
HIGHER-ORDER DISCONTINUOUS GALERKIN METHOD FOR
PYRAMIDAL ELEMENTS USING ORTHOGONAL BASIS

Morgane Bergot

Projet POems, INRIA Rocquencourt, Le Chesnay, France

Email: morgane.bergot@inria.fr

Marc Duruflé

Institut Mathématique de Bordeaux, Université Bordeaux I, Bordeaux, France

Email: marc.durufle@math.u-bordeaux1.fr

Mathematics subject classification: 65F05, 65F50, 65M60, 65Y20

Abstract

We study arbitrarily high-order finite elements defined on pyramids for discontinuous

Galerkin methods. We propose a new family of high-order pyramidal finite element us-

ing orthogonal basis functions which can be used in hybrid meshes including hexahedra,

tetrahedra, wedges and pyramids. We perform a comparison between these orthogonal

functions and nodal functions for affine and non-affine elements. Different strategies for

the inversion of mass matrix are also considered and discussed. Numerical experiments are

conducted for 3-D Maxwell’s equations.

Key words: pyramidal element, higher-order finite element, hybrid mesh, conformal mesh,

discontinuous Galerkin method, orthogonal basis functions.

Introduction

Discontinuous Galerkin methods have been extensively studied for tetrahedral meshes (e.g.

Hesthaven and Warburton [1] for Maxwell’s equations). Works of Cohen and collaborators

(Fauqueux [2], Pernet and Ferrières [3], [4], Duruflé [5], [6]) have shown the higher efficiency

obtained by using hexahedral meshes with this method, thanks to the tensorization of basis

functions. However, generating high quality hexahedral meshes is not an easy task. A solution

is to allow the insertion of other types of elements - tetrahedra, pyramids and triangular prisms

with a high percentage of hexahedra - so that there is no loss in the efficiency.

Pyramidal elements have been studied by several authors in the context of continuous finite

elements (Zaglmayr cited by Demkowicz in [7], Nigam and Phillips [8], [9], Bergot et al. [10],

Sherwin et al. [11], Bluck and Walker [12], Wieners [13]) but their application to discontinuous

Galerkin methods has received less attention. Obviously, basis functions developed for contin-

uous finite elements can be used for discontinuous elements as it is achieved in [10]. However,

since continuity is not required, other sets of basis functions are acceptable and may have bet-

ter properties. An attractive choice consists of orthogonal basis, which has been proposed by

Kirby et al. [14] for all the types of elements, but the proposed basis functions for pyramids

generate Pr instead of the optimal finite element space. We illustrate here that the use of Pr

for pyramids provides a poor convergence for non-affine pyramids. A recent work of Gassner

et al. [15] proposes an original approach to construct nodal discontinuous Galerkin method for

hybrid meshes, since it avoids the use of a reference element, by constructing directly nodal

functions generating polynomials on the real element.

http://www.global-sci.org/jcm Global Science Preprint

2

We consider linear hyperbolic problems like Maxwell’s equations, with an explicit time

scheme (like Runge-Kutta). Continuous Galerkin finite element schemes are not attractive in

this context, since the mass matrix is large and costly to invert. Mass-lumped elements are

well-known for hexahedra (Cohen [16]), but less mastered for other elements (see Mulder et

al. [17] for tetrahedra) and the proposed elements require a large number of additional degrees

of freedoms and lead to a more restrictive stability condition. Furthermore, the application

of a continuous Galerkin formulation is tedious because of spurious modes: it often needs

regularization, as described by Costabel in [18] for Maxwell’s equations. When a discontinuous

Galerkin method is considered, nonetheless we get a block-diagonal mass matrix, but orthogonal

tensorized basis functions can be used to get elementary sparse mass matrix, which induces a

gain in computational time when the order of approximation is large enough.

In this paper, we propose orthogonal tensorized basis functions generating optimal finite

element spaces for non-affine hexahedra, prisms, pyramids, and orthogonal basis functions gen-

erating polynomials Pr for affine elements. These two sets of basis functions are compared on

the special case of affine elements, and it appears that the orthogonal basis functions generating

optimal finite element spaces are more efficient. Several solutions to construct and invert the

mass matrix are considered and compared, and a fast algorithm to compute the mass matrix for

the pyramidal element is detailed. The fast matrix-vector product algorithm obtained because

of tensorization of orthogonal basis functions is also given for all types of elements, the complex-

ity of such a matrix-vector product is in O(r4) where r is the order of approximation, instead

of O(r6) when no tensorization is availabe (e.g. nodal functions of the pyramid). Therefore

orthogonal functions are asymptotically more efficient than nodal functions, but it has been

numerically found that it was more efficient for pyramids from r ≥ 3, for wedges from r ≥ 5 and

for tetrahedra from r ≥ 10. Finally, numerical results are provided for the resolution of 3-D

time-domain Maxwell’s equations.

The outline of our paper is as follows:� In Section 1, we present the representative problem we study and its discretization in

space and in time.� We detail in Section 2 the construction of the mass matrix for pyramidal elements, when

using classical nodal basis functions in Section 2.1 and orthogonal basis functions in Sec-

tion 2.2. A way to obtain a diagonal mass matrix, proposed by Warburton (ICOSAHOM

09) is considered in Section 2.3.� Section 3 is devoted to the construction of a fast matrix-vector product using orthogonal

basis functions.� We perform numerical comparisons of several types of elements in Section 4� In Section 5, we consider numerical applications on 3-D time-domain Maxwell’s equations.

3

1. Definitions and Presentation of the Problem

1.1. Definitions and Variational Formulation

We consider the following representative linear hyperbolic problem (e.g. Godlewski and

Raviart [19])

M
∂u

∂t
+ ∑

1≤i≤d

Ai
∂u

∂xi

+ ∑
1≤i≤d

Bi
∂u

∂xi

= 0, (M,Ai,Bi) ∈ (Mns
(R))3 , u ∈ Rns (1.1)

where ns is the number of scalar unknowns of the equation, and d is the dimension. When the

system is symmetric,

Bi = A∗i .
Remark 1.1. This formulation is useful to exhibit the antisymmetry of the stiffness matrix

when using centered flux and without absorbing conditions, which is essential to get the stability.

Let Ω be an open set of R3, composed of ne elements Ki

Ω = ⋃
1≤i≤ne

Ki.

For any element K of boundary ∂K of outward normal n, we consider a discontinuous method.

For example, the Local Discontinuous Galerkin (LDG) formulation (see Hesthaven and War-

burton [20] for Maxwell’s equations) writes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find u ∈ V such that

∀v ∈ V, d

dt
∫

K
M u ⋅ v dx −∫

K
∑

1≤i≤d

(Ai u ⋅
∂v

∂xi

−Bi

∂u

∂xi

⋅ v) dx
+∫

∂K
(N1 {u} +N2 [u]) ⋅ v ds = 0,

(1.2)

where V = (L2(Ω))ns

, N1 = ∑
1≤i≤d

Ai ni, N2 = ∑
1≤i≤d

Bi ni. The average {u} is

{u} = 1

2
(u1 + u2)

and [u] is

[u] = 1

2
(u2 − u1) + 1

2
α∫

∂K
C(u2 − u1)ds,

where C is a symmetric positive matrix, u1 value of u on the element K and u2 value of u on

a neighbour element of K, and α ≤ 0. In general, we take α = −0.5 in our experiments.

