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Abstract

A reactivity computation consists of computing the highest eigenvalue of a generalized eigenvalue
problem, for which an inverse power algorithm is commonly used. Very fine modelizations are
difficult to treat for our sequential solver, based on the simplified transport equations, in terms of
memory consumption and computational time.

A first implementation of a Lagrangian based domain decomposition method brings to a poor
parallel efficiency because of an increase in the power iterations [1]. In order to obtain a high
parallel efficiency, we improve the parallelization scheme by changing the location of the loop over
the subdomains in the overall algorithm and by benefiting from the characteristics of the Raviart-
Thomas finite element. The new parallel algorithm still allows us to locally adapt the numerical
scheme (mesh, finite element order). However, it can be significantly optimized for the matching
grid case. The good behavior of the new parallelization scheme is demonstrated for the matching
grid case on several hundreds of nodes for computations based on a pin-by-pin discretization.

Key words: Simplified Transport Equation, Raviart-Thomas Finite Element, HPC, Parallelism,
Domain Decomposition Method

1. Introduction

The operation of a PWR-based1 nuclear plant requires its fuel to be changed every 18 months.
This must be done while ensuring the safety and the productivity of the plant in service. More
precisely, in our context, EDF uses the numerical simulation of the neutron transport inside a
nuclear reactor. Hence, EDF has developed a fast sequential solver [2] based on the simplified
transport equations [3, 4]2.

The mid-term goal is to run efficiently large scale simulations3 based on the simplified transport
equations. In this context, the sequential algorithm suffers of two limitations. On the one hand,
we are not able to run efficiently large scale computations due to memory consumption and/or
computational time. On the other hand, it is necessary to refine a large part of the mesh when a
better numerical approximation is needed in a local part of the reactor core. So, to tackle these
problems, in [5, 1] we adapted a non overlapping domain decomposition method based on Lagrange
multipliers to the simplified transport equations. In order to get the most generic algorithm, an
approach with multigroup solver was chosen. As this approach leads to a significant increase in
the number of power iterations, a good scalability could not be obtained. In the present article,
we obtain a very good parallel efficiency while improving the parallelization scheme of Lagrangian
domain decomposition method applied to the sequential power algorithm made of four nested
loops. First, we change the location of the loop over the subdomains to obtain the same number

1Pressurized Water Reactor.
2These equations are called SPn.
3Like pin-by-pin discretization of SP3/SP5 equations with 26 energy groups.
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of power iterations as the sequential algorithm. Secondly, we benefit from the characteristics of
the Raviart-Thomas finite element to optimize the implementation of the new parallel algorithm.

In section 2, the diffusion equation and the sequential algorithm based on the same algorithm
as used by the Minos solver [6, 7], are presented. As the domain decomposition strategy proposed
in this paper is performed at the level of one diffusion system, the presentation is performed on
the diffusion equation instead of SPn equations. Then in section 3, after an overview of previous
works on the parallelization of the sequential algorithm, the Lagrange multipliers domain decom-
position method and our new parallel algorithm are introduced. In section 4, the characteristics
of Raviart-Thomas finite elements are used in the case of matching grids to get an efficient par-
allel implementation. Finally, in section 5, numerical results on the IAEA-3D benchmark and on
data from real core computations are provided and analyzed; compared to the previous approach
described in [1], the performance improvement factor is between 5 and 20, depending on the test
case.

2. Background on SPn equations

The neutron flux is the solution of the Boltzmann transport equation which expresses the neu-
tron balance between streaming, scattering and absorption. The flux depends on seven variables
(one for the time, one for the energy4, two for the direction and three for the space position). For
the time variable, the steady state case is considered; it leads to a reactivity computation which
consists of computing the highest eigenvalue of a generalized eigenvalue problem.

Numerical approximations are required to solve the Boltzmann equation. The discretization
of the energy is done with the multigroup theory [8]: the energy variable is decomposed on Ng

energy intervals (called energy groups). For the angular variable, several approximations can be
used. Two of them are

• the Pn approximation: the flux is expanded on a basis of spherical-harmonics functions up
to the order n. The method requires to compute (n+1)2 spatial scalar fields for each energy
group;

• the diffusion approximation: the Fick’s law introduces a diffusion coefficient that links the
flux to his gradient. This method requires to compute 4 spatial scalar fields for each energy
group.

As the Pn approximation is expensive in terms of computational time, the simplified transport
equations (SPn) have been developed [3, 4]. To obtain these equations, the neutron flux is supposed
locally plane and is expanded on the 1D spherical-harmonics basis. The SPn equations lead to n+1

2

coupled diffusion systems5 for each energy group. For the SP1 case, which is equivalent to the P16

case, a single diffusion system is obtained for each energy group. As the domain decomposition
strategy proposed in this paper is performed at the level of one diffusion system, the presentation
is performed on the multigroup diffusion equation. The method can be generalized without any
difficulties to SPn equations (in section 5, results with SP1 and SP3 equations are presented).

2.1. Multigroup diffusion equation

To study the existence of a solution of the steady state case, the following multigroup eigenvalue
problem [8] has to be solved:

4The energy of a neutron is directly linked to its speed.
5 n+1

2
is the number of harmonics.

6In the following, we prefer to use SP1 denomination to P1 because for n ≥ 3 the domain decomposition method
described in this paper applies to SPn equations but not for Pn equations.
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Problem 1. Find keff the highest positive eigenvalue such that it exists Ng strictly positive func-
tions ψ = (φ1, . . . , φNg

) satisfying the following coupled system for each 1 ≤ g ≤ Ng :

−div
(

Dg
−→
∇φg

)

+Σt,gφg −
∑

g′

(

Σg′→g
s φg′

)

=
1

keff

(

Xg

4π

)

.
∑

g′

(

νΣf,g′φg′

)

(1)

where:

• keff is the effective multiplicative coefficient which characterizes the criticity of the nuclear
core. keff = 1 means that there exists a solution to the steady state case. From a physical
point of view, this means that the chain reaction is stable. keff < 1 (respectively keff >

1) means the problem is no longer steady state, as the number of neutrons is decreasing
(respectively increasing);

• φg is the neutron flux in the group g;

• Dg is the diffusion coefficient in the group g;

• Σt,g is the total cross section in the group g;

• Σg′→g
s is the scattering cross section from group g′ to group g;

• Xg is the fission spectrum;

• νΣf,g is the fission production in the group g.

By denoting the fission operator by F and the transport operator by H:

F :







φ1
...

