNAT

Safety of the representation of a set of inductive definition by a call-graph simply
means that we approximate the actual reduction:

Definition 5.2.

(1) suppose we have a call from f to g:

val rec f x1 x2 ... xn =

... g u1 ... um

...

An arc f
σ

−→ g in a call-graph is safe with respect to this particular call if
for all substitutions of values ρ = (x1 := v1, . . . , xn := vn), we have

(
x1 := [[u1]]ρ, . . . , xm := [[um]]ρ

)
⊑ σ ◦ ρ

where [[u1]]ρ is the appropriate first-order semantical value. The semantics
of higher-order values is simply δ∞().

(2) A set of mutually inductive definitions is safely represented by a call-graph
if all calls have a corresponding safe arc in the graph.

Whenever the static analysis cannot infer an approximation of the reduction, it
will use the top element δ∞() to ensure safety. This is the case for example when it
encounters a call to an external function in one of the arguments. The most naive
and straightforward static analysis is described in appendix B.

For example, the two call-graphs given on page 11 safely represent their corre-
sponding definitions, precisely because they exactly describe the evolution of (first-
order) arguments of the functions.

Lemma 3.7 and proposition 4.1 imply directly that

Lemma 5.2. If G safely represents a set of inductive definitions, then Gd,b safely
represents the same set of inductive definitions.

The last concept we need before stating the new size-change termination principle
is that of “diagonal nodes”. Those will play the same role as the entries on the
diagonal of square matrices as in the original principle.

Definition 5.3. If σ = (x1 := u1, . . . , xn := un) is a substitution in F(x1, . . . , xn),

a diagonal node of σ is given by a sequence of destructors ~d and an index i which
satisfies:

δ0 ~d ·ui = δw ~d xi .

In this case, we say that the weight of the node is w.

Looking at a couple of examples should make the notion easier to grasp:

• for the substitution (x1 := ABδwB
−A−x1 , x2 := Cx1), the only diagonal

node is (B−A−, 1), of weight w,
• In general, for a substitution (x1 := u1, . . . , xn := un), if ui is of the
form A1 . . . AmδwB

−
n . . . B−1 xi, (B

−
n , . . . , B

−
1 , i) is a diagonal node iff A−m . . . A−1

is a suffix of B−n . . . B−1 . Its weight is then w − n+m.
• With tuple constructors, the situation isn’t as simple. As an example,
consider

(
x1 := (δ3π1x1, δ2π2x2) , x2 := (δ1π2x1, δ∞π1x2)

)

the only diagonal node is (π1, 1) of weight 3.

Here is the first use of the combinatorial principle of section 1:

Lemma 5.3. Suppose we are given τ ≃ τ ⋄ τ and an infinite sequence (τn)n≥0 of
substitutions in Fd,b with τi ≃ τ .

SIZE-CHANGE TERMINATION FOR CONSTRUCTOR BASED LANGUAGES 15

• All the partial compositions τm+n ◦ . . . ◦ τm share the same diagonal nodes
(possibly with different weights): they are exactly the diagonal nodes of τ .

• Moreover, we have:
(1) either there are n and m s.t. all diagonal nodes have non-negative

weight in τm+n ◦ . . . ◦ τm,
(2) or τ contains a diagonal node whose weight in τn ◦ . . . ◦ τ1 diverges

to −∞ as n tends to ∞.8

Proof. For the first point, notice that being a diagonal node doesn’t depend on the
weights of the δ, only the weight of the diagonal node does. Thus, the sequence (τn)n
of the lemma induces a sequence of tuples of weights for all the diagonal nodes.

For the second point, the first thing to show is that diagonal nodes compose
during substitution. More generally, confluence implies

Fact (1). If δ0 ~a ·ui = δw~b xj and δ0~b · vi = δw′ ~c xk then

δ0 ~a ·
(
ui[xj := vj]

)
= δw+w′ ~c xk .

This shows that if τ1 ≃ τ2 and (~d, i) is a diagonal node in τ1 (and thus in τ2),

the weight of (~d, i) in τ2 ◦ τ1 is the sum of its weights in τ1 and τ2.

Fact (2). If (wn)n is a sequence of vectors in Zb
k s.t. all pointwise initial partial

sums are bounded from below:

∀n (−B, . . . ,−B) ≤
n∑

i=1

wi

then there is a partial sum in which all components are positive:

∃m, n

m+n∑

i=m

wi ≥ (0, . . . , 0)

Proof of fact. Given such a sequence (wn)n, we add some (−1, 0, . . . , 0) in enough
places to make sure the initial sums of the first components is always in ZB′

where B′ is max(B, b). This is always possible. We do the same for all the other
components: we obtain a new sequence (w′

n)n which satisfies

∀n
n∑

i=1

w
′

i ∈ ZB′

k .

This implies that we also have

∀m, n

m+n∑

i=m

wi ∈ Z2B′

k .