1.2. Space Discretization

Given a finite-dimension subspace Vh of the space V , the discrete problem reads

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find uh ∈ Vh such that

∀vh ∈ Vh,
d

dt ∫K
M uh ⋅ vh dx − ∫

K
∑

1≤i≤d

(Ai uh ⋅
∂vh

∂xi

−Bi

∂uh

∂xi

⋅ vh) dx
+∫

∂K
(N1 {uh} +N2 [uh]) ⋅ vh ds = 0.

(1.3)

4

We note by n = ns nr the dimension of Vh.

To write the integrals on the reference element, the standard transformation (Ciarlet [21])

F from a reference element K̂ to the mesh element K for hexahedral, tetrahedral and wedge

elements is used. For pyramidal elements, following Bedrosian [22], we define a transformation

using rational fractions.

Definition 1.1. The transformation F from the reference pyramid K̂(x̂, ŷ, ẑ) taken as the unit

symmetrical pyramid, centered at the origin (see Fig. 1.1) to a pyramid K(x, y, z) of vertices

Si = (xi, yi, zi) is

4F = (S1 + S2 + S3 + S4) + x̂ (−S1 + S2 + S3 − S4) + ŷ (−S1 − S2 + S3 + S4)
+ ẑ (4S5 − S1 − S2 − S3 − S4) + x̂ŷ

1 − ẑ
(S1 + S3 − S2 − S4). (1.4)

K̂

Ŝ1 = (−1,−1,0)

Ŝ2 = (1,−1,0)

Ŝ5 = (0,0,1)

Ŝ4 = (−1,1,0)

Ŝ3 = (1,1,0)

F

ẑ

x̂

ŷ

K

S5

S1

S2

S3

S4

Fig. 1.1. Transformation of the reference pyramid K̂ to the pyramid K via the transformation F

Remark 1.2. The case of a non-invertible transformation may occur when considering a de-

generated element, e.g. when the five vertices are co-planar. The characterisation of pyramids

for which F is invertible remains an still open question, as for hexahedra (Duruflé et al. [6]).

In the sequel, we assume that F is always invertible.

The finite element space Vh on Ω is given by

Vh = {u ∈ L2(Ω) ∣ u∣K ∈ (PF
r (K))ns} ,

where PF
r is the real space of order r for an element K of the mesh defined by

PF
r (K) = {u ∣ u ○ F ∈ (P̂r(K̂))ns} .

The finite element space P̂r of order r on the reference element K̂ is� Tetrahedron: Pr(x̂, ŷ, ẑ) = {x̂iŷj ẑk, i + j + k ≤ r} of dimension nr = (r + 1)(r + 2)(r + 3)
6

,

and K̂ is the unit tetrahedron 0 ≤ x̂ + ŷ + ẑ ≤ 1;

5� Hexahedron: Qr(x̂, ŷ, ẑ) = {x̂iŷj ẑk, i, j, k ≤ r} of dimension nr = (r + 1)3, and K̂ is the

unit cube [0,1]3;� Wedge: Pr(x̂, ŷ)⊗Pr(ẑ) = {x̂iŷj ẑk, i + j ≤ r, k ≤ r} of dimension nr = (r + 1)2(r + 2)
2

, and

K̂ is the unit wedge 0 ≤ x̂ + ŷ, ẑ ≤ 1;� Pyramid: Pr(x̂, ŷ, ẑ)⊕ ∑
0≤k≤r−1

(x̂ŷ
1 − ẑ

)r−k Pk(x̂, ŷ) of dimension nr = (r + 1)(r + 2)(2r + 3)
6

,

when K̂ is the unit symmetrical pyramid, centered at the origin.

The finite element space is classical for tetrahedra, hexahedra and wedges (Ciarlet [21]) but is

less standard in the case of a pyramidal element.

This choice of finite element space is optimal, that is by choosing this finite element space,

the final error estimate is in O(hr+1) in L2-norm, whereas choosing any subspace included in

this one leads to a convergence of at most O(hr) (see [10]). This can be seen by displaying the

dispersion error (see Cohen [16] for an explanation of how to perform a dispersion analysis) on

a periodic mesh containing non-affine pyramids, whose cell is presented on Fig. 1.2. As shows

Fig. 1.3 displaying the dispersion error obtained for Maxwell’s equations, using the optimal

finite element space provides a dispersion error in O(h2r+1) (see Pernet [23] for the factor 2r+1),

whereas the use of Pr as for tetrahedra leads to a low convergence rate.

Fig. 1.2. Periodic pattern for the hybrid case, with distorted pyramids (purple) and tetrahedra (gray)

Definition 1.2. Let (ϕi)≤i≤nr
be a base of Vh, let Mh the mass matrix for the pyramid K,

defined by

(Mh)i,j = ∫
K
M ϕi ⋅ ϕj dx (1.5)

the stiffness matrix Rh such that

(Rh)i,j = ∫
K
∑

1≤k≤d

(Ak

∂ϕi

∂xk

⋅ ϕj −Bk ϕi ⋅
∂ϕj

∂xk

) dx (1.6)

and the flux matrix Sh defined by

(Sh)i,j = ∫
∂K
∑

1≤k≤d

(N1 {ϕj} +N2 [ϕj]) ⋅ϕi ds. (1.7)

6

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

log
10

(h/r)

lo
g 10

(d
is

pe
rs

io
n

er
ro

r)

1

5

1
3

Order 1, Polynomial space

Order 2, Polynomial space

Order 1, Optimal space

Order 2, Optimal space

Fig. 1.3. Dispersion error for a periodic mesh with non-affine pyramids for Maxwell’s equation

The space discretization then writes

d

dt
MhU −RhU + ShU = 0, (1.8)

1.3. Time Discretization

Using any explicit time scheme, for example the low-storage Runge-Kutta scheme of order

4 (Carpenter and Kennedy [24]), the time discretization writes

Un+1 = Un

ρ = Un

for i = 1 to 5

ρ = αiρ +∆t(Mh)−1(Rh − Sh)(Un+1)
Un+1 = Un+1

+ βiρ

end for

(1.9)

For each time-step, we then have to� compute the matrix-vector products RhU
n and ShU

n ;� solve a linear system (Mh)X = Y ;

We first present an efficient technique to construct Mh and solve the linear system for pyramidal

elements.

7

2. Mass Matrix

2.1. Dense Mass Matrix with Nodal Basis Functions

Using theH1-conforming transformation (Monk [25]) of the basis functions from any element

K of the mesh to the reference element K̂

ϕ̂i = ϕi ○ F
−1, (2.1)

the mass matrix writes

(Mh)i,j = ∫
K
M ϕi ϕj dxdy dz = ∫

K̂
M ∣DF ∣ ϕ̂i ϕ̂j dx̂ dŷ dẑ. (2.2)

The nodal basis functions on the reference element K̂ are obtained by inverting a Vander-

monde system as follow. Let (M̂i)1≤i≤nr
the locations of the interpolation points on the pyramid

(see [10] for the choice of their location), and (ψ̂i)1≤i≤nr
a base of P̂r,

Definition 2.1. The Vandermonde matrix VDM ∈Mnr
(R) is defined by

V DMi,j = ψ̂i(M̂j), 1 ≤ i, j ≤ nr,

and the basis function ϕ̂i linked to the interpolation point M̂i is then defined as

ϕ̂i = ∑
1≤j≤nr

(V DM−1)i,j ψ̂j .