φNg






−→

( 1

4π
.
∑

g′

νΣf,g′φg′

)







X1

...
XNg







H :







φ1
...

φNg






−→

















−div
(

D1

−→
∇φ1

)

+Σt,1φ1 −
∑

g′

Σg′→1
s φg′

...

−div
(

DNg

−→
∇φNg

)

+Σt,Ng
φNg

−
∑

g′

Σg′→Ng
s φg′

















the Ng equations (1) can be written as:

Hψ =
1

keff
Fψ. (2)

A Generalized Power Inverse Iteration algorithm [8] is used to solve (2), which implies solving
Hψp+1 = Sp at each power iteration p. These systems are solved by a Gauss-Seidel algorithm
which requires to solve several systems Hgφg = qg for each group g with:

• Hg : φg −→ −div
(

Dg
−→
∇φg

)

+ (Σt,g − Σg→g
s )φg;

• qg a function of the right hand side Sp and of the result of the Gauss-Seidel iterations7.

7Let us denote q
(i)
g (respectively φ

(i)
g ) the value of qg (respectively φg) at the ith Gauss-Seidel iteration and let

us denote S
p
g the restriction of the right hand side Sp to the group g. With these notations, q

(i)
g is obtained as

following q
(i)
g = S

p
g −

∑
g′<g Hg′→g φ

(i)
g′

−
∑

g′>g Hg′→g φ
(i−1)
g′

.
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Figure 1: Mesh, degrees of freedom (DoF) and coupling terms with the
RT0 finite element for a 2D case.
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Figure 2: Matrix of the diffusion sys-
tem.

2.2. Spatial discretization

For the spatial discretization, the same approach as in [7] is used: for each power iteration,
for each energy group, the following diffusion problem written with the mixed formulation (which

implies the introduction of a new variable
−→
Jg called current) is solved:

Problem 2. Find φg and ~Jg, respectively the flux and the current, such that:















div ( ~Jg) + Σgφg = qg in Ω
~Jg

Dg
+ ~∇φg = ~0 in Ω

φ = 0 on ∂Ω

(3)

where Σg = Σt,g − Σg→g
s .

Remark : In the following of the paper, g will be ignored to simplify the notations.

A Cartesian mesh8 is used to discretize equation (3). For each mesh cell Km, the value
Dm (resp. Σm) of the function D (resp. Σ) is computed. The Raviart-Thomas finite element
(RTk) defines the approximation spaces Vh and Wh [11, 12]. The discrete mixed dual variational
formulation of (3) is:

Problem 3. Find (φ, ~J) ∈ Vh ×Wh such that:

{

ah(
−→
J ,−→w )− bh(φ,

−→w ) = 0 ∀−→w ∈Wh

bh(v,
−→
J ) + th(φ, v) = qh(v) ∀v ∈ Vh

with

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ah(
−→
J ,−→w ) =

∑

m

1

Dm

∫

Km

−→
J .−→wdΩ

bh(φ,
−→w ) =

∫

Ω

φ div
(−→w
)

dΩ

th(φ, v) =
∑

m

Σm

∫

Km

φ v dΩ

qh(v) =

∫

Ω

q v dΩ

.

The Raviart-Thomas finite element properties lead to a very sparse algebraic system (see Figure
2). The following unknowns and coupling terms (see Figure 1) are defined as follows:

• the vector φ represents the degrees of freedom of the flux;

8In [9, 10], the method has been adapted for hexagonal meshes.
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Algorithm 1: Global algorithm

Inverse power iteration algorithm

/* Inversion of H by Gauss-Seidel method */

Block Gauss-Seidel algorithm

foreach group g do

/* Inversion of Hg by Gauss-Seidel method */

Block Gauss-Seidel algorithm

foreach space direction d do

Compute Jg
d by backward-forward elimination;

Compute φg ;

• the vector Jd represents the degrees of freedom of the current in direction d (d = x, y or z);

• the vector Q is associated to the linear form qh and contains the source terms;

• the matrix diag(Ax, Ay, Az) is associated to the bilinear form ah. It is a block diagonal
matrix, as there are no coupling term between the directions. Ad is a symmetric positive
definite band matrix (tridiagonal with RT0 approximation and pentadiagonal with RT1
approximation);

• the positive-definite diagonal matrix T is associated to the bilinear form th;

• the sparse rectangular matrix





Bx

By

Bz



 is associated to the bilinear form bh. Bd contains

the coupling terms between Jd and φ.

So for a 2D case with a the spatial domain Ω, a linear system of the following form has to be
solved :





Ax −Bx

Ay −By
t
Bx

t
By T









Jx
Jy
φ



 =





0
0
Q



 . (4)

The flux φ = T−1(Q−
t
BxJx−

t
ByJy) is eliminated to solve the system (4). Hence the current

unknowns are obtained by a Block Gauss Seidel algorithm applied to the following symmetric
positive definite system:

(

Wx BxT
−1tBy

ByT
−1tBx Wy

)

(

Jx
Jy

)

=

(

BxT
−1Q

ByT
−1Q

)

with

∣

∣

∣

∣

∀d ∈ {x, y}

Wd = Ad +BdT
−1tBd

.

The matrices Wd and Ad have the same pattern. The resolution of the linear systems involving

Wd is based on a Cholesky factorization. The matrices BdT
−1tBd′ are not stored in memory as

their products are computed by three successive sparse products.

2.3. Overall algorithm

The overall algorithm (see Algorithm 1) is made of three nested convergence loops (one for
the power inverse algorithm and two for the inner Gauss-Seidel algorithm). In our applications,
we obtain for a given accuracy the best performance in terms of CPU time by fixing the number
of iterations of all Gauss-Seidel loops to one [6]. In the general SPn case, one level of iterations is
added to solve the coupled diffusion systems by block Gauss-Seidel loops over the harmonics.
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3. Description of the domain decomposition algorithm

In this section we first describe the previous attempt to parallelize this specific algorithm based
on an alternating direction method. Then, we describe the common part between our previous
work and the present work. Indeed, the two works are based on a common numerical methodology
using Lagrange multipliers. The two works differs by the parallelization scheme, which has a crucial
influence on numerical stability and parallel efficiency. Hence to conclude this section, we present
the characteristics of our new approach.

