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I. INTRODUCTION

The application of linear methods to nonlinear systems is a difficult problem when talking about the observer/controller synthesis. The multiple model (MM) [START_REF] Murray-Smith | Multiple model approaches to modeling and control[END_REF] -also called in the literature fuzzy Takagi-Sugeno model [START_REF] Takagi | Fuzzy identification of systems and its application to modeling and control[END_REF], or polytopic linear model [START_REF] Angelis | Optimal polytopic control system design[END_REF]-has received a special attention in the last two decades, in order to overcome this difficulty. The MM structure is mainly based on the idea of complexity reduction of nonlinear systems, by constructing linear submodels aggregated by weighting functions [START_REF] Takagi | Fuzzy identification of systems and its application to modeling and control[END_REF]. Several techniques were developed in order to obtain such a structure from a general representation of nonlinear system. In this paper, the MM is obtained by applying a method proposed in [START_REF] Nagy | Systematic multi-modeling methodology applied to an activated sludge reactor model[END_REF] to represent nonlinear system into an equivalent MM. Only the general steps of this technique are given here. In many practical situations, systems can have multiple time scale dynamics. In order to deal with such systems, the singularly perturbed theory is often used to highlight the decomposition of the system into various time scales. Nevertheless, it is not obvious to model a process under the standard singularly perturbed form especially if the system is nonlinear. The first difficult point of this modeling technique is the separation of the slow and fast dynamics. Different methods are proposed in the literature [START_REF] Van Breusegem | Reduced order dynamical modelling of reaction systems: a singular perturbation approach[END_REF], [START_REF] Robertson | Mathematical Modelling of Startup and Shutdown Operation of Process Plants[END_REF], [START_REF] Dong | Simplification of Stochastic Chemical Reaction Models with Fast and Slow Dynamics[END_REF]; the most frequently used is based on the evaluation of the jacobian eigenvalues of the linearized system and will be used here. After the separation of the multiple-time scale dynamics, the standard singularly perturbed form is obtained. In the limit case, when the singularly perturbed parameter tends towards zero, this form has a dynamic part, represented by an ordinary differential equation (ODE), and a static part expressed by an algebraic equation. Thus, a second difficult point is to solve the algebraic system in order to express the fast variables and replace them into the ODE corresponding to the slow dynamics. The method mainly used to deal with this problem is based on a coordinate change [START_REF] Van Breusegem | Reduced order dynamical modelling of reaction systems: a singular perturbation approach[END_REF], [START_REF] Vora | Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena Model Reduction of Multiple Time Scale Processes in Non-standard Singularly Perturbed Form[END_REF] requiring a linear transformation in order to eliminate the fast dynamic components. In order to be able to apply this method, the nonlinear system has to respect some structural constraints, which are not always satisfied. By considering the standard singularly perturbed system, an equivalent MM can be written. The classical MM form is slightly modified in order to separate the slow and the fast dynamics of the system. The main contribution of this paper is to estimate the state variables of a two-time scale nonlinear system by avoiding the resolution of the algebraic -static-equation corresponding to fast variables. This is possible by constructing an augmented output vector using the static equation and by considering the fast state variables as unknown inputs. Thus, a proportional integral observer (PIO) with unknown inputs can be designed by using the MM singularly perturbed form. Due to the limited number of sensors, this approach turns out to be interesting because of the choice of the fast variables as unknown inputs. This observer enables to reconstruct simultaneously the slow and fast variables and gives better results than a classic unknown input observer concerning the noise reconstruction [START_REF] Ichalal | Multi-observateurs à entrées inconnues pour un système de Takagi-Sugeno à variables de décision non mesurables[END_REF]. In [START_REF] Marx | Design of observers for Takagi-Sugeno descriptor systems with unknown inputs and application to fault diagnosis[END_REF] is presented a state estimation method for singular MM affected by unknown inputs and with measurable decision variables. As in [START_REF] Marx | Design of observers for Takagi-Sugeno descriptor systems with unknown inputs and application to fault diagnosis[END_REF], most of the existing works, dedicated to MM in general and to observer design based on MM in particular [START_REF] Chadli | On the design of observer for unknown inputs fuzzy models[END_REF], [START_REF] Khedher | State and sensor faults estimation via a proportional integral observer[END_REF], are with measurable decision variables (inputs/outputs). But, in many practical situations, these premise variables depend on the states, thus they are not accessible. Recently, few works [START_REF] Bergsten | Observers for Takagi-Sugeno fuzzy systems[END_REF], [START_REF] Ichalal | Multi-observateurs à entrées inconnues pour un système de Takagi-Sugeno à variables de décision non mesurables[END_REF], [START_REF] Yoneyama | H ∞ Filtering for Fuzzy Systems with Immeasurable Premise Variables: An Uncertain System Approach[END_REF] are devoted to the case of unmeasurable decision variables. This last case will be treated here. The convergence conditions of the state and unknown input estimation error are expressed through LMIs (Linear Matrix Inequalities) by using the Lyapunov method and the L 2 approach. In the second part of the paper, the MM structure and the singularly perturbed theory are used in order to reconstruct the states of an ASM1 (Activate Sludge Model 1) [START_REF] Olsson | Wastewater Treatment Systems. Modelling, Diagnosis and Control[END_REF] describing a biological degradation process characterized by two-time scale dynamics. The proportional integral observer proposed previously is applied to this model for this purpose.