Remark 2.1. The characterisation of the invertibility of the Vandermonde matrix is an open

question, but we observed that the VDM matrix is invertible with our choice of position for the

degrees of freedom, the element is therefore unisolvent.

As it can be found in [10], the use of an orthogonal base of P̂r for (ψ̂i)
1≤i≤nr

decreases the

condition number of the Vandermonde matrix compared to the monomial base of P̂r. However,

the mass matrix is dense and has no particular property.

2.2. Sparse Mass Matrix with Orthogonal Basis Functions

2.2.1. Orthogonal Basis Functions

When using orthogonal basis functions, we expect to have a sparser mass matrix than with

nodal functions.

We denote by P i,j
m (x) the orthonomalized Jacobi polynomial of order m, orthogonal for the

weight (1 − x)i(1 + x)j , and ξG
j the points of Gauss-Legendre on [0,1] (cf Hammer, Marlowe

and Stroud [26]).

Proposition 2.1. The following set of basis functions is an orthogonal base of P̂r� Hexahedron

ϕ̂G
i1
(x̂) ϕ̂G

i2
(ŷ) ϕ̂G

i3
(ẑ), 0 ≤ i1, i2, i3 ≤ r,

where

ϕ̂G
i (x̂) =

∏
j≠i

x̂ − ξG
j

∏
j≠i

, ξG
i − ξ

G
j

,

8 � Wedge

P
0,0
i1
(2x̂

1 − ŷ
− 1) (1 − ŷ)i1P 2i1+1,0

i2
(2ŷ − 1)ϕG

i3
(ẑ), 0 ≤ i1 + i2, i3 ≤ r,� Pyramid

P
0,0
i1
(x̂

1 − ẑ
)P 0,0

i2
(ŷ

1 − ẑ
) (1 − ẑ)max(i1,i2)P

2max(i1,i2)+2,0

i3
(2ẑ − 1),

0 ≤ i1, i2 ≤ r, 0 ≤ i3 ≤ r −max(i1, i2),� Tetrahedron

P
0,0
i1
(2x̂

1 − ŷ − ẑ
− 1)P 2i1+1,0

i2
(2ŷ

1 − ẑ
− 1) (1 − ŷ − ẑ)i1P 2(i1+i2)+2,0

i3
(2ẑ − 1) (1 − ẑ)i2 ,

0 ≤ i1 + i2 + i3 ≤ r.
Proof. See Proposition 1.10 in [10] for pyramidal elements. Proof is similar for the other

types of elements.

When the element is affine, we can use P̂r = Pr (see Theorem 1.4 in [10]).

Proposition 2.2. The following set of basis functions is an orthogonal base of Pr

For 0 ≤ i1 + i2 + i3 ≤ r,� Hexahedron

P
0,0
i1
(2 x̂ − 1)P 0,0

i2
(2 ŷ − 1)P 0,0

i3
(2 ẑ − 1),� Wedge

P
0,0
i1
(2x̂

1 − ŷ
− 1)(1 − ŷ)i1P 2i1+1,0

i2
(2ŷ − 1)ϕG

i3
(ẑ),� Pyramid

P
0,0
i1
(x̂

1 − ẑ
)P 0,0

i2
(ŷ

1 − ẑ
) (1 − ẑ)i1+i2P 2(i1+i2)+2,0

i3
(2ẑ − 1),� Tetrahedron

P
0,0
i1
(2x̂

1 − ŷ − ẑ
− 1)P 2i1+1,0

i2
(2ŷ

1 − ẑ
− 1) (1 − ŷ − ẑ)i1P 2(i1+i2)+2,0

i3
(2ẑ − 1) (1 − ẑ)i2 .

Proof. Proof is similar to the proof of Proposition 2.1.

2.2.2. Fast Algorithm for Pyramidal Elements

We use the orthogonal base of P̂r defined in Proposition 2.1 as set of basis functions to make

the matrix sparser. To make the computation easier, we write the integrals on the unit cube

Q̃. We first define the transformation T from the unit cube Q̃ on the reference pyramid K̂

T ∶

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x̂ = (1 − z̃)(2x̃ − 1)
ŷ = (1 − z̃)(2ỹ − 1)
ẑ = z̃.

(2.3)

9

For any function f , we denote

f̃(x̃, ỹ, z̃) = f̂(x̂, ŷ, ẑ),
and the change of variable provides

∫
K̂
f̂(x̂, ŷ, ẑ) dx̂ dŷ dẑ = ∫

Q̃
4 f̃(x̃, ỹ, z̃) (1 − z̃)2 dx̃ dỹ dz̃. (2.4)

The mass matrix written on the unit cube Q̃ is then

(Mh)i,j = 4∫
Q̃
M ∣̃DF ∣ ϕ̃i ϕ̃j (1 − z̃)2 dx̃ dỹ dz̃,

where the jacobian ∣DF ∣ of the transformation F on the unit cube Q̃ can be written as (see

Lemma 3.5 in [10])

∣̃DF ∣ = A +B1(2x̃ − 1) +B2(2ỹ − 1) +C(2x̃ − 1)(2ỹ − 1).

We recall the following property of Jacobi polynomial (Szegö [27])

Property 2.1.

tP
i,j
k
(t) = γi,j

k
P

i,j
k+1(t) +αi,j

k
P

i,j
k
(t) + βi,j

k
P

i,j
k−1(t), (2.5)

where

α
i,j
k
= −ai,j,k

(2k + i + j)(i2 − j2)
2k + i + j

β
i,j
k
= bi,j,k 2(k + i)(k + j)(2k + i + j + 2)

2k + i + j

γ
i,j
k
= ci,j,k2(k + 1)(k + i + j + 1)

and ai,j,k, bi,j,k and ci,j,k are coefficients due to orthonormalisation of Jacobi polynomial P i,j
k

.

Using Property 2.1, we decompose the mass matrix as follows, for all i = (i1, i2, i3), 1 ≤ i ≤ nr

and for all j3, 0 ≤ j3 ≤ r� Term in A:

∫
Q̃
ϕ̃iϕ̃j (1 − z̃)2 dx̃ dỹ dz̃ =

∫
1

0

P
0,0
i1
(2x̃ − 1)P 0,0

j1
(2x̃ − 1) dx̃

´¹¹¸¹¹¹¶
δi1j1

∫
1

0

P
0,0
i2
(2ỹ − 1)P 0,0

j2
(2ỹ − 1) dỹ

´¹¹¹¸¹¹¶
δi2j2

∫
1

0

(1 − ẑ)max(i1,i2)+max(j1,j2)+2P
2max(i1,i2)+2,0
i3

(2z̃ − 1)P 2max(j1,j2)+2,0
j3

(2z̃ − 1) dz̃
´¹¹¸¹¹¹¶

δi3j3

;

10 � Term in B1:

∫
Q̃
ϕ̃iϕ̃j (2x̃ − 1)(1 − z̃)2 dx̃ dỹ dz̃ =

∫
1

0

(2x̃ − 1)P 0,0
i1
(2x̃ − 1)P 0,0

j1
(2x̃ − 1) dx̃

´¹¹¸¹¹¹¶
γ
0,0

i1
δi1+1j1

+β0,0

i1
δi1−1j1

∫
1

0

P
0,0
i2
(2ỹ − 1)P 0,0

j2
(2ỹ − 1) dỹ

´¹¹¹¸¹¹¶
δi2j2

∫
1

0

(1 − ẑ)max(i1,i2)+max(j1,j2)+2P
2max(i1,i2)+2,0
i3

(2z̃ − 1)P 2max(j1,j2)+2,0
j3

(2z̃ − 1) dz̃
´¹¹¸¹¹¹¶

C
i2,j2
i1,j1

(i3,j3)

;� Term in B2:

∫
Q̃
ϕ̃iϕ̃j (2ỹ − 1)(1 − z̃)2 dx̃ dỹ dz̃ =

∫
1

0

P
0,0
i1
(2x̃ − 1)P 0,0

j1
(2x̃ − 1) dx̃

´¹¹¸¹¹¹¶
δi1j1

∫
1

0

(2ỹ − 1)P 0,0
i2
(2ỹ − 1)P 0,0

j2
(2ỹ − 1) dỹ

´¹¹¸¹¹¹¶
γ
0,0

i2
δi2+1j2

+β0,0

i2
δi2−1j2

∫
1

0

(1 − ẑ)max(i1,i2)+max(j1,j2)+2P
2max(i1,i2)+2,0

i3
(2z̃ − 1)P 2max(j1,j2)+2,0

j3
(2z̃ − 1) dz̃

´¹¹¸¹¹¹¶
C

i2,j2
i1,j1

(i3,j3)

;� Term in C:

∫
Q̃
ϕ̃iϕ̃j (2x̃ − 1)(2ỹ − 1)(1 − z̃)2 dx̃ dỹ dz̃ =

∫
1

0

(2x̃ − 1)P 0,0
i1
(2x̃ − 1)P 0,0

j1
(2x̃ − 1) dx̃

´¹¹¸¹¹¹¶
γ
0,0

i1
δi1+1j1

+β0,0

i1
δi1−1j1

∫
1

0

(2ỹ − 1)P 0,0
i2
(2ỹ − 1)P 0,0

j2
(2ỹ − 1) dỹ

´¹¹¸¹¹¹¶
γ
0,0

i2
δi2+1j2

+β0,0

i2
δi2−1j2

∫
1

0

(1 − ẑ)max(i1,i2)+max(j1,j2)+2P
2max(i1,i2)+2,0

i3
(2z̃ − 1)P 2max(j1,j2)+2,0

j3
(2z̃ − 1) dz̃

´¹¹¸¹¹¹¶
C

i2,j2
i1,j1

(i3,j3)

.

That is, the mass matrix is computed as follows, for all i = (i1, i2, i3), 1 ≤ i ≤ nr and for all j3,

0 ≤ j3 ≤ r� Mh[i, i] = A� Mh[i, (i1 + 1, i2, j3)] = B1 γ
0,0
i1

C
i2,i2
i1,i1+1

(i3, j3)

11� Mh[i, (i1 − 1, i2, j3)] = B1 β
0,0
i1

C
i2,i2
i1,i1−1

(i3, j3)� Mh[i, (i1, i2 + 1, j3)] = B2 γ
0,0
i2

C
i2,i2+1
i1,i1

(i3, j3)� Mh[i, (i1, i2 − 1, j3)] = B2 β
0,0
i2

C
i2,i2−1
i1,i1

(i3, j3)� Mh[i, (i1 + 1, i2 + 1, j3)] = C γ0,0
i1

C
i2,i2
i1,i1+1

(i3, j3)γ0,0
i2

C
i2,i2+1
i1,i1

(i3, j3)� Mh[i, (i1 + 1, i2 − 1, j3)] = C γ0,0
i1

C
i2,i2
i1,i1+1

(i3, j3)β0,0
i2

C
i2,i2−1
i1,i1

(i3, j3)� Mh[i, (i1 − 1, i2 + 1, j3)] = C β0,0
i1

C
i2,i2
i1,i1−1

(i3, j3)γ0,0
i2

C
i2,i2+1
i1,i1

(i3, j3)� Mh[i, (i1 − 1, i2 − 1, j3)] = C β0,0
i1

C
i2,i2
i1,i1−1

(i3, j3)β0,0
i2

C
i2,i2−1
i1,i1

(i3, j3)
The mass matrix contains O(r4) non-zero entries instead of O(r6), and integrals C

i2,j2
i1,j1
(i3, j3)

are precomputed. The cost of computation is finally in O(r4).
To solve the linear system, we use a LU factorisation. In the sparse case, the profile of the

mass matrix can be improved to decrease the storage in the LU factorisation. For example,

with our first choice of numbering, we used the Symmetric Approximate Minimum Degree

permutations (symamd) algorithm, developed by Amestoy et al. in [28]. The result is shown in

Fig. 2.1. In this case, for order 2, the profile of the mass matrix is 21% smaller, 34% at order

3, 54% at order 5 and 70% at order 8.

2.2.3. Mass Matrix for the Other Elements

With the mass-lumping, the mass matrix is diagonal for hexahedral elements. For tetrahedral

elements, as the jacobian is constant, the mass matrix is also diagonal when using orthogonal

basis functions.

For wedge elements, as we have tensorisation and mass-lumping in z, the mass matrix is

already block diagonal on each element, even for nodal elements for which the number of non-

zero entries is in O(r5). Using orthogonal basis functions make each block sparser, but the

gain is far less spectacular than for pyramidal elements. The same algorithm as for pyramidal

elements could also be used for wedge elements to fasten the computation, but is not presented

here.

2.3. Diagonal Mass Matrix with Warburton’s Trick

In the discontinuous case, the resolution of the linear system can be avoided by using the

following non-H1-conforming transformation

ϕ̂i = 1√∣DF ∣ ϕi ○ F
−1. (2.6)

Using this transformation on the reference element, the mass matrix writes

(Mh)i,j = ∫
K
ϕi ⋅ϕjdx = ∫

K̂
∣DF ∣ ϕ̂i√∣DF ∣ ⋅

ϕ̂j√∣DF ∣dx = ∫K̂
ϕ̂i ⋅ ϕ̂jdx,

that is the mass matrix is independent of the geometry. If orthonormal basis functions are used,

the matrix is equal to identity.

12

Fig. 2.1. Profile of the mass matrices of order 2, 3, 5 and 8 before (left) and after (right) renumbering,

with an symamd algorithm

13

3. Fast Matrix-Vector Product

3.1. Introduction

In the time discretization (see algorithm 1.9), a needed step consists of performing the

following matrix-vector product

yn = (Rh − Sh)Un

Storing the matrix Rh−Sh as a sparse matrix and performing a standard matrix-vector product

would be an expensive solution as the memory required to store such a large matrix may become

too important, especially when high order is used.

Since inside each element (except hexahedron), all the degrees of freedom are interacting

with each other, i.e.

∫
K

∂ϕk

∂xi

ϕj ≠ 0, ∀j, k

the number of non-zero entries in matrix Rh−Sh is equal to O(ner
6) where ne is the number of

elements in the mesh and r the order of approximation. The computational time required for

the matrix-vector product would therefore be in O(ner
6) too if the matrix Rh − Sh is stored.