3.1. State of the art

To get the first parallelization of the algorithm presented in section 2, the author of [13] used
the independence of each current line of Jd (see Figure 1). From an algebraic point of view, the
band matrices Wd are block diagonal; each block can be treated in parallel. Due to the structure
of the coupling matrix By (see Figure 2), which implies a global vector reordering, a large amount
of communication is required. As the performance of the computers and the size of the problem
to be solved have changed since 1999, it is difficult to estimate the speed-up we could obtain now.
However the communication speed increases more slowly than computational speed, and as the
method was already limited by the amount of communications, we could not expect to reach good
performance with such a parallelization scheme.

To avoid these global communications, domain decomposition methods are well suited. As
the problem to solve is an eigenvalue problem, the first attempts to use domain decomposition
were based on modal synthesis: in each subdomain several eigen modes have to be computed for
each energy group. These modes are used to build the approximation space and its basis. The
dimension of the approximation space is small. The resulting small eigenvalue problem is solved
sequentially. In [14], an approach with overlapping subdomains called CMS9 was developed to
avoid the difficulties due to the choice of interface modes [13]. To reduce the number of modes to
compute, the method was improved with FCMS10. Only the first mode is computed; the following
modes are replaced by the products of the first mode by sinusoidal functions. Due to the overlap,
8 processors are required to be as efficient as the sequential Minos solver. The algorithm is not
very scalable as:

• the size of the overlap increases with the number of subdomains;

• the global eigenvalue problem is treated sequentially and its size increases with the number
of subdomains.

So the next attempts were to solve only the linear systems Hψp+1 = Sp by a domain de-
composition strategy. A success was obtained with a domain decomposition method based on a
Schwarz multiplicative algorithm with Robin transfer conditions [14]. Some pretreatment steps
were not yet parallelized. So for a 3D PWR, and by using between 2 and 18 processors, an effi-
ciency between 60% and 80 % were reached. The author expected an efficiency near 100% once
the pre-treatment part parallelized. A first drawback of this method is the introduction of a small
overlap of one cell between subdomains due to the discontinuity of the flux on the interface11. The
second and main drawback of this algorithm comes from the need for a good estimation of the
parameter involved in the Robin transfer conditions. Trial and error is the only known method
to choose this parameter in a good way.

3.2. Preliminary study

In order to overcome these difficulties, we studied a non-overlapping domain decomposition
method based on Lagrange multipliers [5, 1] such that

9Component Mode Synthesis.
10Factorized Component Mode Synthesis.
11Coming from the use of the Finite Element RTk.
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• it does not introduce new parameters;

• the local solvers are identical to the global sequential solver: in terms of code reusability this
is a key point because we do not need to develop and maintain a new solver;

• it allows to deal with non-matching grids.

To get the most generic implementation, we chose an approach with an application of the multi-
group solver for each subdomain (see Algorithm 3). The numerical results obtained with cross
sections coming from a real industrial application show an increase in the number of the outer
power iterations. Thus, the parallel efficiency was clearly not sufficient. Therefore, we propose
an other location of the domain decomposition loop to benefit from the characteristics of the al-
ternating direction method. Before we introduce our the new approach, the common numerical
characteristics between the both approaches are described.

The space Ω is cut into two non-overlapping subdomains12 Ω1 and Ω2 such that Ω = Ω1 ∪ Ω2

and Γ = ∂Ω1 ∩ ∂Ω2 = Ω1 ∩ Ω2. The interface Γ is directed by the normal vector −→n . To
obtain the continuous multidomain formulation (Problem 4), the equations (3) are rewritten in

each subdomain with a new boundary condition on the interface Γ. (φ1, ~J1) (respectively (φ2, ~J2))
represents the flux and the current unknowns in the subdomain Ω1 (respectively Ω2). φΓ represents
the flux on the interface. To get the equivalence with Problem 2, the boundary condition (6) is

added to ensure the continuity of the normal component of the current
−→
J :

Problem 4. Find (φ1, ~J1) and (φ2, ~J2) such that:






























div ( ~J1) + Σφ1 = q in Ω1

~J1

D
+ ~∇φ1 = ~0 in Ω1

φ1 = φΓ on Γ
φ1 = 0 on ∂Ω1 ∩ ∂Ω































div ( ~J2) + Σφ2 = q in Ω2

~J2

D
+ ~∇φ2 = ~0 in Ω2

φ2 = φΓ on Γ
φ2 = 0 on ∂Ω2 ∩ ∂Ω

(5)

~J1 · ~n = − ~J2 · ~n on Γ. (6)

The new variable φΓ in (5) leads commonly [15, 16, 17] to the introduction of Lagrange multipliers
Λ. So the variational formulation of Problem 4 is Problem 5. In [18, 19], this formulation
is called mixed-dual hybrid method, but it was not used to obtain an efficient parallel domain
decomposition algorithm:

Problem 5. Find (φ1, ~J1) ∈ L2(Ω1) × H(div ,Ω1), (φ2, ~J2) ∈ L2(Ω2) × H(div ,Ω2) and Λ ∈
H1/2(Γ) such that:



















































































∫

Ω1

div ( ~J1) v1 dΩ1 +

∫

Ω1

Σ1φ1v1 dΩ1 =

∫

Ω1

q1v1 dΩ1 ∀ v1 ∈ L2(Ω1)

∫

Ω1

~J1

D1

· ~w1 dΩ1 −

∫

Ω1

φ1 div (~w1) dΩ1 +

∫

Γ

Λ~w1 · ~n dΓ = 0 ∀ ~w1 ∈ H(div ,Ω1)

∫

Ω2

div ( ~J2) v2 dΩ2 +

∫

Ω2

Σ2φ2v2 dΩ2 =

∫

Ω2

q2v2 dΩ2 ∀ v2 ∈ L2(Ω2)

∫

Ω2

~J2

D2

· ~w2 dΩ2 −

∫

Ω2

φ2 div (~w2) dΩ2 −

∫

Γ

Λ~w2 · ~n dΓ = 0 ∀ ~w2 ∈ H(div ,Ω2)

∫

Γ

(

~J1 − ~J2

)

· ~n µ dΓ = 0 ∀ µ ∈ H1/2(Γ)

.

12For the sake of simplicity, the presentation of the method is limited to two subdomains. The generalization to
more subdomains is pretty obvious.