By (a slight generalization of) proposition 1.1,9 we can decompose this sequence as:

initial prefix, w
′
n0
, . . .w′

n1−1︸ ︷︷ ︸
w

′

, . . . , w
′
nk
, . . .w′

nk+1−1︸ ︷︷ ︸
w

′

, . . .

where:

• all the w
′
nk

+ · · ·+w
′
nk+1−1 are equal to the same w

′,

• w
′ = w

′ +w
′.

8i.e. there is a diagonal node (~d, i) of τ with ∀B ≥ 0 ∃n s.t. the weight of (~d, i) in τn ◦ . . . ◦ τ1
is less than −B

9see the note at the end of the proof of proposition 1.1.

16 PIERRE HYVERNAT

That w′ = w
′ +w

′ implies trivially that all components of w′ are either 0 or ∞.
Take the subsequence w′

n0
, . . .w′

n1−1 and remove the additional (−1, 0, . . . , 0) to
obtain a subsequence of the original (wn)n. The sum of this subsequence contains
only non-negative components. �

Applying this fact to the sequence of the tuple of weights of diagonal nodes
of (τn)n, we get the lemma: suppose the compositions τn ◦ . . . ◦ τ1 do not contain
a diagonal node whose weight diverges to −∞. This translates into “the initial
sequences of weights are bounded from above”, and thus by the fact (2), there is
a subsequence of the weights for which all sums are non-negative. This translates
back to a subsequence τm+n ◦ . . .◦τm in which all diagonal nodes have non-negative
weights.

�

5.2. Main result.

Proposition 5.1 (Improved Size Change Termination Principle). If G safely rep-
resents some inductive definitions and all “weakly” idempotent loops τ ≃ τ ⋄ τ
in Gd,b

+ contain a diagonal node with strictly negative weight then the evaluation
of the functions on values cannot produce an infinite sequence of calls to other
functions.10

Proof of proposition 5.1. Suppose the conditions of the proposition are satisfied
and suppose that function h on values v1, . . . , vn provokes an infinite sequence
of calls c1, . . . , cn, Write ρn for the arguments of call cn, in particular, ρ0
corresponds to the initial arguments of h: (x1 := v1, . . . , xn := vn). All those ρn
contain (semantical) values.

Let σ1, . . . , σn, . . . be the substitutions in Gd,b corresponding to the calls c1,
By considering substitutions up-to ≃, we can use proposition 1.1 to decompose this
sequence as:

h
σ0−→ . . . −→︸ ︷︷ ︸
initial prefix

f
σn0−→ . . . −→︸ ︷︷ ︸

τ

f
σn1−→ . . . −→︸ ︷︷ ︸

τ

f . . .

where:

• all the σnk+1−1 ⋄ . . . ⋄ σnk
are “≃” to the same substitution τ : f → f,

• τ is idempotent up-to ≃: τ ≃ τ ⋄ τ .

Because G, and thus Gd,b is safe, we have

ρn+1 ⊑ σn ◦ ρn

and so, because ◦ is monotonic, starting from n0 until n1:

ρn1
⊑ σn1−1 ◦ . . . ◦ σn0

◦ ρn0
.

Because ◦ is associative, and because collapsing and composition are monotonic,
we obtain:

ρn1
⊑ (σn1−1 ⋄ . . . ⋄ σn0

) ◦ ρn0
.

The composition σn1−1 ⋄ . . . ⋄ σn0
is equal to some τ1 ≃ τ . Doing the same thing

several times, we get:

ρnk
⊑ τk ◦ . . . ◦ τ1 ◦ ρn0

.

Since the graph satisfies the size-change termination principle, no τk+l ◦ . . . ◦ τk
can have all diagonal weights positive. By lemma 5.3, one of the diagonal weights
must diverge to −∞. By taking a k big enough, this diagonal weight will be small

10Recall that σ ≃ τ means that σ and τ only differ on some weights of δ’s.

SIZE-CHANGE TERMINATION FOR CONSTRUCTOR BASED LANGUAGES 17

enough to ensure that τk ◦ . . . ◦ τ1 ◦ ρn0
contains a negative δ. This contradicts the

fact that ρnk
⊑ τk ◦ . . . ◦ τ1 ◦ ρn0

(by lemma 5.1).
Thus, we cannot get an infinite sequence of calls.

�

Lemma 5.4. The size-change principle in monotonic with respect to d and b.

5.3. A stronger test? It is tempting to replace idempotent loops up-to ≃ by real
idempotent loops in proposition 5.1 The resulting principle is still sound but isn’t
any stronger. More precisely:

Lemma 5.5. The following are equivalent: in Gd,b
+,

• all weakly idempotents have a diagonal node with strictly negative weight,
• all strictly idempotents have a diagonal node with strictly negative weight.

Proof. This follows from the fact that the weights of diagonal nodes are summed
along a composition of weakly-idempotent substitutions (fact (1) in the proof
of lemma 5.3). Thus, given a weakly-idempotent substitution, we can compose
(with ⋄) it with itself enough time so that the weights of each diagonal node con-
verges to a value.

It is not terribly difficult to show that the weights of each δ also converges to
a value and that we obtain a truly idempotent loop. If the initial substitution
contained a diagonal node of positive weight, the final one, contains a diagonal
node of weight ∞.