In section II are given the essential tools for modeling nonlinear systems, in section III the observer design is presented. Section IV proposes the application to the ASM1, known to be a realistic model of WWTP. The paper ends with some conclusions and future works.

II. MODELING MAIN TOOLS

A. Multiple model representation

Generally, a dynamic nonlinear system can be described by the following ordinary differential equations:

ẋ(t) = f (x(t), u(t)) y(t) = g(x(t), u(t)) (1)
where x ∈ R n is the state vector, u ∈ R m is the input vector, y ∈ R l the output vector.

The multiple model enables to represent a nonlinear dynamic system into a convex combination of r linear submodels:

ẋ(t) = r ∑ i=1 μ i (x, u)[A i x(t) + B i u(t)] y(t) = r ∑ i=1 μ i (x, u)[C i x(t) + D i u(t)] (2) 
where A i , B i , C i and D i are constant matrices of suitable dimensions. The functions μ i (x, u) represent the weights of the submodels {A i , B i ,C i , D i } in the global model and they have the following properties:

r ∑ i=1 μ i (x, u) = 1 and μ i (x, u) ≥ 0, ∀(x, u) ∈ R n × R m (3)
In order to obtain the MM form, a method giving an equivalent rewriting of the nonlinear system (1) is used [START_REF] Nagy | Systematic multi-modeling methodology applied to an activated sludge reactor model[END_REF]. Firstly, by extracting the state in the input vectors contained in the functions f and g, the system (1) is transformed into a quasi-Linear Parameter Varying (quasi-LPV) form:

ẋ(t) = A(x(t), u(t)) x(t) + B(x(t), u(t)) u(t) y(t) = C(x(t), u(t)) x(t) + D(x(t), u(t)) u(t) (4) 
Secondly, some nonlinear entries of the matrices A, B, C and D are considered as "premise variables" and denoted z j (x, u)( j = 1, ..., q). Several choices of these premise variables are possible due to the existence of different equivalent quasi-LPV forms (further details on the selection procedure can be found in [START_REF] Nagy | Systematic multi-modeling methodology applied to an activated sludge reactor model[END_REF]). Thirdly, a convex polytopic transformation is performed for all premise variables ( j = 1, ..., q), as follows:

z j (x, u) = F j,1 (z j (x, u)) z j,1 + F j,2 (z j (x, u)) z j,2 (5) 
where

z j,1 = max x,u z j (x, u) (6a) z j,2 = min x,u z j (x, u) (6b)
and where

F j,1 (z j (x, u)) = z j (x, u) -z j,2 z j,1 -z j,2 (7a) F j,2 (z j (x, u)) = z j,1 -z j (x, u) z j,1 -z j,2 (7b) 
Remark 1: For q decision variables z j , r = 2 q submodels will be obtained. By multiplying the functions F j,σ j i , the weighting functions are obtained:

μ i (x, u) = q ∏ j=1 F j,σ j i (z j (x, u)), i = 1, ••• , r (8) 
where the indexes σ j i (i = 1, ..., 2 q and j = 1, ..., q), equal to 1 or 2, indicate which partition of the j th decision variable (F j,1 or F j,2 ) is involved in the i th submodel. In definition (2), the constant matrices A i , B i , C i and D i (i = 1, ..., 2 q ) are obtained by replacing the premise variables z j (x, u) involved in the matrices A(x, u), B(x, u), C(x, u) and D(x, u) with the scalars defined in [START_REF] Dong | Simplification of Stochastic Chemical Reaction Models with Fast and Slow Dynamics[END_REF]. Here, only the matrices A i are given, the others being obtained similarly:

A i = A(z 1,σ 1 i , ..., z q,σ q i ), i = 1, ••• , r (9) 

B. Singularly perturbed systems

Considering equation ( 1), the standard form of a singularly perturbed system with two-time scales can be expressed by the following system:

ε ẋ f (t) = f f (x s (t), x f (t), u(t), ε) (10a) ẋs (t) = f s (x s (t), x f (t), u(t), ε) (10b) 
where x s ∈ R n s and x f ∈ R n f are respectively the slow and fast state variables,

f f (x, u, ε) ∈ R n f , f s (x, u, ε) ∈ R n s , n = n s + n f
and ε is a small and positive parameter, known as singular perturbed parameter.

In order to obtain the standard singularly perturbed form, the identification and separation of slow and fast dynamics is the keypoint. In this article, this is realized by using the homotopy method for the linearized system [START_REF] Vora | Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena Model Reduction of Multiple Time Scale Processes in Non-standard Singularly Perturbed Form[END_REF]. This method enables to link each state variable with an eigenvalue. By comparing all the real parts of the eigenvalues, the biggest (resp. smallest) ones will be associated with the slowest (resp. fastest) dynamics. The comparison has to be performed when linearizing the system around several operating points in order to test if this classification remains the same. Remark 2. Note that the linearized system is only used to identify the slow and fast dynamics, but not to design the observer in order to estimate the state variables. An equivalent MM representation will be used for this purpose.

In the limit case ε → 0, the degree of the system [START_REF] Koenig | Design of proportional-integral observer for unknown input descriptor systems[END_REF] degenerates from n to n s , and the system becomes:

0 = f f (x s (t), x f (t), u(t), 0) (11a) ẋs (t) = f s (x s (t), x f (t), u(t), 0) (11b)
By solving the algebraic equations (11a), the solution x f (t) = ϕ(x s (t), u(t)) is obtained and used in (11b) to derive the reduced system:

x f (t) = ϕ(x s (t), u(t)) (12a) ẋs (t) = f s (x s (t), x f (t), u(t)) (12b)
Remark 3. The fast variables cannot always be explicitly expressed from (11a). The most popular method used to deal with this problem is based on a change of coordinates [START_REF] Van Breusegem | Reduced order dynamical modelling of reaction systems: a singular perturbation approach[END_REF], [START_REF] Vora | Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena Model Reduction of Multiple Time Scale Processes in Non-standard Singularly Perturbed Form[END_REF], requiring a linear transformation in order to eliminate the fast dynamics. So, this method can only be applied to systems for which this linear transformation can be found. By taking into account the previous remark, no change of coordinates will be considered; the reduced standard singularly perturbed form ( 11) is taken into account, supposing that the fast variables cannot be obtained by solving the algebraic equation (11a). Thus, this last equation is used to construct an augmented output vector, as it will be described in detail in the following section, where the design of the proportional integral observer is presented.