7



Each subdomain is now discretized on a Cartesian mesh. On each cell Ki
m, Di (resp. Σi) has

the constant value Dm
i (resp. Σm

i ). Problem 5 becomes after discretization:

Problem 6. Find (φ1, ~J1) ∈ V 1
h ×W 1

h , (φ2,
~J2) ∈ V 2

h ×W 2
h and Λh ∈ V Γ

h such that:















































ah1 (
−→
J1,

−→w1)− bh1 (φ1,
−→w1) = −ch1 (Λh,

−→w1) ∀−→w1 ∈W 1
h

bh1 (v1,
−→
J1) + th1 (φ1, v1) = qh1 (v1) ∀v1 ∈ V 1

h

ah2 (
−→
J2,

−→w2)− bh2 (φ2,
−→w2) = −ch2 (Λh,

−→w2) ∀−→w2 ∈W 2
h

bh2 (v2,
−→
J2) + th2 (φ2, v2) = qh2 (v2) ∀v2 ∈ V 2

h

ch1 (µh,
−→
J1) + ch2 (µh,

−→
J2) = 0 ∀µh ∈ V Γ

h

with

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ahi (
−→
Ji ,

−→wi) =
∑

m

1

Di
m

∫

Ki
m

−→
Ji .

−→widΩ

bhi (φi,
−→wi) =

∫

Ωi

φi div (−→wi) dΩ

and

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

thi (φi, vi) =
∑

m

Σi
m

∫

Ki
m

φi vi dΩ

qhi (vi) =

∫

Ωi

qi vi dΩ

chi (Λh,
−→wi) = (−1)i+1

∫

Γ

Λh ~wi · ~n dΓ

.

The approximation spaces V i
h and W i

h come from the finite element discretization scheme. In
case of matching grids (and with the same finite element order used in each subdomain), V Γ

h

is chosen as the trace of W i
h. This choice provides the equivalence between Problem 3 and

Problem 6. In case of non-matching grids, a Mortar technique [16, 20] is used: V Γ
h is the trace

of W 1
h or W 2

h ; the chosen subdomain is called the master subdomain. In our case, the master
subdomain is the subdomain with the finest mesh and the highest finite element order. The
numerical applications presented in this paper concern only matching grid cases.

In each subdomain Ωi, the same matrices and vectors are defined as with the monodomain
approach:

• the vector Jd
i contains the current degrees of freedom of Ωi in direction d;

• the vector φi contains the flux degrees of freedom of Ωi;

• the vector Qi contains the source terms of Ωi;

• the matrix diag(Ax
i , A

y
i , A

z
i ) is associated to the bilinear form ahi ;

• the positive definite diagonal matrix Ti is associated to the bilinear form thi ;

• the sparse rectangular matrix





Bx
i

B
y
i

Bz
i



 is associated to the bilinear form bhi .

New vectors and matrices are introduced to couple the subdomains:

• the vector Λd contains the degrees of freedom of the Lagrange multipliers situated on Γd

(the part of interface directed by the normal vector −→nd);

• the sparse rectangular matrix diag(Cx
Λ→i, C

y
Λ→i, C

z
Λ→i) is associated to the bilinear form chi .

Cd
Λ→i contains the coupling term between Λd and Jd

i . As the coupling terms between the
degrees of freedom inside Ωi and Λd are null, these matrices are sparse.
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So, Problem 6, in a 2D case, leads to the following algebraic system:
































Ax
1 −Bx

1 Cx
Λ→1

A
y
1 −By

1 C
y
Λ→1

t
Bx

1

t
B

y
1 T1

Ax
2 −Bx

2 Cx
Λ→2

A
y
2 −By

2 C
y
Λ→2

t
Bx

2

t
B

y
2 T2

t
Cx

Λ→1

t
Cx

Λ→2
t
C

y
Λ→1

t
C

y
Λ→2

































































Jx
1

J
y
1

φ1

Jx
2

J
y
2

φ2

Λx

Λy

































=

































0
0

Q1

0
0

Q2

0

0

































. (7)

3.3. The new approach

In this section, we adopt a different strategy from [1], where the authors tried to get a more
generic approach by using a multigroup solver in each subdomain.

In the same way as the sequential solver, we benefit from the specificity of Raviart Thomas
finite element to perform the flux elimination in each subdomain:

φi = T−1
i (Qi −

t
Bx

i J
x
i −

t
B

y
i J

y
i ). (8)

Hence, the currents Jd
i satisfy the following equations:

(

Ad
i +Bd

i T
−1
i

t
Bd

i

)

Jd
i +

(

Bd
i T

−1
i

t
Bd′

i

)

Jd′

i + Cd
Λ→iΛd = Bd

i T
−1
i Qi.

By letting W d
i = Ad

i +Bd
i T

−1
i

t
Bd

i and W d,d′

i = Bd
i T

−1
i

t
Bd′

i , we obtain the following system:























W x
1 W

x,y
1 Cx

Λ→1

W
y,x
1 W

y
1 C

y
Λ→1

W x
2 W

x,y
2 Cx

Λ→2

W
y,x
2 W

y
2 C

y
Λ→2

t
Cx

Λ→1

t
Cx

Λ→2
t
C

y
Λ→1

t
C

y
Λ→2















































Jx
1

J
y
1

Jx
2

J
y
2

Λx

Λy

























=























Bx
1T

−1
1 Q1

B
y
1T

−1
1 Q1

Bx
2T

−1
2 Q2

B
y
2T

−1
2 Q2

0

0























. (9)

Through a matrix reordering, (9) becomes:





















W x
1 Cx

Λ→1 W
x,y
1

W x
2 Cx

Λ→2 W
x,y
2

t
Cx

Λ→1

t
Cx

Λ→2

W
y,x
1 W

y
1 C

y
Λ→1

W
y,x
2 W

y
2 C

y
Λ→2

t
C

y
Λ→1

t
C

y
Λ→2











































Jx
1

Jx
2

Λx

J
y
1

J
y
2

Λy























=



















Bx
1T

−1
1 Q1

Bx
2T

−1
2 Q2

0

B
y
1T

−1
1 Q1

B
y
2T

−1
2 Q2

0



















.

This 2× 2 block matrix13 is solved by a block Gauss-Seidel algorithm. As the extra-diagonal
blocks are block diagonal, the multiplication by these blocks can easily be computed in parallel.
The remaining issue is to solve the following linear system (the right hand side comes from the
Gauss-Seidel algorithm) for each direction d :







W d
1 Cd

Λ→1

W d
2 Cd

Λ→2
t
Cd

Λ→1

t
Cd

Λ→2













Jd
1

Jd
2

Λd






=







F d
1

F d
2

0






. (10)

13In 3D, it is a 3× 3 block matrix.
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We introduce the notations14:

Ŵ d =

(

W d
1

W d
2

)

Ĉd =

(

Cd
Λ→1

Cd
Λ→2

)

Ĵd =

(

Jd
1

Jd
2

)

F̂ d =

(

F d
1

F d
2

)

.