Another solution, well-known for tetrahedra (Hesthaven [1]) consists in performing the

matrix-vector product without storing the matrix. For nodal basis functions, the computa-

tional time will remain in O(ner
6), whereas for orthogonal functions, the tensorization of basis

functions induce fast algorithms in O(ner
4) as pointed out in Warburton’s thesis [29].

In the following section, we detail an efficient algorithm for the discontinuous Galerkin

formulation used in this paper.

3.2. H1-conforming Transformation

3.2.1. General Method

We are considering the following matrix vector product

yj = ∫
K
∑

1≤i≤d

(Ai U ⋅
∂ϕj

∂xi

−Bi

∂U

∂xi

⋅ ϕj) dx − ∫
∂K
(N1 {U} +N2 [U]) ⋅ϕj ds

We use F −1 to transform any element K of the mesh into the reference element K̂, and T

defined by equation 2.3 to transform the reference pyramid K̂ into the unit cube Q̃. Let us

denote by G = F ○ T , the transformation from the pyramid K into the unit cube Q̃. We also

use a transformation g−1 from a face ∂K to a reference face ∂Q̃. As

ũ = ∑
k

ũk ϕ̃k,

yj finally writes

yj = ∫
Q̃
∣̃DG∣ ∑

1≤i≤d

∑
1≤l≤d

(Aiũ ⋅ (D̃G−1)l,i ∂ϕ̃j

∂x̃l

−Bi (D̃G−1)l,i ∂ũ
∂x̃l

⋅ ϕ̃j)dx̃ dỹ dz̃
− ∫

∂Q̃
∣̃Dg∣ (N1 {ũ} +N2 [ũ]) ⋅ ϕ̃j ds̃.

Volume integrals are evaluated with quadrature formulas (ωm, ξm), suited for the cube Q̃,

whereas surface integrals are evaluated with quadrature formulas (ω′n, ξ′n) suited for the faces

of cube ∂Q̃. Let us define

Ū = − (N1 {ũ(ξ′n)} +N2 [ũ(ξ′n)]) .

14

We finally write

yj = ∑
m

ωm ∣̃DG∣(ξm) ∑
1≤i≤d

∑
1≤l≤d

((D̃G−1)l,iAiũ ⋅
∂ϕ̃j

∂x̃l

−Bi (D̃G−1)l,i ∂ũ
∂x̃l

⋅ ϕ̃j) (ξm)
+ ∑

n

ω′n ∣̃Dg∣(ξ′n) Ū ⋅ ϕ̃j(ξ′n).
We decompose this matrix-vector into several stages.

For volume integrals :

1. Evaluate
vm = ũ(ξm) = ∑

k

ũk ϕ̃k(ξm)
dvl

m = ∂ũ
∂x̃l

(ξm) =∑
k

ũk

∂ϕ̃k

∂x̃l

(ξm)
2. Apply geometry and physics coefficients

v1,l
m = ∑

1≤i≤d

ωm ∣̃DG∣(ξm) D̃G−1l,iAivm

v2

m = − ∑
1≤i,l≤d

ωm ∣̃DG∣(ξm)Bi D̃G
−1

l,i dv
l
m

3. Evaluate

w1

j = ∑
m

∑
1≤l≤d

v1,l
m ⋅

∂ϕ̃j

∂x̃l

(ξm)
w2

j = ∑
m

v2

m ⋅ ϕ̃j(ξm)
For surface integral :

1. Evaluate

sn = ∑
k

uk ϕ̃k(ξ′n)
2. Apply geometry and physics coefficients to get

s̄n = − (N1 {sn} +N2 [sn])
s1n = ω′n ∣̃Dg∣(ξ′n) s̄n

3. Evaluate

w3

j = ∑
n

s1n ⋅ ϕ̃j(ξ′n)
Get the result vector :

yj = w1

j +w
2

j +w
3

j

We consider tensorized quadrature points

ξm = (ξm1
, ξm2

, ξm3
)

15

and tensorized basis functions

ϕj(x, y, z) = ϕ̃j1(x̃) ϕ̃j1
j2
(ỹ) ϕ̃j1,j2

j3
(z̃)

We now detail how the different stages containing sums can be decomposed because of

tensorization. By performing computations along each coordinate x̃, ỹ, z̃, we are able to have

sums with only r + 1 terms, instead of (r + 1)3 terms if basis functions and quadrature points

do not exhibit any tensorization.

3.2.2. Computation of Volume Integrals

1. For m = (m1,m2,m3), we want to evaluate

vm = ∑
k1,k2,k3

ϕ̃k1
(ξm1

) ϕ̃k1

k2
(ξm2

) ϕ̃k1,k2

k3
(ξm3

) uk1,k2,k3
.

We notice ϕ̃j1,j2
j3

when the basis function depends on j1 and j2. This triple sum is split

into three single sums

u1

k1,k2,m3
= ∑

k3

ϕ̃
k1,k2

k3
(ξm3

)uk1,k2,k3

u2

k1,m2,m3
= ∑

k2

ϕ̃k1

k2
(ξm2

)u1

k1,k2,m3

vm1,m2,m3
= ∑

k1

ϕ̃k1
(ξm1

)u2

k1,m2,m3

Remark 3.1. At this stage, we observe that the dependency has to be “opposite” between

ϕj and ξm, otherwise we can not exploit the tensorized structure of quadrature points and

basis functions to get fast algorithms. Therefore semi-tensorized quadrature point

ξm = (ξm2,m3

m1
, ξm3

m2
, ξm3

)
could also be considered.

The three sums involve only O(r) terms and are computed for O(r3) values, leading to a

cost in O(r4). Each of these sums can be interpreted as a matrix vector product, i.e.

U1 = C1U

U2 = C2U
1

V = C3U
2

We have found a factorization of matrix C

Cm,k = ϕ̃k(ξm)
which is

C = C3C2C1

While matrix C is dense, the matrices C3, C2 and C1 are sparse. Matrices C3, C2, C1 are

independent from the geometry, and are precomputed once for each reference element.

Hence, we have

V = C U

16

For n = n1, n2, n3, we now want to evaluate

dvl
n(ξn) = ∑

k

ũk

∂ϕ̃k

∂x̃l

(ξn)
Since for all elements, we have the inclusion Ṽr ⊂ Qr, we can write

ũ(x, y, z) = ∑
k

ũk ϕ̃k(x̃, ỹ, z̃) = ∑
m1,m2,m3

vm1,m2,m3
ψm1
(x̃)ψm2

(ỹ)ψm3
(z̃)

where ψm1
, ψm2

, ψm3
are Lagrange interpolation basis function associated respectively

with points ξm1
, ξm2

and ξm3

ψm1
(x̃) =

∏
n1≠m1

x̃ − ξn1

∏
n1≠m1

ξm1
− ξn1

ψm2
(ỹ) =

∏
n2≠m2

ỹ − ξn2

∏
n2≠m2

ξm2
− ξn2

ψm3
(z̃) =

∏
n3≠m3

z̃ − ξn3

∏
n3≠m3

ξm3
− ξn3

We have

∇̃ψm1
(x)ψm2

(y)ψm3
(z) =

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

∑
m1,m2,m3

vm1,m2,m3

dψm1

x
(x̃) ψm2

(ỹ) ψm3
(z̃)