III. STATE ESTIMATION

A. Multiple model with slow and fast dynamics

Let us consider the reduced system [START_REF] Marx | Design of observers for Takagi-Sugeno descriptor systems with unknown inputs and application to fault diagnosis[END_REF] under an equivalent QLPV form

0 = A f f (x, u)x f (t) + A f s (x, u)x s (t) + B f (x, u)u(t) (13) ẋs (t) = A s f (x, u)x f (t) + A ss (x, u)x s (t) + B s (x, u)u(t) (14)
It is here assumed that in the QLPV form, the matrix function B f does not depend on x(t), i.e. B f (u(t)). The multiple model form that is obtained using the methodology described in [START_REF] Nagy | Systematic multi-modeling methodology applied to an activated sludge reactor model[END_REF] slightly modified in order to separate the slow and fast variables:

0 = r ∑ i=1 μ i (x, u) A i f f x f (t) + A i f s x s (t) + r ∑ i=1 μi (u)B i f u(t) ẋs (t) = r ∑ i=1 μ i (x, u) A i s f x f (t) + A i ss x s (t) + B i s u(t) y(t) = C f x f (t) +C s x s (t) (15) 
where r ≤ r, μ i (x, u) and μi (u) satisfy (3), the matrices

A i f f , A i f s , A i s f , A i ss , B i f , B i
s correspond to slow and fast dynamics identified in the matrices A i and B i :

A i = A i f f A i f s A i s f A i ss B i = B i f B i s ( 16 
)
The measurement equation in [START_REF] Robertson | Mathematical Modelling of Startup and Shutdown Operation of Process Plants[END_REF] can be considered as linear and time invariant since, in most practical situations, the sensors do not change according to the operating point.

In the first equation of ( 15) the control term is moved from the right side of the equality to the left side to obtain:

ẋs (t) = r ∑ i=1 μ i (x, u) A i ss x s (t) + B i s u(t) + A i s f x f (t) (17a) y a (t) = r ∑ i=1 μi (u) C i x s (t) + G i x f (t) (17b) 
where y a (t) is a measurable augmented output vector defined by:

y a (t) = ⎡ ⎣ -r ∑ i=1 μi (u)B i f u(t) y(t) ⎤ ⎦ ( 18 
)
where the matrices C i and G i are given by:

C i = A i f s C S G i = A i f f C f ( 19 
)
As it can be seen, the new output vector y a is no more linear in the state variable, as the initial output vector y, but becomes nonlinear.

The system (17) can be considered as a MM affected by the unknown inputs x f . Let us note the unknown input d(t) = x f (t), with the following property:

ḋ(t) = 0 (20)
The assumption of a constant d(t) is classically needed in the framework of PIO design for the theoretical proof of the convergence of the state estimation error [START_REF] Koenig | Design of proportional-integral observer for unknown input descriptor systems[END_REF]. Nevertheless it is well known that the only practical need is to have a low frequency signal. One should not be confused by this assumption made an a signal called fast. The vocable fast refers to the dynamics of f s . Due to this, x f (t) is -for ε → 0a static function of x s (t) which obeys to a slow dynamic process. As a consequence, when ε → 0 (i.e. when neglecting the dynamic behavior of the fast part of the system), x f (t) is also a slow signal.