In each direction, we have to solve the saddle point system:

(

Ŵ d Ĉd

t
Ĉd

)

(

Ĵd

Λd

)

=

(

F̂ d

0

)

. (11)

In this way, the new domain decomposition strategy leads to a mono-dimensional domain decom-
position for each matrix W d.
Remark : In the following of the paper, the indices d are ignored.

Λ is the solution of the interface system
(

t
ĈŴ−1Ĉ

)

Λ =
t
ĈŴ−1F̂ (12)

which is solved with a Preconditioned Conjugate Gradient algorithm. Then Ĵ is computed by

Ĵ = Ŵ−1

(

F̂ − ĈΛ
)

. Algorithm 2 describes these two operations. This iterative algorithm is

initialized by Λ0 which is the value of the Lagrange multipliers Λ at the previous iteration of the
outer algorithm.

Let us now introduce the multidomain version to present the preconditioner. With a partition
in N subdomains in one direction (illustrated by Figure 3 in the RT0 case), the matrices and
vectors Ŵ , Ĵ , F̂ , Ĉ and Λ are rewritten as following:

Ŵ =











W1

W2

. . .

WN











Ĵ =











J1
J2
...
JN











F̂ =











F1

F2

...
FN











;

Ĉ =















CΛ2

1
→1

CΛ2

1
→2

. . .

. . . CΛN
N−1

→N−1

CΛN
N−1

→N















Λ =











Λ2
1

Λ3
2

...

ΛN
N−1











.

• Λj
i denotes the degrees of freedom of the Lagrange multipliers of the interface Γj

i between
the subdomains Ωi and Ωj ;

• C
Λ

j

i
→i is the matrix that contains the coupling terms between the Lagrange multipliers Λj

i

and the subdomain Ωi.

With Sk
i→j =

t
Ĉ

Λ
j

k
→jŴ

−1
j Ĉ

Λ
j

i
→j the matrix involved in (12) called S is:

S =
t
ĈŴ−1Ĉ =















(

S1
1→2 + S2

2→1

)

S1
3→2

S3
1→2

. . .
. . .

. . .
. . . SN−2

N→N−1

SN
N−2→N−1

(

SN−1
N−1→N + SN

N→N−1

)















.

14The upper-script symbol ˆ distinguishes the assembled matrix W on the domain Ω and the matrix Ŵ which
contains all local Wi matrices.

10



Ω1 Γ
2
1

Ω2 Γ
3
2

Ω3 Γ
4
3

Ω4

DoF: J ix Λx

Coupling terms: W i
x Cx

Λ→i

Figure 3: Ω is partitioned in N = 4 subdomains into the direction x. As we are interested in solving by domain
decomposition the problem in the direction x after flux elimination, the flux φi, the current Jy

i , the coupling terms

Bd
i and A

y
i are ignored.

We choose as preconditioner the block diagonal preconditioner:

P−1 =







(

S1
1→2 + S2

2→1

)

. . .
(

SN−1
N−1→N + SN

N→N−1

)






.

Usually this preconditioner is expensive in terms of computational time or memory consumption,
because all the diagonal blocks are dense. By using the Raviart-Thomas properties, an effective
implementation of this preconditioner is provided in section 4.2.

3.4. Summary

Let us reconsider the algorithm of the previous approach [5, 1]. Compared to the sequential
monodomain algorithm, a new loop is added to solve the saddle point system induced by domain
decomposition (see Algorithm 3). This loop was put between the power algorithm and the loop
over the energy groups. As the inner loops (iterative algorithms in each subdomains) are fixed
point algorithms with only one iteration, we also used a fixed point method to solve the saddle
point system (Uzawa-MR algorithm was chosen). The previous approach was more generic than
the new one, but the increase in the number of outer iterations for real industrial cases was not
satisfying.

In the new approach, as in the previous one, one loop is added to Algorithm 4 to get
convergence of the iterative algorithm used to solve the interface systems. In our new approach
the domain decomposition loop is under the alternate direction computations and use the solver
in each spatial direction. Hence we can benefit from a direct solver in each subdomain. In the
following, we consider a fixed number i of iterations: the algorithm is called PCGi. In the same
way as the sequential monodomain solver, the iteration loop of the outer algorithm is used to
get convergence. The new approach enables some new implementation optimizations which are
described in the following section.

The both approachs are compared in the manuscrit [? ] of the PhD which is at the origin of
this article.

4. Optimized implementation on matching grids

The optimizations presented in this section are based on the sparse pattern of the matrices
Sk
i→j . A call to the local matrix W−1

j is usually required to compute the multiplication by the

matrix Sk
i→j . So the computation complexity is linear with the number of current degrees of

freedom.

11



Algorithm 2: PCG

In : F̂
Inout: Λ Initialized to Λ0

Out : Ĵ
1 Ĵ = Ŵ−1

(

F̂ − ĈΛ
)

;

2 g =
(

t
ĈĴ
)

;

3 z = Pg;
w = z; dotGZ = < g, z > ;
while ! Convergence do

6 Sw = (
t
ĈŴ−1Ĉ)w ;

ρ = −
dotGZ

< w, Sw >
;

8 Λ = Λ+ ρw ;
9 g = g + ρSw ;

10 z = Pg;
dotGZold = dotGZ; dotGZ = < g, z > ;

12 w = z +
dotGZ

dotGZold
w ;

end

14 Ĵ = Ŵ−1

(

F̂ − ĈΛ
)

With matching grids, all current lines are independent (see Figure 3), so the matrices Sk
i→j

are diagonal15. By storing these matrices, the complexity of a product is linear with the number
of degrees of freedom of the Lagrange multipliers between the subdomain Ωi and Ωj . To build
these matrices, their products by 1, the interface vector filled of 1, are computed by performing
a forward/backward substitution. These matrices are computed once at the first iteration of the
power inverse iteration algorithm. So the cost of this computation is reduced with the number of
power inverse iterations.

The method detailed in this section could be generalized to the non-matching grid case; in the
case where the finest mesh is included in the coarse mesh with a ratio r, the matrices Sk

i→j are

band with 2rDim − 1 bandwidth.