∑
m1,m2,m3

vm1,m2,m3
ψm1
(x̃) dψm2

dỹ
(ỹ) ψm3

(z̃)
∑

m1,m2,m3

vm1,m2,m3
ψm1
(x̃) ψm2

(ỹ) dψm3

dz̃
(z̃)

Since we have

ψm1
(ξn1) = δm1,n1

, ψm2
(ξn2) = δm2,n2

, ψm3
(ξn3) = δm3,n3

Triple sums over m1,m2,m3 are reduced to single sums

(∂v
∂x̃
)

n1,n2,n3

= ∑
m1

dψm1

dx̃
(ξn1
)vm1,n2,n3

(∂v
∂ỹ
)

n1,n2,n3

= ∑
m2

dψm2

dỹ
(ξn2
)vn1,m2,n3

(∂v
∂z̃
)

n1,n2,n3

= ∑
m3

dψm3

dz̃
(ξn3
)vn1,n2,m3

These operations can be viewed as matrix vector product

dV = RV
where the matrix R is sparse and independent from the geometry, and can be precomputed

once for each reference element.

Eventually, we have exhibited the following factorization

dV = RC U.

17

2. We compute

v1,l
m = ∑

1≤i≤d

ωm ∣̃DG∣(ξm) D̃G−1l,iAivm

v2

m = ∑
1≤i≤d

ωm ∣̃DG∣(ξm)Bi (∑
1≤l≤d

D̃G
−1

l,idv
l
m)

The complexity of this operation is inO(r3), and can be viewed as a matrix-vector product

V 1 = AV
V 2 = B dV

where matrices A and B are block-diagonal, each block being related to a quadrature

point, and depend on the geometry.

3. We are interested in the stage

w1

j = ∑
m,l

v1,l
m ⋅

∂ϕ̃j

∂x̃l

(ξm)
which is the transpose operation to the computation of derivative of basis functions on

quadrature points. Therefore, we have

W 1 = C∗R∗ V 1

We are now interested in the step

w2

j = ∑
m

v2

m ⋅ ϕ̃j(ξm)
which can be interpreted as

W 2 = C∗ V 2

that is

W 2 = C∗1 C∗2 C∗3 V 2

Remark 3.2. For hexahedra, using the basis functions of Equation 2.1, the matrix C used to

compute u on quadrature points in the fast matrix-vector product is equal to identity

C = I.
This makes computations faster for hexahedra, that is why we want to have high percentage of

hexahedra in a mesh.

3.2.3. Computation of Surface Integrals

1. We are interested in the stage

sp = ũ(ξ′p) = ∑
k

ũk ϕ̃k(ξ′p)
Since we are considering faces of the cube, we have three families of quadrature points

(δ, ξ′p2
, ξ′p3
)

(ξ′p1
, δ, ξ′p3

)
(ξ′p1

, ξ′p2
, δ)

18

δ is equal to 0 or 1. The starting point is to consider the expansion with basis functions

of the cube, ie

ũ(x̃, ỹ, z̃) = ∑
m1,m2,m3

vm1,m2,m3
ψm1
(x̃)ψm2

(ỹ)ψm3
(z̃)

Then we evaluate u on the families of points

u1

m2,m3
= ũ(δ, ξm2

, ξm3
)

u2

m1,m3
= ũ(ξm1

, δ, ξm3
)

u3

m1,m2
= ũ(ξm1

, ξm2
, δ)

These operations consist of single sums

u1

m2,m3
= ∑

m1

ψm1
(δ) vm1,m2,m3

u2

m1,m3
= ∑

m2

ψm2
(δ) vm1,m2,m3

u3

m1,m2
= ∑

m3

ψm3
(δ) vm1,m2,m3

which can be interpreted as matrix vector products with sparse matrices P1, P2, P3

U1 = P1V, U2 = P2V, U3 = P3V

Then, if the first face is a quadrangular face, we can split the computation

s1p2,p3
= ∑

m2,m3

ψm2
(ξ′p2
)ψm3

(ξ′p3
)u1

m2,m3

into two stages
zm2,p3

= ∑
m3

ψm3
(ξ′p3
)u1

m2,m3

s1p2,p3
= ∑

m2

ψm2
(ξ′p2
) zm2,p3

which can be interpreted as matrix vector products with sparse matrices

S1 = T2 T1U
1

If the first face is a triangle, since we are using symmetric quadrature points for triangles

[30], which are not tensorized, we only have

S1 = T U1

where matrix T is dense, but only restricted to the face. Therefore the complexity of

computation of sp is in O(r3) if the element is an hexahedron (only quadrangular faces)

and in O(r4) for other elements, because of the presence of triangular faces. Of course,

for other elements, some faces of the cube are not treated since they are reduced to a

single point in the real element K. For pyramids, the face z = 1 is not treated.

2. We compute
s̄n = − (N1 {sn} +N2 [sn])
s1n = ω′n ∣̃Dg∣(ξ′n) s̄n

19

3. We are interested in the stage:

w3

j = ∑
n

s1n ⋅ ϕ̃j(ξ′n)
This stage is exactly the transpose operation to the computation of sn, therefore the com-

putation of w3 is done by using transpose of matrices defined in the previous subsubsection

(matrices P1, P2, P3, T1, T2).

3.3. With Warburton’s Trick

Using the transfomation 2.6, the stiffness matrix is transformed into

(Rh)j,k = ∫
K̂
∣DF ∣ ∑

1≤i≤d

Ai

∂(ϕ̂k√∣DF ∣)
∂xi

⋅
ϕ̂j√∣DF ∣dx̂ − ∫K̂

∣DF ∣ ∑
1≤i≤d

Bi

ϕ̂k√∣DF ∣ ⋅
∂(ϕ̂j√∣DF ∣)

∂xi

dx̂

= ∫
K̂
∑

1≤i≤d

Ai

∂ϕ̂k

∂xi

⋅ ϕ̂j dx̂ − ∫
K̂
∑

1≤i≤d

Biϕk ⋅
∂ϕ̂j

∂xi

dx̂

+
1

2
∫

K̂
∑

1≤i≤d

(Bi −Ai) 1

∣DF ∣
∂∣DF ∣
∂xi

ϕ̂k ⋅ ϕ̂j dx̂

We can use the fast matrix vector product detailed above with this modified stiffness matrix

without important overcost. Moreover, since the mass matrix is equal to identity, this leads

to faster computations as shown in Table 4.10. However, the stiffness matrix involves the

derivative of jacobian and this has to be treated carefully with pyramids. Indeed, for non-affine

pyramids, the derivative of jacobian is singular :

∂∣DF ∣
∂x̂

= B1

1

1 − ẑ
+C

ŷ

(1 − ẑ)2 = B1

1

1 − z̃
+C

2ỹ − 1

1 − z̃

Therefore, it is preferable, for volume integrals, to use Gauss-Jacobi quadrature formula exact

for polynomials in (1 − z̃)Qr instead of (1 − z̃)2Qr as chosen classically for pyramids.

4. Comparison of Several Types of Elements

Experiments to compare the elements previously constructed are conducted on Maxwell’s

equations.