�

Corollary. If G safely represents some inductive definitions and all strictly idem-
potent loops σ = σ ⋄ σ in Gd,b

+ contain a diagonal branch whose weight is strictly
negative, then the evaluation of the functions on values cannot produce an infinite
sequence of calls to other functions.

In practice there is no difference as checking equality and checking ≃ have the
same complexity.

5.4. Comparison with original principle. When using the original principle
described in [1] for an ML-like language, it is quite natural to count variant con-
structors as the notion of size. This will ensure that we at least detect structural
induction. Then, the original principle is a special case of the above test: choose
the bounds b = 1 and d = 0. The substitution (x1 := δ0x1, x2 := δ−1x0, x3 := δ∞x2)
can be pictured as

(
= < ?

? ? ∞

)
or

δ0 x1

x2

x1

x2

x3
δ∞

δ−1 .

The original paper used the graph representation with the notation “ ↓= ” for δ0, “↓”
for δ−1 and did not draw δ∞. What should be noted is that in this context
(when d = 0), there is no difference between u and δ0u and that as far as ter-
mination is concerned, “?” (i.e. “δ∞”) carries the same information as δ∞xi

5.5. Using the order. The following is rather obvious once the notion of diagonal
node is understood:

Fact. If σ ⊑ τ and (~d, i) is a diagonal node of σ, then there is a diagonal node (~e, i)

of τ where ~e is a suffix of ~d. The weight of (~d, i) in σ is less than the weight of (~c, i)
in τ .

18 PIERRE HYVERNAT

This makes it possible to improve the practical complexity of the test, in par-
ticular when the bounds d and b are “big”.11 By monotonicity of composition
(propositions 4.1) and the previous fact, it is clear that we only need to keep the
maximal substitutions between vertices f and g. We compute the transitive closure
with

Gn+1[f, g] = max

(
Gn[f, g] ∪

{
σ ⋄ τ | τ ∈ Gn[f, h], σ ∈ Gn[h, g]

})

where g ranges over all vertices of Gn and the max function takes all maximal
elements of this set. Proving that the resulting criterion is equivalent is straight-
forward.

In the implementation, it amounts to replacing the function inserting a new
element τ in the set of arcs by a function which removes any element smaller
than τ and does nothing if it finds an element bigger than τ . Since sets in Caml
are implemented by balanced binary trees, plain insertion in a set of of size n has
complexity O(log(n)) whereas the “improved” insertion has complexity O(n log(n)).

In practice, this is more than compensated by the fact that sets of calls are
smaller, making the computation of the transitive closure faster. It is possible to
create examples where the sets get exponentially smaller when using the approx-
imation order. A paradigmatic (if circumvoluted) example of this phenomenon is
given by:

val rec f x1 x2 x3 x4 =

f (f x1 x2 x3 x4) (f x2 x1 x3 x4) (f x1 x3 x2 x4) (f x1 x2 x4 x3)

which generates the following set of calls:
{

(x1 := x1, x2 := x2, x3 := x3, x4 := x4) ,
(x1 := x2, x2 := x1, x3 := x3, x4 := x4) ,
(x1 := x1, x2 := x3, x3 := x2, x4 := x4) ,
(x1 := x1, x2 := x2, x3 := x4, x4 := x3) ,(

x1 := δ∞(), x2 := δ∞(), x3 := δ∞(), x4 := δ∞()
) }

The transitive closure without using approximation will generate all the

(x1 := xp(1), x2 := xp(2), x3 := xp(3), x4 := xp(4))

for all permutations p. If using the order, all those calls are approximated by the
initial (x1 := δ∞(), x2 := δ∞(), x3 := δ∞(), x4 := δ∞()

)
and the computation of the

transitive closure takes only one step.
Similar examples do occur in practice, whether terminating or not.

5.6. Examples. All the examples in this section validate the size-change termina-
tion principle. They are chosen to illustrate specific properties and are not neces-
sarily meant to compute anything useful.

This test validates any function which is validated by the original test when using
“variant constructor height” as the size function. This includes in particular any
function defined by structural induction but also functions which swap arguments
around like:

val rec f x y = match x,y with

S[x],S[y] -> if (...) then f x S[y] else f y S[x]

| _,_ -> A[]

or similar behavior as described in the original paper.

11In practical examples, b rarely needs to be bigger than 2 or 3, and d rarely needs to be bigger
than 4 or 5. The default values in the implementation are b = 1 and d = 2, but the user can
dynamically change them.

SIZE-CHANGE TERMINATION FOR CONSTRUCTOR BASED LANGUAGES 19

The first novelty is that allowing restricted positive δ’s, we can have a locally
increasing size without loosing termination:

val rec f x = g S[x]

and g x = match x with

S[S[x]] -> f x

| _ -> Z[]

Even with the bound d = 0, since the increasing call (x1 := δ1x1) from f to g

is followed by a call (x1 := δ−2x1) from g to f, the transitive closure will keep
enough information to see that these functions terminate. (This of course requires
that b > 1.)