4.1. Product by the interface matrix

To compute Sω (line 6 of Algorithm 2), the product of S by the interface vector ω =
t
(ω2

1 , ω
3
2 , . . . , ω

N
N−1), it is necessary to compute four terms for each interface. For an interface Γr

l

between the left subdomain Ωl and the right subdomain Ωr, the component (Sω)
r
l is decomposed

in two parts coming from the contribution of the two subdomains in order to reduce the number
of communications. If l′ denotes the subdomain l−1 and r′ denotes the subdomain r+1, we have:

(Sω)
r
l = Sl

l→l′ω
l′

l +
(

Sl
l→r + Sr

r→l

)

ωr
l + Sr

r′→rω
r′

r

=
(

Sl
l→l′ω

l′

l + Sl
l→rω

r
l

)

+
(

Sr
r→lω

r
l + Sr

r→r′ω
r′

r

)

.
(13)

As the matrices Sk
i→j are stored, the call to the local matrixW−1

i is avoided and the computational
cost is linear with the number of interface degrees of freedom.

15With the previous approach there were dense.
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Algorithm 3: Global algorithm with domain decomposition : previous approach

Inverse power iteration algorithm

/* Inversion of saddle point problem by Uzawa-MR method */

Uzawa-MR algorithm

/* Inversion of H by Gauss-Seidel method */

Block Gauss-Seidel algorithm

foreach group g do

/* Inversion of Hg by Gauss-Seidel method */

Block Gauss-Seidel algorithm

foreach space direction do

foreach subdomains do
Perform backward-forward elimination;

Compute φg ;

Algorithm 4: Global algorithm with domain decomposition : new approach

Inverse power iteration algorithm

/* Inversion of H by Gauss-Seidel method */

Block Gauss-Seidel algorithm

foreach group g do

/* Inversion of Hg by Gauss-Seidel method */

Block Gauss-Seidel algorithm

foreach space direction do

Preconditioned Conjugate Gradient algorithm

foreach subdomains do
Perform backward-forward elimination;

Compute φg ;

4.2. The preconditioner

As P−1, and so P , are diagonal matrices, the block diagonal preconditioner is the diagonal
preconditioner. Only one interface vector is necessary to store P and the application of P (line
3 and 10 of Algorithm 2) is almost free as it consists in term by term products. Then for each
interface Γj

i , the two contributions coming from Si
i→j and Sj

j→i are added to obtain P−1. So the
computational cost is low since the complexity is linear with the number of interface degrees of
freedom. It is not necessary to introduce a more sophisticated preconditioner. We use only PCG1

as numerical experiments have shown that it is sufficient in practice. We can imagine to use a
higher number of iterations to by-pass possible convergence difficulties16. Indeed an additional
iteration is not very costly, as the product by the interface matrices S is almost free in terms of
computational time.

4.3. Solution rebuilding

The expensive call to the local matrix W−1
i usually implied by the interface matrix (line 6 of

Algorithm 2) is already avoided. As a very small number of iterations is required for practical
cases, we are interested in reducing the computational cost of the solution rebuilding (line 14
of Algorithm 2). The operation is decomposed in two parts, one already computed (line 1 of

16Even on industrial cases with heterogeneous data, we did not encounter this kind of difficulties.
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Algorithm 2) and one that takes into account the modifications of the Lagrange multiplier Λ
(line 8 of Algorithm 2):

Ĵ = Ŵ−1
(

F̂ − ĈΛ0

)

+ Ŵ−1Ĉ∆ with ∆ = Λ0 − Λ.

The second term J̃ = Ŵ−1Ĉ(∆) can be computed efficiently as it requires to compute in each
subdomain Ωi (with a left subdomain l and a right subdomain r) the following term:

J̃i = (W−1
i CΛl

i
→i)∆

l
i + (W−1

i CΛr
i
→i)∆

r
i . (14)

For a current line indiced by c the restriction of a vector V to this current line is noted V|c
and for an interface vector ω this restriction is a scalar denoted ω[c]. Thanks to the current lines
independence, (14) is equivalent to:

∀c, J̃i|c = ∆l
i[c].(W

−1
i CΛl

i
→i1)|c +∆r

i [c].(W
−1
i CΛr

i
→i1)|c. (15)

So the computation of Ĵ (line 14 of Algorithm 2) done by forward and backward substitutions
using Cholesky factorization in each subdomain is replaced by a linear combination of three vectors
in each subdomain. The overhead cost of computing the vector (W−1

i C
Λ

j

i
→i1) is zero as these

vectors are required to compute the matrix Si
i→j .

4.4. The parallel communication scheme

The spatial domain Ω is divided into Nx × Ny subdomains for a 2D case. Each process
stores the data of its subdomain for each energy group and for each harmonic in order to avoid
communication of complete spatial fields. The interface vectors are duplicated: each adjacent
subdomain has its own storage, such that the two versions of a vector are numerically exactly
equivalent. The computations on the interface vectors (lines 8, 9 and 12 of Algorithm 2) are
duplicated17 in order to minimize the communications.

The communication scheme is based on two communication types:

• point to point communications, which are necessary to exchange data across the interfaces.
It is only necessary to transfer interface vectors. As the preconditioner P is also duplicated,

the only point to point communications come from the product by
t
Ĉ (line 2 of Algo-

rithm 2) and from the product by the interface matrix (line 6). Algorithm 5 describes
the first operation using asynchronous communications. The second operation uses the same
communication scheme18.

• global communications, which are necessary to compute dot products. Two families of com-
municators are involved :

– The communicator CommWorld19 contains all the Nx × Ny processors. This commu-
nicator is used to compute the dot products of the outer algorithms, through a re-
duction operation such as MPI Allreduce. The outer Gauss-Seidel algorithm (over
energy groups) may require dot products to evaluate the stopping criteria. The inverse
power algorithm requires also dot products to compute the eigenvalue keff , to perform
Chebyshev acceleration and to evaluate the stopping criteria.

– In each process, a communicator is created for each space direction. For a 2D case,
these communicators are called CommX and CommY (see Figure 4). CommX (respectively
CommY) contains Nx (respectively Ny) MPI processes. Indeed, as all current lines are
independent, the Conjugate Gradient algorithm can be applied to a current line or

17Performed on two subdomains.
18The line 8 is modified to take into account the terms coming from (13).
19Usually called MPI COMM WORLD.
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Figure 4: Ω4 communicators: Ω is decomposed in six subdomains (three in the direction x and two in the direction
y). The different communicators involved by the subdomain Ω4, are CommX, CommY and CommWorld.

to a group of lines. In order to minimize the size of communications and the size
of the communicators, the Conjugate Gradient algorithm is applied to the group of
current lines induced by the Cartesian domain partition. So the communicator CommX
(respectively CommY) regroups these lines in the direction x (respectively y).