For Maxwell’s equations, d = 3 and ns = 6 where um is Ex, Ey , Ez , Hx, Hy or Hz. The

system is the following for E and H in R3

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dE

dt
− rotH = 0

dH

dt
+ rotE = 0

(4.1)

that is

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε 0 0 0 0 0

0 ε 0 0 0 0

0 0 ε 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

20

and

A1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 −1 0 0 0

0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, A2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

−1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, A3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 −1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The matrices Bi are obtained by taking the transpose of Ai.

4.1. Hexahedron

The orthogonal base of Proposition 2.1 provides a diagonal mass matrix for non-affine hexa-

hedra, while the tensorial product of Legendre polynomials proposed by Kirby et al. [14] (with

P1 = P2 = P3 = r) and Warburton [29] only provides mass-lumping for affine elements.

When the hexahedron is affine, we use the basis functions of Proposition 2.2. We write

derivative of Legendre polynomials as

dP
0,0
i

dx
(x) = i−1

∑
j=0

ηi
jP

0,0
j (x)

Because of orthogonality, for an affine hexahedron, we have

∫
K̂

∂ϕi1,i2,i3

∂x̂
ϕj1,j2,j3dx = ηi1

j1
δi2,j2 δi3,j3

∫
K̂

∂ϕi1,i2,i3

∂ŷ
ϕj1,j2,j3dx = ηi2

j2
δi1,j1 δi3,j3

∫
K̂

∂ϕi1,i2,i3

∂ẑ
ϕj1,j2,j3dx = ηi3

j3
δi1,j1 δi2,j2

This stiffness matrix is sparser and smaller than the stiffness matrix used for Qr. The asymptotic

cost of the product with stiffness matrix will be in r4 whereas it will be in 12r4 for Qr. However,

the flux part remains expensive (even though in O(r3)) since for example for face x = 0, we get

u(0, ŷ, ẑ) = ∑
i1,i2,i3

ui1,i2,i3 P
0,0
i1
(−1)

Therefore we can write value of solution s on this face by using Legendre expansion

s(ŷ, ẑ) = ∑
i2,i3

si2,i3P
0,0
i2
(ŷ)P 0,0

i3
(ẑ)

We obtain S with the following matrix vector product

S = PU
where

P(i2,i3),(j1,j2,j3) = P 0,0
j1
(−1) δi2,j2 δi2,j2

This matrix contains
1

6
(r + 1)(r + 2)(r + 3) elements. Since Legendre expansion of s is

orthonormal on each square composing the boundary of the cube, there is no quadrature rule

21

Table 4.1: Computational time spent for 100 iterations with a mesh containing 1 million dofs for

unknown Ex.

Order 2 3 4 5 6 7 8 10 12 15

Qr 136s 111s 107s 100s 101s 99s 109s 105s 113s 140s

Pr 214s 157s 135s 117s 111s 105s 106s 101s 97s 99s

involved for fluxes terms. One would expect much more efficient computations by using this

base, but since the number of degrees of freedom of Pr is lower than for Qr, one needs much finer

mesh to have the same number of degrees of freedom. Thus, when we compare the computation

time for one million degrees of freedom in Table 4.1, we obtain almost the same cost for Pr and

Qr. However, for Pr, the cost remains constant for higher orders than for Qr.

For a sharper comparison, we study the L2-error obtained for a cubic cavity meshed with

small cubes. Because of symmetry, only the cube [0,5λ]2 is meshed. In Tables 4.2 and 4.3, we

measure the minimal computational time and minimal number of degrees of freedom necessary

to obtain an error less than 1%, for Pr and Qr.

Table 4.2: Time step, number of dofs and computational time necessary to reach an error level below one

percent for a cubic cavity (affine mesh). Use of Pr on hexahedra with Legendre orthogonal expansion.

Order 3 4 5 6 8 10 14 18 26

∆t 0.035 0.0405 0.0394 0.0395 0.0348 0.0325 0.0272 0.0235 0.0179

Dofs 540 000 240 065 153 664 111 804 84 480 61 776 43 520 35 910 29 232

CPU Time 11 818s 2865s 1387s 856s 695s 500s 444s 376s 620s

Table 4.3: Time step, number of dofs and computational time necessary to reach an error level below

one percent for a cubic cavity (affine mesh). Use of Qr on hexahedra with Lagrange interpolation

functions base on Gauss-Legendre points.

Order 3 4 5 6 7 9 11 16 30

∆t 0.032 0.036 0.0353 0.0344 0.0381 0.0315 0.0301 0.023 0.0156

Dofs 512 000 216 000 157 464 117 649 64 000 64 000 46 656 39 304 29 791

CPU Time 5 575s 1800s 1180s 1013s 417s 580s 426s 1134s 3520s

It seems better to use Pr than Qr for higher orders, but all in all, the two methods give

similar computational times. We think that using Qr is a better choice than using Pr since the

method also works for non-affine hexahedron, which means implementing a single method for

all the cases.

4.2. Wedges

The orthogonal basis functions of Proposition 2.1 are almost the same as Kirby et al. [14]

and Warburton [29], except that we take Lagrange interpolation functions with Gauss points

22

instead of Legendre polynomials in z. For nodal functions, we actually have a tensorization in

z, leading to a matrix-vector product in O(r5) instead of O(r4) for orthogonal basis. In Table

4.4, the computational times given by both basis are very close, orthogonal functions provide

faster computations from order 5.

Table 4.4: Time spent for 100 iterations for meshes of non-affine wedges containing one million dofs for

Ex.

Order 2 3 4 5 6 7 8

Nodal 296 312 239 342 343 353 400

Orthogonal 338 326 280 315 292 317 361

We have conducted similar experiments than for affine-hexahedron, in order to compare

the use of Pr and the use of the optimal finite element space for wedges. For Pr, we take the

orthogonal basis functions of Proposition 2.2. The required number of degrees of freedom and

computational time for the experiments can be read in tables 4.5 and 4.6.

Table 4.5: Time step, number of dofs and computational time necessary to reach an error level below

one percent for a cubic cavity (affine mesh). Use of Pr on prisms with orthogonal expansion.

Order 3 4 5 6 7 8 9

∆t 0.0268 0.0296 0.0309 0.029 0.0285 0.0268 0.0258

Dofs 351 520 172 955 96 768 84 000 61 440 56 595 47 520

Computation Time 30 330s 12 920s 7 145s 7028s 5 560s 6 306s 6 602s

Table 4.6: Time step, number of dofs and computational time necessary to reach an error level below

one percent for a cubic cavity (affine mesh). Use of optimal finite element space on prisms.

Order 3 4 5 6 7 8 9

∆t 0.0277 0.0306 0.031 0.0298 0.0268 0.025 0.025

Dofs 425 920 205 800 126 000 100 352 98 784 87 480 68 750

Computation Time 22 020s 6 834s 3 904s 3 340s 3 930s 4 397s 3 727s

In this case, we do not have the same advantage than for hexahedra where quadrature-free

algorithms lead to faster computations. The use of optimal finite element space is then much

better, even though the number of degrees of freedoms is lower for Pr.

4.3. Pyramids

Computations are done for a mesh containing only non-affine pyramids and with one million

degrees of freedom for unknown Ex. In Table 4.7, we compare the CPU time spent for the

computation and Cholesky factorization of mass matrix for nodal functions and orthogonal

basis, using the algorithm previously described. The computational time needed for nodal

23

functions grows very quickly, making the use of orthogonal functions very attractive when r is

high.