Let us construct the augmented state vector x T a = x T s d T and denote:

Ãi = A i ss A i s f 0 0 , Bi = B i s 0 , Ci = C i G i
Using the previous notations and the property of unknown inputs (20), the system ( 17) is equivalent to a system under an augmented form, as following:

ẋa (t) = r ∑ i=1 μ i (x a (t), u(t)) Ãi x a (t) + Bi u(t) (21a) y a (t) = r ∑ i=1 μ i (x a (t), u(t)) Ci x a (t) (21b) 
Since x a is unknown, the following form with μ i ( xa , u) is used:

ẋa (t) = r ∑ i=1 μ i ( xa , u) Ãi x a (t) + Bi u(t) + Γω(t) (22a) y a (t) = r ∑ i=1 μi (u) Ci x a (t) (22b) 
where Γ = [I 0] T and the term ω(t) plays the role of a bounded disturbance of the form:

ω(t) = r ∑ i=1 [μ i (x a , u) -μ i ( xa , u)] Ãi x a (t) + Bi u(t) (23)

B. Proportional Integral Observer

The following proportional integral observer is proposed:

ẋa (t) = r ∑ i=1 μ i ( xa , u) Ãi xa (t) + Bi u(t) + K i (y a (t) -ŷa (t)) (24a) ŷa (t) = r ∑ i=1 μi (u) Ci x a (t) (24b) 
The state estimation error is given by

e a (t) = x a (t) -xa (t) (25) 
Taking into account (22a) and ( 24) the augmented state estimation error is governed by:

ėa (t) = r ∑ i=1 r ∑ j=1 μ i ( xa , u) μ j (u)( Ãi -K i Cj )e a (t) + Γω(t) (26)
One can see that the dynamic of the state estimation error is only disturbed by ω(t). Theorem 1: The optimal proportional integral observer (24) for the system ( 22) is obtained if there exists a symmetric positive definite matrix X, matrices M i and a positive scalar λ , minimizing λ under the LMI constraints (27) for i = 1,...,r and j = 1,..., r.

ÃT i X + X Ãi -CT j M T i -M i Cj + I XΓ Γ T X -λ I < 0 (27)
The observer gains are given by:

K i = X -1 M i .
Proof: The state estimation error e a (t) converges to zero when ω = 0 and the L 2 gain from ω(t) to e a (t) is bounded by γ if there exists X = X T > 0 such that the following inequalities hold for i = 1,...,r and j = 1,..., r [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF]:

φ T i j X + Xφ i j + I XΓ Γ T X -γ 2 I < 0 ( 28 
)
where

φ i j = Ãi -K i Cj is used. With λ = γ 2 and M i = XK i the LMI (27) is obtained. Remark 2:
In order to improve the estimation quality, the conditions (29) (for all i = 1, ..., r and j = 1,..., r) can be added to (27) to ensure pole clustering [START_REF] Chilali | H-infinity design with pole placement constraints: an LMI approach[END_REF]:

ÃT i X + X Ãi -CT j M T i -M i Cj + 2 α X < 0 (29)
These conditions ensure that the eigenvalues of the generating system of the state estimation error (26) lie in the following region of the complex plane:

S (α, ρ) = { w ∈ C| Re(w) < -α, |w| < ρ} (30) 
IV. APPLICATION

A. Process description and nonlinear model

The wastewater treatment with activated sludge is widely used in the last two centuries [START_REF] Olsson | Wastewater Treatment Systems. Modelling, Diagnosis and Control[END_REF]. It consists in putting in contact waste water with a mixture rich in bacteria to degrade and eliminate the polluting constituents contained in the water, in suspension or dissolved. The functioning principle of the process is briefly described after. The simplified diagram, given in Fig. 1, includes a bioreactor and a clarifier. In this figure q in represents the input flow, q out the bioreactor output flow, q a the air flow, q R , q W are respectively the recycled and the rejected flows. The reactor volume is assumed to be constant and thus: q out = q in + q R . In general, q R and q W represent fractions of input flow q in :

q R (t) = f R q in (t), 1 ≤ f R ≤ 2 (31) q W (t) = f W q in (t), 0 < f W < 1 (32)
The polluted circulates in the bioreactor in which the bacterial biomass degrades the organic matter. Micro-organisms gather together in colonial structures called flocs and produce sludges. The mixed liqueur is then sent to the clarifier where the separation of the purified water and the flocs is made by gravity. A fraction of settled sludges is recycled towards the bioreactor to maintain its capacity of purification. The purified water is thrown in the natural environment. The ASM1 is a commonly used model to describe this process.