More importantly, the propagation of impossible cases can remove unwanted arcs
in the call-graph:

val rec f x = fun

| A[x] -> f B[x]

| B[x] -> f x

| _ -> Z[]

If we were to keep only size information (i.e. use a bound d = 0), this wouldn’t pass
the test as the first call is represented by (x1 := δ0x1), which is idempotent with only
one diagonal node of weight 0. With d > 0 however, we get two recursive calls which
are represented by the substitutions σ1 = (x1 := BA−x1) and σ2 = (x1 := B−x1).
Since σ1 does not compose with itself, the transitive closure will only follow path
of the form σn

2 ◦ σ1 or σn
2 .

One nice but subtle point is that while the original principle uses a global size
notion, the present principle uses a “local” notion of size given by weight of diag-
onal nodes. In other words, it detects size decreasing in specific sub-parts of the
arguments. Here are two functions to illustrate this:

val rec f = fun T[S[x1],x2] -> f T[x1,S[x2]] | _ -> A[]

val rec g = fun T[x1,_[x2]] -> g T[S[x1],x2] | _ -> A[]

For d = 2 and b = 1, the call initial call-graphs are:

•
(
x1 := T(δ−1π2T

−x1 , δ∞π1T
−x1)

)
for f,

•
(
x1 := T(δ∞π1T

−x1 , δ−1π2T
−x1)

)
for g.

Those call-graphs are equal to their transitive closure. In both cases, the test is
able to see that one branch is actually decreasing: there is only one diagonal node
in each graph:

• (π1T
−, 1) of weight −1 for f,

• (π2T
−, 1) of weight −1 for g.

Each of those functions could pass the original test, provided the user chose the
appropriate notion of size: look on the left-branch (for f) or look on the right-branch
(for g). What seems to be new is that the test somehow includes the search of a
“good” notion of size. This is what allows the next function to pass the termination
test:

val rec sum : (list nat => nat) = fun

Nil[] -> Z[]

| Cons[acc,Nil[]] -> acc

| Cons[acc,Cons[Z[],l]] -> sum Cons[acc,l]

| Cons[acc,Cons[S[n],l]] -> sum Cons[S[acc],Cons[n,l]]

which uses the first element of a list to accumulate as many S variant construc-
tors as there are in the original list. Since in the second call, we need to look
at “π1Cons

−π2Cons
−x1” to reach the decreasing part, the bound d needs to be at

20 PIERRE HYVERNAT

least 4. Because of this bound, the transitive closure computes a little more arcs
than we’d like and we end up with a call-graph with 20 arcs.

In functional programming, it is customary to use functions with several argu-
ments rather than functions with one tuple of arguments. As a final remark, we
note that this doesn’t change the result of the test, save that we may need to in-
crease the bound d by one to account for the additional tuple constructor in the
curried version of a function.

5.7. Non-examples, limitations. To see the limit of this test, it is helpful to
look at some kinds of behavior that prevent it from detecting termination.

The first limitation is that since this is mostly based on terms (and not types),
any call to a function is replaced by δ∞(). For example:

val rec f = fun Nil[] -> Nil[]

| Cons[n,l] -> Cons[twice a , list.map twice l]

is bound to fail because we don’t know that map preserves the length of its second
argument.

Future work include ideas to use “sized-types” in conjunction with size-change
termination to deal with this kind of examples.

Another limitation comes from recursive calls on constant values. Consider

val rec f = fun

Z[] -> Z[]

| S[Z[]] -> f Z[]

| S[n] -> f n

The first recursive called is represented by the substitution (x1 := Z()) which
is idempotent but without diagonal node. This function will be tagged as non-
terminating. A hack to make this function terminating is to use “aliases” and
replace “| S[Z[]] -> f Z[]” by

| S[Z[] as x] -> f x

A more permanent fix for this is to add information to the substitution concern-
ing the sequence of pattern-matching leading to the call. Here, the call would be
represented by

(x1 := Z()) | x1 ≡ SZ()︸ ︷︷ ︸
shape of parameters for the call

while the other call would be represented by

(x1 := Sx1) | x1 ≡ S() .

The reason this hasn’t been implemented is because PML’s code analysis doesn’t,
at the moment, output this information. This is however easily extracted from the
naive analysis presented in appendix B.

Adding the shape of arguments would also allow the test to detect more impos-
sible cases, like in:

val rec f x = match x with

B[y] -> f C[x]

| C[y] -> f y

| _ -> D[]

This is not found to be terminating because the recursive call is represented by the
substitution (x1 := Cx1). If the function were written as

val rec f x = match x with

B[y] -> f C[B[y]]

| C[y] -> D[]

SIZE-CHANGE TERMINATION FOR CONSTRUCTOR BASED LANGUAGES 21

| _ -> D[]

the call would be represented by (x1 := CBB−x1) and the function would pass the
termination test because this call cannot be composed with itself. Like above,
adding the shape of the parameters would be enough to detect such impossible
compositions:

(x1 := Cx1) | x1 ≡ B .