If all current lines were regrouped, the communicator (usually CommWorld) would be
larger . If the Conjugate Gradient algorithm is applied independently on each current
line, the MPI Allreduce is applied on a vector. Its size is the number of current lines
in the communicator CommX (or CommY).

Algorithm 5: Product by
t
Ĉ

executed by: process i.
input: Ji the current vector of Ωi.

output: ωl
i and ω

r
i such as ω =

t
ĈJ . with l, r the left/right interfaces.

for j ∈ {l, r} do

Throw asynchronous receive in vector ωRecvji from process j;
end

for j ∈ {l, r} do

8 ω
j
i =

t
ĈΛi

j
→iJi;

ωSend
j
i = ω

j
i ;

Throw asynchronous send of ωSendji to process j;
end

for j ∈ {l, r} do

/* The order of loop iteration depends on the order of reception */

Wait the reception of ωRecvji ;

ω
j
i+=ωRecvji ;

end

Wait all data sent ;
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5. Numerical validation

In this section, numerical results are provided:

• for the academic 3D IAEA-BenchMark [21] in section 5.1;

• for cross-sections provided by a real industrial application in section 5.2. With this test case,
we want to evaluate the behavior of the method with non-homogeneous data (each pin in
an assembly has its own section).

The tests have been performed in double precision on a cluster with 208 nodes (each one consists
in two Intel Xeon processors, 3.40GHz, 2MB Cache and with 4 GB PC3200 DDR2). The used MPI
implementation is MPICH 1.2.7 with an Infiniband (openib-2.0.5) network. For time measurement,
during batch submissions, one node is assigned to each subdomain to avoid concurrent memory
accesses. The current implementation of the algorithm is adapted to a distributed-memory context,
with one subdomain per node. Hence the performance analysis is performed up to 169 subdomains
(see Figure 5(d), Figure 5(e), Figure 6(d), Figure 6(e) and Figure 7). To get numerical results
such as the number of iterations of the power inverse algorithm (see Figure 5(a) and Figure 6(a)),
or a comparison to monodomain solver (see Figure 5(b), Figure 5(c), Figure 6(b) and Figure
6(c)), several subdomains per nodes can be used. So the numerical analysis is performed until 961
subdomains.

Between two and eight subdomains, the domain is partitioned in the direction x. For more
subdomains the partition is balanced as much as possible between the direction x and the direction
y. The domain is not partitioned into the direction z as:

• there are few cells (38 or 40) in the direction z;

• the number of subdomains should divide the number of cells to keep a good load balance.
Results with tridimensional partitions of 36 and 144 subdomains are provided for the second
test case (section 5.2) which uses 40 cells in direction z.

• a coupling with monodimensional thermo-hydraulic module will be the next step. The flow
is considered as axial (into the direction z), so no radial communication (into the direction
x and y) will be required by this module.

For the two cases, the solution obtained by the multi-domain solver is compared to the reference
solution (ψref , k

ref
eff ) obtained by the sequential solver set up with a large number (2000) of outer

iterations. The solution is also compared to (ψmono, kmono
eff ) the solution obtained by the sequential

solver with the same stopping criteria as the multi-domain solver. This stopping criteria for the
inverse power algorithm is:

‖Sp − Sp−1‖

‖Sp‖
< ǫS and

|λp − λp−1|

|λp|
< ǫλ, (16)

where Sp and λp are respectively the source of fission Fψp and the estimated eigenvalue keff at
iteration p. To perform a comparison of eigenvectors, each vector is normalized with the euclidean
norm.

5.1. 3D IAEA BenchMark

To validate our method, the two groups homogeneous IAEA-3D BenchMark [21] is first con-
sidered. The stopping criteria is set to ǫλ = ǫS = 10−6. For a SP1-RT0 pin-by-pin computation,
the mesh consists of 289× 289× 38 cells; this leads to:

• 3 173 798 degrees of freedom for the flux for each energy group;

• 9 626 879 degrees of freedom for the current for each energy group;

• 25 601 354 degrees of freedom for the overall system.
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5.1.1. Numerical behavior

For the majority of domain partitions, the power algorithm satisfies the stopping criteria with
a reasonable number of iterations like the sequential mono-domain solver did (see Figure 5(a)); for
partitions between 1 and 121 subdomains, with PCG1 and PCG2, the outer algorithm satisfies the
stopping criteria with 78 iterations (like the sequential solver). Between 144 and 625 subdomains
a small increase (< 12%) is observed with PCG1, and with PCG2 the number of iterations remains
constant. For more than 625 subdomains the algorithm does not converge with a reasonable
number of iterations (150) with PCG1. By using PCG2 the convergence properties are improved:
the power inverse algorithm converges with less than 88 iterations up to 961 subdomains.

For a given stopping criteria, the accuracy of the multi-domain solution is the same as the
accuracy of the mono-domain solver20 (see Figure 5(b) and 5(c)). As expected, the use of PCG2
provides a solution closer to the mono-domain solver but not closer to the reference solver.

5.1.2. Computational efficiency

Once the accuracy verified, the performance of the method can be analyzed. With the im-
plementation described in the previous section, the computational overhead compared to the
sequential solver is small. At each inner iteration, this overhead consists of a linear combination
of three current vectors (15) and interface vector operations. So we can expect a parallel efficiency
near 100%. Figure 5(d) shows this efficiency. The algorithm PCG1 leads to excellent results with
an efficiency higher than the theoretical 100% as it can benefit from cache effects. The algorithm
PCG2 is less efficient, as there is the same number of outer iterations. As the implementation of
the product by the interface matrix is efficient, the difference remains small. So, all performance
analysis are performed with PCG1 algorithm, since the number of subdomains (available number
of nodes) is limited to 169. Figure 5(e) shows the time repartition between:

• the forward-backward substitutions involved by the local matrices Ŵ−1. In the first node
the local matrix is noted W−1

0 ;

• the computations involving the matrices Bd
i . These contain the flux rebuilding (8) and the

right-hand side F̂ which comes from the alternating direction algorithm based on a Gauss-
Seidel algorithm;

• the communications.