For simplicity reasons and lack of space, only the carbon pollution of the activated sludge reactor is considered. Thus, the proposed estimation method is illustrated by using a model with three state variables x = [S S , S O , X BH ] T :

ṠS (t) = - 1 Y H μ H ϕ 1 (t) + (1 -f P )b H ϕ 2 (t) + D 1 (t) ṠO (t) = Y H -1 Y H μ H ϕ 1 (t) + D 2 (t) ẊBH (t) = μ H ϕ 1 (t) -b H ϕ 2 (t) + D 3 (t) (33) 
where:

D 1 (t) = q in (t) V [S S,in (t) -S S (t)] D 2 (t) = q in (t) V [S O,in (t) -S O (t)] + Kq a (t)[S O,sat -S O (t)] D 3 (t) = q in (t) V X BH,in (t) -X BH (t) + f R 1 -f W f R + f W X BH (t) (34) 
The process kinetics are:

ϕ 1 (t) = S S (t) K S + S S (t) S O (t) K OH + S O (t) X BH (t) (35) 
ϕ 2 (t) = X BH (t) (36) 
The variables involved are presented in table I. We suppose that the dissolved oxygen concentration at the reactor input (S O,in ) is null. The clarifier is supposed to be perfect, i.e. with no internal dynamic process and no biomass in the effluent. In this case, we can write at each time instant:

[q in (t) + q R (t)]X BH (t) = [q R (t) + q W (t)]X BH,R (t) (37a) S S,R (t) = S S (t) (37b) 
The following heterotrophic growth and decay kinetic parameters are considered [START_REF] Olsson | Wastewater Treatment Systems. Modelling, Diagnosis and Control[END_REF]: Flow q in q out q R q a

μ H = 3.733[1/24h], K S = 20[g/m 3 ], K OH = 0.2[g/m 3 ], b H = 0.
Air flow V Reactor volume

TABLE I TABLE OF VARIABLES

B. Slow and fast variables

Let us consider the linearization of the nonlinear system (33) around various equilibrium points (x 0 , u 0 ):

ẋ(t) = A 0 x(t) + B 0 u(t) ( 38 
)
where

A 0 = ∂ f (x, u) ∂ x (x 0 ,u 0 ) and B 0 = ∂ f (x, u) ∂ u (x 0 ,u 0 )
. Considering Re(λ 1 ) ≤ Re(λ 2 ) ≤ ... ≤ Re(λ n ) the ordered real part eigenvalues of A 0 , the biggest (resp. smallest) real part of eigenvalues correspond to the slowest (resp. fastest) dynamic. This separation will be made by fixing a threshold of separation of both time scales, τ, such as:

Re(λ 1 ) ≤ ... ≤ Re(λ n f ) << τ ≤ Re(λ n f +1 ) ≤ ... ≤ Re(λ n ).
For the reduced ASM1 (33), the slow and fast separation is confirmed by the eigenvalues of the jacobian A 0 , as one can notice on Fig. 2 displaying the real parts of these eigenvalues for forty operating points. The real part of two eigenvalues (λ 2 and λ 3 ) are included between -50 and -0.4 and the real part of the other (λ 1 ) between -175 and -250. Setting a threshold at τ = 70, it can be deduced that the system has one fast dynamic (x f = S S ) and two slow dynamics (x s = [S O X BH ] T ). 