It might sometimes be necessary to give more weight to specific variant construc-
tors. At the moment, each variant constructor has weight 1, as can be seen in the
reduction rule δwCu ⊲ δw+1u. This could be useful in cases such as

val rec f = fun

A[A[A[A[A[B[x]]]]]] -> f A[A[A[A[A[C[C[x]]]]]]]

| A[A[A[A[A[C[x]]]]]] -> f A[A[A[A[A[x]]]]]

| _ -> A[]

This function does pass the termination test if we choose a depth d ≥ 7. If the
function contained other recursive calls, it can make the test use more resources
than reasonable.

Giving a weight of 3 to B and 1 to C would be enough to see this is terminating,
even when d = 0.12

The last example seems to be outside the range of size-change termination. The
combing function:

val rec comb t = match t with

Leaf[] -> Leaf[]

| Node[t,Leaf[]] -> Node[comb t,Leaf[]]

| Node[t1,Node[t2,t3]] -> comb Node[Node[t1,t2],t3]

terminates for a very subtle reason. It seems impossible to capture this function for
the following reason: for any bound d, for any branch ~a of lenght d, it is possible to

find a tree t for which the subtree nf(~dt) increases arbitrarily during a sequence of
recursive calls. For example, at d = 4 for ~a = π1Node

−π2Node
−, consider the tree

on the left:

T

T

By the second recursive call, the tree on the right will be used as the new argument.
While π1Node

−π2Node
− corresponds to the empty tree on the left, it corresponds

to T on the right!
Note that it is the conjunction of the two recursive calls that makes it possible:

for π2Node
−π2Node

−, we need to use the second call and then the first call, for
example on

TT T

second call first call

12Believe it or not, similar situation did arise in practical examples.

22 PIERRE HYVERNAT

This implies that during the transitive closure, all branches of lenght d will reach
a δ∞ because they can be composed with such a tree. Thus, all diagonal nodes
have weight ∞.

Even if this is rather unfortunate, this example (and many similar ones) can be
dealt with by adding additional arguments. The function comb size with a second
parameter for (a bound of) the size of the tree passes the termination test:

val rec comb_size t s = match t,s with

Leaf[],_ -> Leaf[]

| Node[t,Leaf[]],S[n] -> Node[comb_size t n,Leaf[]]

| Node[t1,Node[t2,t3]],n -> comb_size Node[Node[t1,t2],t3],n

| _,_ -> raise Error[]

It is then possible to prove (in the system, or outside the programming language)
that the actual comb function simply is:13

val comb t = comb_size t (size t)

Concluding Remarks

Complexity. Section 5.4 makes it clear that the complexity of the original principle
hasn’t improved. Computing the transitive closure of a call-graph is still P-space
complete! It should be noted however that, like for the original principle, the
complexity of the implemented algorithm is perfectly reasonable in practice. Testing
termination for PML programs still takes a lot less resources than the other parts
of the correctness checking (type checking, completeness of pattern matching etc.)
except for some very specific examples.

Counting abstractions. Since the PML language computes only weak-head normal
forms, it is possible to extend the principle to detect that functions such as

val rec glutton f = fun x -> (glutton f)

do indeed terminate: when applied to n arguments, it will “eat” through all of
them and stop on the weak-head normal form fun x -> (F f).

In order to do that, we add a virtual argument to all recursive functions: it
simply counts the difference between the number of abstraction and the number of
applications. Think of it as an additional “x0 := δwx0” in all substitutions. Note
that an abstraction counts positively and an application counts negatively so that
in effect, it amounts to having a constructor ∆ for abstraction and a destructor ∆−

for application.
This could prove useful in dealing with “frozen” variant constructors: variant

constructors which block reduction until a pattern-matching. This might also be
applied to the destructor based coinductive datatypes as advocated by Anton Set-
zer. The interplay between ∆, frozen / non-frozen variants and tuples isn’t clear at
the moment. This is left for future work.

Integrating Sized-Types. Besides a couple of optimizations, the next natural step
seems to be able to integrate “size-types” in the principle. The idea would be to
start dealing with applications in arguments. For example, if one were to know
that map keeps the same number of list constructors, then a call to map f l could
be replaced by δ0l.

This is of course more difficult than that since while the number of list construc-
tors doesn’t change, the number of other constructors (in the elements of the list)
could increase.

13One would of course like to tag the additional parameter s as “computationally irrelevant”
so that it isn’t used during real computation.

SIZE-CHANGE TERMINATION FOR CONSTRUCTOR BASED LANGUAGES 23

5.7.1. Loose ends. It was surprising that proposition 1.1 is used twice during the
proof of correctness of the principle. It “feels” like both uses are on different levels,
and factoring both uses in a single one doesn’t look easy: ones deals with terms up
to ≃, while the other deals with equality of weights.

References

[1] Chin Soon Lee, Neil D. Jones and Amir M. Ben-Amram, “The Size-Change Principle for
Program Termination”. ACM SIGPLAN Notices, Volume 36 , Issue 3, 2001.