The super-linearity comes from the computation of the multiplications by the matrices Bd and
t
Bd, necessary to compute the right-hand side F̂ and the flux φi. Indeed, the ordering of the
current unknowns Jd, which is very efficient for the matrices Wd, requires non contiguous memory

accesses during operations with Bd and
t
Bd. With more than 32 nodes, the subdomains are

sufficiently small to benefit from cache effects. The results are very good but we can not expect to
maintain this efficiency with many more than 169 nodes. Above 169 nodes, the communications
can become a significant bottleneck.

5.2. Real industrial case

We consider cross-sections provided by a real industrial application with two energy groups.
The stopping criteria is set up with ǫλ = ǫS = 10−5. SP1 equations with a pin-by-pin discretization
(289× 289× 40 cells) and RT0 finite element lead to:

• 3 340 840 degrees of freedom for the flux for each energy group;

• 10 129 161 degrees of freedom for the current for each energy group;

• 26 940 002 degrees of freedom for the overall system.

20The difference between this accuracy and the stopping criteria is acceptable for our application.
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partition outer iterations time (in s) |keff − k
ref
eff | ‖ψ − ψref‖2

(6, 6, 1) 88 6, 680 2, 64.10−7 1, 63.10−3

(4, 9, 1) 88 6, 749 2, 66.10−7 1, 63.10−3

(9, 4, 1) 88 6, 731 2, 64.10−7 1, 62.10−3

(36, 1, 1) 830 70, 17 4, 42.10−7 2, 38.10−3

(1, 36, 1) 826 68, 89 4, 59.10−7 2, 42.10−3

(6, 3, 2) 88 6, 912 2, 63.10−7 1, 63.10−3

(3, 6, 2) 88 6, 884 2, 63.10−7 1, 63.10−3

(9, 1, 4) 88 7, 144 2, 60.10−7 1, 62.10−3

(1, 9, 4) 88 7, 271 2, 61.10−7 1, 62.10−3

(3, 3, 4) 88 7, 090 2, 63.10−7 1, 63.10−3

partition outer iterations time (in s) |keff − k
ref
eff | ‖ψ − ψref‖2

(12, 12, 1) 88 1, 548 2, 92.10−7 1, 54.10−3

(8, 9, 2) 88 1, 588 2, 60.10−7 1, 62.10−3

(9, 8, 2) 88 1, 606 2, 59.10−7 1, 61.10−3

(6, 6, 4) 88 1, 695 2, 63.10−7 1, 63.10−3

Table 1: Influence of the domain partition.

These cross sections are identical to those in [1] where the algorithm strongly suffers from conver-
gence difficulties.

In Figure 6, the same behavior as for the IAEA BenchMark is observed. It is a great improve-
ment compared to the results obtained in [1] (an efficiency higher than 100% is measured now
where an efficiency near 5% was obtained before). The fact that the number of outer iterations is
equal, or almost equal, to the sequential case proves that it is not useful to study more complex
preconditioners. Indeed, even with an optimal preconditioner, we can not expect to further reduce
the outer iterations number compared to a direct solver.

Compared to the IAEA BenchMark, one difference can be noted: with PCG1 the error of the
eigenvalue keff increases slowly with the number of subdomains (see Figure 6(b)). Actually this
issue has no effect for our application where an accuracy of the order 10−4 is sufficient. With a
large number of subdomains, the number of power inverse iterations is almost equal to number of
iterations of the sequential solver (see Figure 6(a)).

Table 1 shows the performance with different partitions for 36 and 144 subdomains. With
monodimensional partitions convergence is difficult: more than 800 power iterations are required
to satisfy the stopping criteria. So bidimensional and tridimensional partitioning have to be
considered. The experiment shows that it is not efficient to partitioned the domain in the direction
z. Indeed, with a tridimensional partition the size of the interface vectors and the number of
communications increase. The basic partitions (6, 6, 1) and (12, 12, 1) give the best results for this
experiment. The number of outer iterations and the execution time is not necessary equivalent
for symmetric partitions. Indeed the Gauss-Seidel algorithm of the alternating direction method
introduces an asymmetry.
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The method works perfectly well with the SP3 equations (2 harmonics) and with RT1 finite ele-
ment. The efficiency21 is plotted in Figure 7 for SP1/RT0 (26 940 002 dof), SP1/RT1 (214 666 888
dof) and SP3/RT0 (53 880 004 dof). The results with SP3/RT1 (429 333 776 dof) are not pre-
sented as we are not able to run the sequential reference even on a special node with 16 Go of
memory.

With the RT1 discretization, the efficiency is less impressive but remains high. The RT0
implementation can benefit from the super linearity of the reshuffle operations with more than 32
processors. So, with the RT1 finite element, this gain can be excepted with at least 32× 23 = 256
processors. We need to perform experiments on a larger cluster22 to confirm this explanation.

With SP3 equations a better efficiency is measured. We explain that by the larger number of

multiplications by Bd and
t
Bd matrices which are used to couple the two diffusion systems for

each energy group. So the super-linearity effects are more effective.

6. Conclusions

The proposed domain decomposition method in the difficult context of an approximate res-
olution of the linear system at each inverse power iteration reveals very reliable and efficient on
SP1/SP3 pin-by-pin computation coming from the IAEA benchmark and from industrial cases.
The method satisfies two criteria: memory requirement and parallel efficiency. Compared to [1],
the parallel efficiency is improved by a factor 20. The method is as least as efficient as the result
obtained in [14] and avoids the difficulties resulting from:

• the choice of the Robin transfer coefficient;

• the introduction of an additional approximation and a small overlap due to the Robin transfer
conditions with a mixed dual formulation.

As the numerical behavior of the method is very satisfactory with a large number of subdo-
mains, a next step will be a hybrid implementation (shared and distributed memory). Such an
implementation will enable us to use more efficiently a multi-core architecture. This step is needed
to get an efficient non-matching grid implementation, since for non-matching grids more flexibility
is required to balance the load between the nodes.

Hardware accelerators such as Graphic Processor Units suffer from insufficient memory size
but can be very relevant in terms of computational time. In [22], the authors obtained a speed-up
of 30 for the monodomain solver. So, it seems natural to use the domain decomposition algorithm
on a GPU cluster in order to take advantage of GPU acceleration without memory limitation.

The next step is the integration of this parallel algorithm in the industrial platform. Hence it
will be possible to perform studies with a large number of groups and with pin-by-pin discretiza-
tions.

21The sequential reference time is obtained on a special node with 16 Go of memory.
22or on a cluster with a larger cache size.
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Figure 5: BenchMark IAEA.
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Figure 6: Real industrial case.
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