C. Multiple model

A multiple model is built and used to design an observer allowing slow and fast state estimation. Considering the process equations ( 33) and (34), it is natural to define the following decision variables:

z 1 (u(t)) = q in (t) V (39a) z 2 (x(t)) = 1 K S + S S (t) S O (t) K OH + S O (t) X BH (t) (39b) z 3 (u(t)) = q a (t) (39c) 
The input vector is defined by:

u(t) = [ S S,in (t) q a (t) X BH,in (t) ] T (40) 
The quasi-LPV form of the model ( 33) is characterized by matrices A(t) = A(x(t), u(t)) and B(t) = B(u(t)) decomposed in the following way:

A(t) = A f f (t) A f s (t) A s f (t) A ss (t) B(t) = B f (t) B s (t) (41) 
where

A f f (t) = -z 1 (t) -1 Y H μ H z 2 (t) (42) A f s (t) = 0 (1 -f P )b H (43) B f (t) = z 1 (t) 0 0 (44) A s f (t) = Y H -1 Y H μ H z 2 (t) μ H z 2 (t) (45) A ss (t) = -K z 3 (t) -z 1 (t) 0 0 f R (1-f W ) f W + f R -1 z 1 (t) -b H (46) B s (t) = 0 KSo sat 0 0 0 z 1 (t) (47) 
The decomposition of the three premise variables (39) is realized by using the convex polytopic transformation, as in ( 5), ( 6) and [START_REF] Ichalal | Design of Observers for Takagi-Sugeno Systems with Immeasurable Premise Variables: an L2 Approach[END_REF]. Multiplying the functions F .,. , the r = 8 weighting functions μ i (z(x(t)), u(t)) are obtained:

μ i (z(x, u)) = F 1,σ 1 i (x, u)F 2,σ 2 i (x, u)F 3,σ 3 i (x, u)
The constant matrices A i and B i representing the 8 submodels are defined as in ( 16) by using the block matrices A and B and the scalars (6), for i = 1, ..., 8:

A i f f = A f f (z 1,σ 1 i , z 2,σ 2 i ) A i f s = [0 (1 -f P )b H ] A i s f = A s f (z 2,σ 2 i ) A i ss = A ss (z 1,σ 1 i , z 3,σ 3 i ) B i f = B f (z 1,σ 1 i ) B i s = B s (z 1,σ 1 i ) (48) 
The model (33) is thus equivalently written under the MM form by using the separation into slow and fast states. The output vector is defined by y = C f x f +C s x s + η, where η(t) is a bounded measurement noise and the matrices C s and C f are given by:

C f = 1 0 C s = 0 0 1 0 (49) 
By applying Theorem 1 to the ASM1 model (33), represented into an equivalent MM form, the following state estimation results are obtained and presented in Fig. 3. The L 2 gain from ω(t) to e a (t) is bounded by γ = 1.057. The estimation of the fast dynamic S S , considered as unknown input in the global MM, is presented first and is followed by the estimation results of the slow dynamics S O and X BH . The output estimation results are displayed on Fig. 4, where one can see that the output noise is filtered. 

V. CONCLUSIONS AND FUTURE WORKS

In this article we propose state estimation of two-time scale systems represented under a MM form with unmeasurable premise variables, by means of a proportional integral observer with unknown inputs. The nonlinear system is put under a MM form that highlights the slow and fast dynamics and then the fast dynamics are considered as unknown inputs and estimated simultaneously with the slow variables. The application to a biological reactor offers good state estimation results. As future works, first the design of a proportional multi-integral observer is envisaged, and second, the extension to the complete ASM1 model.
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 1 Fig. 1. The diagram of activated sludge wastewater treatment

  3[1/24h]. The stoichiometric parameters are Y H = 0.6[g cell formed], f P = 0.1 and the oxygen saturation concentration is S O,sat = 10[g/m 3 ]. The following numerical values are considered here for the fractions f R and f W : f R = 1.1 and f W = 0.04.
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 2 Fig. 2. The real parts of jacobian eigenvalues in various points of the operating space
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 3 Fig. 3. State estimation using PIO

  Fig. 4. Outputs
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