[2] Christophe Raffalli, “Realizability for programming languages”, course notes for the École

jeunes chercheurs du GDR IM, 2010. Submitted for publication.
[3] Christophe Raffalli, “The PML programming language”, . . .
[4] Christophe Raffalli, “PML online”, http://lama.univ-savoie.fr/~pml/interactive.php, an

interactive online interpreter for PML.

http://lama.univ-savoie.fr/~pml/interactive.php

24 PIERRE HYVERNAT

Appendix A. Missing proof

Lemma A.1. sup is associative: sup
(
u, sup(v, t)

)
= sup

(
sup(u, v), t

)
.

Proof. The proof relies on the following fact:

Fact. For all u and v in normal form, we have

(∗) δw· sup(u, v) = sup
(
δw·u , δw· v

)
= sup0

(
δw·u , δw· v

)
.

The proof of this is rather straightforward.

Let’s look at the relevant cases for associativity:

• if all of u, v and t are in B, this is just associativity of sup0.
• If all of u, v and t are compatible (they start with the same variant con-

structor, or they are tuples of equal length), the result holds directly by the
induction hypothesis,

• If u = b1 ∈ B, v = b2 ∈ B and t = Ct′, we can use the definition of sup and
associativity of sup0:

sup
(
sup(b1 , b2) , Ct

′
)

= sup
(
sup(b1 , b2) , δ0· Ct

′
)

= sup0
(
sup0(b1 , b2) , δ1· t′

)

= sup0
(
b1 , sup0(b2 , δ1· t′)

)

= sup0
(
b1 , sup0(b2 , δ0· Ct′)

)

= sup
(
b1 , sup(b2 , Ct′)

)

• If u = b1 ∈ B, v = b2 ∈ B and t = (t1, . . . , tn), this is very similar:

sup
(
sup(b1 , b2) , (t1, . . . , tn)

)

= sup0

(
sup(b1 , b2) , δ0· (t1, . . . , tn)

)

= sup0

(
sup0(b1 , b2) , sup0,1≤i≤n{δ0· ti}

)

= sup0

(
b1 , sup0

(
b2 , sup0,1≤i≤n{δ0· ti}

))

= sup
(
b1 , sup

(
b2 , δ0· (t1, . . . , tn)

))

= sup
(
b1 , sup

(
b2 , (t1, . . . , tn)

))

• If u = b ∈ B and v = Cv′ and t = Ct′, we need to use the above fact

sup
(
b , sup(Cv′ , Ct′)

)
= sup

(
b , C sup(v′ , t′)

)

= sup0
(
b , δ1· sup(v

′ , t′)
)

= sup0
(
b , sup0(δ1· v

′ , δ1· t′)
)

by (∗)
= sup0

(
sup0(b , δ1· v′) , δ1· t′

)

= sup0
(
sup(b , Cv′) , δ1· t′

)

= sup
(
sup(b , Cv′) , Ct′

)

• If u = b ∈ B and v = Cv′ and t = Dt′, with C 6= D:

sup
(
b , sup(Cv′ , Dt′)

)
= sup0

(
b , sup0(δ1· v

′ , δ1· t′)
)

= sup0
(
sup0(b , δ1· v′) , δ1· t′

)

= sup0
(
sup(b , C· v′) , δ1· t′

)

= sup
(
sup(b , C· v′) , D· t′

)

SIZE-CHANGE TERMINATION FOR CONSTRUCTOR BASED LANGUAGES 25

• If u = b ∈ B and v = (v1, . . . , vn) and t = (t1, . . . , tn):

sup
(
b , sup

(
(v1, . . . , vn) , (t1, . . . , tn)

))

= sup
(
b ,

(
sup(v1, t1), . . . , sup(vn, tn)

))

= sup0

(
b , δ0·

(
sup(v1, t1), . . . , sup(vn, tn)

))

= sup0

(
b , sup0,1≤i≤n{δ0· sup(vi, ti)}

)

= sup0

(
b , sup0,1≤i≤n{sup0(δ0· vi , δ0· ti)}

)
by (∗)

= sup0

(
sup0

(
b , sup0,1≤i≤n{δ0· vi}

)
, sup0,1≤i≤n{δ0· ti}

)

= sup0

(
sup

(
b , (v1, . . . , nn)

)
, sup0,1≤i≤n{δ0· ti}

)

= sup
(
sup

(
b , (v1, . . . , nn)

)
, (t1, . . . , tn)

)

• If u = b ∈ B and v = (v1, . . . , vn) and t = (t1, . . . , tm) with n 6= m:

sup
(
b , sup

(
(v1, . . . , vn) , (t1, . . . , tm)

))

= sup
(
b , sup0

(
δ0· (v1, . . . , vn) , δ0· (t1, . . . , tm)

))

= sup0

(
b , sup0

(
sup0,1≤i≤n{δ0· vi} , sup0,1≤i≤m{δ0· ti}

))

= sup0

(
sup0

(
b , sup0,1≤i≤n{δ0· vi}

)
, sup0,1≤i≤m{δ0· ti}

)

= sup0

(
sup

(
b , (v1, . . . , vn)

)
, δ0· (t1, . . . , tm)

)

= sup
(
sup

(
b , (v1, . . . , vn)

)
, (t1, . . . , tm)

)

• If u = b ∈ B and v = (v1, . . . , vn) and t = Ct′:

sup
(
b , sup

(
(v1, . . . , vn) , Ct′

))

= sup0

(
b , sup0

(
sup0,1≤i≤n{δ0· vi} , δ1· t′

))

= sup0

(
sup0

(
b , sup0,1≤i≤n{δ0· vi}

)
, δ1· t′

)

= sup0

(
sup

(
b , (v1, . . . , vn)

)
, δ1· t

′
)

= sup
(
sup

(
b , (v1, . . . , vn)

)
, Ct′

)

• All the remaining cases are variants of those and can be handled using
commutativity.

�

Appendix B. Naive Static Analysis

The simplest static analysis is just a syntactical analysis of the code. Each
recursive call

val rec f x1 ... xn =

... (g u1 ... um)

and g x1 ... xm = ...

is represented by the substitution

(x1 := u1[ρ] , . . . , xm := um[ρ]) [∗]

where ρ is the substitution that keeps track of the current pattern-matching branch.
It initialized to (x1 := x1, . . . , xn := xn) and updated as follows:

. . .︸ ︷︷ ︸
ρ

match u with ... A[y1,...,yk] -> . . .︸ ︷︷ ︸
ρ·(y1:=π1A−u,...,yk:=πkA−u)

In [∗] above, every ui[ρ] which isn’t an element of F is replaced by δ∞().

26 PIERRE HYVERNAT

This analysis yield a safe representation, because each component in the substi-
tution exactly represents the corresponding argument (or is δ∞() which is bigger
than any value).

As an example, consider

val rec f x =

match x with A[B [y1,y2,y3]] -> f C[y3,g y2,A[y2]]

C[y1,y2,y3] -> ...

...

where g is some function in the environment. This call will be represented by

σ =

(
x1 := C

(
π3B

−A−x1 , δ∞(), A π2B
−A−x1

))
.

For any argument v to f that is fed to this recursive call, this argument is necessarily
of the form v = AB(v1, v2, v3). In that case, (the semantics of) the argument of the
function g is C(v3, ?, Av2). We have

(
x1 := C(v3, [[g v2]], Av2)

)
⊑

(
x1 := C(v3, δ∞(), Av2)

)
= σ ◦ (x1 := v)

so that this is indeed a safe representation of the call.

Appendix C. Implementation bits and pieces

Here are some Caml pieces from the actual implementation. The whole file
is available in the source of PML (http://www.lama.univ-savoie.fr/~pml) or
directly at http://www.lama.univ-savoie.fr/~hyvernat/Files/sct.ml.

Without the various bureaucratic parts (printing and debug code) the imple-
mentation is about 600 lines of Caml code.

Types for F . The type for Z∞ and F are defined as:

type z_infty = Number of int | Infty

type destructor = Project of string | RemoveVariant of string

type argument =

Variant of string*argument

| Record of (string*argument) list

| Epsilon of (destructor list)*int

| Delta of z_infty*(((destructor list)*int) option)

• “Variant” takes two arguments: the name of the variant, and the recursive
argument.

• “Record” is for tuples, but since PML has a notion of records with labels,
we use association lists rather than simple lists.

• “Epsilon” is used for “exact” sequences of destructors. They are followed
by a list of destructors, and a parameter number. Note that the exact
term () ∈ B is already represented by “Record []”.

• The last constructor “Delta” takes a weight, and either a list of destructors
and an argument number, or nothing when it represents a δw().

Supprema. The code for the suppremum, as needed in the implementation, is:

let rec sup u1 u2 = match u1,u2 with

Epsilon(ds1,i1), Epsilon(ds2,i2) when ds1=ds2 && i1=i2 ->

Epsilon(ds1,i1)

| Epsilon(ds1,i1), Epsilon(ds2,i2) ->

sup (Delta(Number 0, Some(ds1,i1)))

(Delta(Number 0, Some(ds2,i2)))

| Epsilon(ds,i), Delta(w,x)

| Delta(w,x), Epsilon(ds,i) ->

sup (Delta(Number 0,Some(ds,i))) (Delta(w,x))

http://www.lama.univ-savoie.fr/~pml
http://www.lama.univ-savoie.fr/~hyvernat/Files/sct.ml

SIZE-CHANGE TERMINATION FOR CONSTRUCTOR BASED LANGUAGES 27

| Delta(w1,None), Delta(w2,None) -> Delta(max_infty w1 w2,None)

| Delta(w1,Some(ds1,i)), Delta(w2,Some(ds2,i2)) when i=i2 ->

let s,l1,l2 = suffix ds1 ds2 in

let w1’ = add_int w1 (-(weight l1)) in

let w2’ = add_int w2 (-(weight l2)) in

Delta(max_infty w1’ w2’, Some(s,i))

| Delta _, Delta _ -> Delta(Infty,None)

| Delta(w,x), u | u, Delta(w,x) ->

sup (Delta(w,x)) (reduce_Delta (Number 0) u)

| Variant(c1,u1), Variant(c2,u2) when c1=c2 -> Variant(c1,sup u1 u2)

| Variant _, Variant _ -> Delta(Infty,None)

| Record l1, Record l2 ->

let lab1,uu1 = List.split l1 in

let lab2,uu2 = List.split l2 in

sorted l1; sorted l2;

if (lab1=lab2)

then

Record (List.combine lab1 (List.map2 sup uu1 uu2))

else sup (reduce_Delta (Number 0) u1) (reduce_Delta (Number 0) u2)

| _,_ -> sup (reduce_Delta (Number 0) u1) (reduce_Delta (Number 0) u2)

This function is mutually recursive with the function reduce Delta comput-
ing δw·u. We thus avoid defining two functions for sup0 and sup.

Reduction, composition of substitutions. We only need a restricted notion of
composition. The heart of it is the function reduce destructors which computes
the normal form of ~a u when u is in normal form:

(* reduce a branch of destructors (ds, which has already been

* reversed) against an argument term. *)

let rec reduce_destructors ds v = match ds,v with

[],v -> v

| ds, Delta(w,r) -> Delta(add_int w (-(weight ds)),r)

| ds, Epsilon(ds’,i) -> Epsilon(List.rev_append ds ds’, i)

| RemoveVariant c::ds, Variant (c’,v) when c=c’ ->

reduce_destructors ds v

| RemoveVariant _::_, Variant _ -> raise Impossible_case

| Project c::ds, Record l ->

begin

try

let v = List.assoc c l in

reduce_destructors ds v

with

Not_found -> assert false (* typing problem *)

end

| _,_ -> assert false (* typing problem *)

The actual implementation has one more case, specific to the way PML deals
with records.

Substituting and putting in normal form is rather direct from there.

Collapsing. The three collapsing functions p1,b, p2,d and p3,d are defined as:

let rec collapse1 b u = match u with

Variant(c,u) -> Variant(c,collapse1 b u)

| Record l ->

let labels, args = List.split l in

Record(List.combine labels (List.map (collapse1 b) args))

| Epsilon(ds,i) -> Epsilon(ds,i)

| Delta(w,x) -> Delta(collapse_z_infty b w, x)

28 PIERRE HYVERNAT

let rec collapse2 d u = match u with

Variant(c,u) -> Variant(c,collapse2 d u)

| Record l ->

let labels, args = List.split l in

Record(List.combine labels (List.map (collapse2 d) args))

| Epsilon(ds,i) ->

begin

let ds’,r = get_suffix ds d in

(* ds’ is the suffix of "ds" of lenght d, and

r is the rest of "ds" *)

match r with

[] -> Epsilon(ds,i)

| _ -> Delta(Number(-(weight r)),Some(ds’,i))

end

| Delta(w,None) -> Delta(w,None)

| Delta(w,Some(ds,i)) ->

let ds’,r = get_suffix ds d in

Delta(add_infty w (Number(-(weight r))),Some(ds’,i))

let rec collapse3 d u =

if d=0

then

match u with

Epsilon _ -> u

| _ -> reduce_Delta (Number 0) u

else

match u with

Record l ->

let labels,args = List.split l in

Record (List.combine labels

(List.map (collapse3 (d-1)) args))

| Variant(c,u) -> Variant(c,collapse3 (d-1) u)

Weights of diagonal nodes. The diagonal nodes are computed with the following
function. This function relies on several properties of diagonal nodes which aren’t
stated in the paper but should become clear when looking at the code.

let diagonal_nodes tau =

let rec nodes_aux i u ds = match (reduce_Delta (Number 0) u) with

| Delta(_,Some(ds’,j)) when i<>j or incompatible ds ds’ -> []

(* the above case is a minor optimization *)

| Delta(w,r) ->

begin

match u with

Variant(c,u) -> nodes_aux i u ((RemoveVariant c)::ds)

| Record(l) ->

let n = match r with

Some(ds’,j) when i=j && ds=ds’ -> [(i,ds,w)]

| _ -> []

in

n @ (List.concat

(List.rev_map

(function label,arg ->

nodes_aux i arg ((Project label)::ds))

l))

| Epsilon(ds’,j) when ds=ds’ && i=j-> [(i, ds’, Number(0))]

(* the above case could be ignored: they have positive weight *)

| Delta(w’,Some(ds’,j)) ->

SIZE-CHANGE TERMINATION FOR CONSTRUCTOR BASED LANGUAGES 29

begin

let s,r,r’ = suffix ds ds’ in

assert (i=j);

match r with

[] -> [(i,

List.rev_append r’ ds,

add_int w’ (-(weight r’)))]

| _ -> assert (r’ = []); []

end

| _ -> []

end

| _ -> assert false

in

List.concat (List.rev_map (function i,u -> nodes_aux i u []) tau)

Laboratoire de Mathématiques, CNRS UMR 5127 – Université de Savoie, 73376 Le

Bourget-du-Lac Cedex, France

E-mail address: pierre.hyvernat@univ-savoie.fr

URL: http://lama.univ-savoie.fr/~hyvernat/