Table 4.7: Time to compute and invert mass matrix

Order 2 3 4 5 6 7 8

Dense Matrix 1.91s 7.98s 26.2s 73.6s 177s 391s 786s

Sparse Matrix 0.577s 0.98s 1.32s 2.27s 4.08s 5.17s 7.62s

In Table 4.8, we display the ratio between the amount of memory used for a dense and a

sparse mass matrix with orthogonal basis. The induced gain of storage is quite interesting for

both the matrix and its Cholesky factorisation.

Table 4.8: Gain in storage for the matrix and its Cholesky factorization by using orthogonal functions

instead of nodal functions

Order 2 3 4 5 6 7 8

Gain for matrix 1.81 2.94 4.46 6.38 8.7 11.4 14.6

Gain for factorization 1.52 1.91 2.39 2.83 3.38 3.85 4.8

We finally perform a comparison between different solvers to invert the mass matrix: a

dense solver, a sparse solver and an iterative solver using fast matrix vector product deduced

from expression of mass matrix given in Section 2.1. As shows Table 4.9, the sparse solver

outperforms the other solvers. The main drawback of iterative solver is the relatively high

number of iterations since it needed 10 iterations to get a residual less than 10−12.

We compare the computation time spent for 100 iterations with a mesh made of non-affine

pyramids only with one million dofs in Table 4.10. The efficiency of the product seems quite

interesting, since with Warburton’s trick, the cost remains almost constant (between 400 and

500s here) versus the order of approximation. When a sparse solver is used, the additional

overcost is quite acceptable if a high accuracy is sought. The cost of the matrix vector product

using nodal functions (with quadrature too) becomes quickly prohibitive when r is large enough.

We observe in this table a gain in time by using orthogonal functions from order 3.

Similar experiments to the one conducted for affine hexahedron are done to compare Pr and

the optimal finite element space for pyramids. For Pr, we take the orthogonal basis functions

of Proposition 2.2, which is the base proposed by Kirby et al. [14].

The required number of degrees of freedom and computational time can be read in tables

4.11 and 4.12.

Table 4.9: Comparison of iterative solver, sparse solver, dense solver

Order 2 3 4 5 6 7 8

Dense Solver 91s 144s 183s 295s 340s 503s 652s

Iterative Solver 150s 150s 149s 331s 366s 403s 439s

Sparse Solver 74s 101s 121s 148s 178s 227s 235s

24

Table 4.10: Time spent for 100 iterations for meshes of non-affine pyramids containing one million dofs

for Ex.

Order 2 3 4 5 6 7 8

Sparse solver 523s 505s 508s 569s 619s 692s 766s

Warburton trick 460s 432s 411s 451s 471s 494s 548s

Nodal functions 378s 532s 702s 1135s 2425s 7618s 15350s

Table 4.11: Time step, number of dofs and computational time necessary to reach an error level below

one percent for a cubic cavity (affine mesh). Use of Pr on pyramids with orthogonal expansion.

Order 3 4 5 6 7 8 9

∆t 0.0238 0.0258 0.0248 0.024 0.0216 0.0205 0.0203

Dofs 960 000 461 370 336 000 258 048 246 960 213 840 165 000

Computation Time 60 449s 27 564s 22 422s 19 111s 21 433s 22 074s 19 056s

Table 4.12: Time step, number of dofs and computational time necessary to reach an error level below

one percent for a cubic cavity (affine mesh). Use of optimal finite element space on pyramids.

Order 3 4 5 6 7 8

∆t 0.0276 0.0307 0.028 0.0285 0.0268 0.0268

Dofs 737 280 330 000 279 552 181 440 153 000 109 440

Computation Time 28 267s 10 898s 10 800s 7 246s 6 933s 5 204s

We observe that the optimal finite element space is more efficient even on affine pyramids,

since the computational time required for eigth-order is 5 204s for optimal space, and 19 056s

for polynomials.

4.4. Tetrahedra

For tetrahedra, the use of orthogonal functions is known to be not very attractive for low

orders, as noticed by Warburton [29]. In Table 4.13, we report computational times obtained

for different orders of approximation with both nodal and orthogonal bases functions. We

check that nodal basis functions provide faster algorithms when r < 10. We use quadrature-free

algorithms as described in Hesthaven and Warburton [1] to evaluate the integrals.

Table 4.13: Time spent for 100 iterations of leap frog-scheme for meshes containing one million dofs

for Ex. Affine tetrahedra

Order 2 3 4 5 6 7 8 9 10

Nodal 379s 358s 327s 343s 428s 541s 680s 1023s 1751s

Orthogonal 527s 601s 559s 595s 679s 722s 798s 992s 1074s

25

5. Applications to Maxwell’s Equations

5.1. Convergence for a Cubic Cavity

We consider time-domain Maxwell’s equations in a cubic cavity [−5,5]3 with a gaussian

source

f = xe−αr
2

ex

with a mesh containing non-affine pyramids (see Fig 1.2).

The solutions for T = 5 and T = 50 are displayed on Fig. 5.1. An error analysis is performed

for the solution obtained at T = 50s for orders 3 and 5 by using the sparse solver to compute the

mass matrix or Warburton’s trick. As shows Fig. 5.2, as expected, this trick does not provide

a h-convergent scheme, whereas the h-convergence is ensured with our method. However, we

may conjecture that Warburton’s trick does provide a p-convergent scheme, since the error

of consistency is decreasing when we use order 5 instead of order 3. Morerover, the level of

consistency error (less than 2%) is quite acceptable in most of simulations.

Fig. 5.1. Cube of size 10λ - Solution for T = 5 (left) and T = 50 (right)

5.2. Air Balloon

We consider the scattering of an air balloon in a parallelepiped box [−250,50]×[−130,180]×
[90,490], with the following source

f(x, t) = e−13.8(rr0)
2

e−0.001(t−t0)
2

sin(2πf0t)
where r0 = 15, f0 = 0.08. The hybrid mesh used for the experiment, chosen to provide an

L2-error below one percent with Q5 approximation, is presented on Fig. 5.3

For this experiment, we use the classical leap-frog scheme for the time discretization. In

Fig. 5.4 is displayed the Ex component of the numerical solution obtained for T = 288 and

T = 432. Since we do not have a curved mesh, we compare each solution to a numerical solution

computed on the same mesh but with an order of approximation equal to r + 1 instead of r. In

Table 5.1, we detail the computational time needed to reach an L2 error lower than one percent.

Numerical experiments have been completed on 256 processors, computational times are

obtained by summing the CPU time spent on each processor and subtracting the cost of com-

munications.

26

Fig. 5.2. Relative L
2 error obtained on deformed hybrid mesh (tetras+pyramids) - Cube of size 10λ -

Fourth-order low-storage Runge-Kutta scheme

Fig. 5.3. Hybrid mesh used for the computations of the scattering of an air balloon.

Conclusion

Highly efficient pyramidal elements of any order have been constructed for discontinuous

Galerkin methods. Numerical experiments conducted with these elements on Maxwell’s equa-

tions showed a very good behaviour with hybrid meshes.

27

Fig. 5.4. Solution obtained for T = 288 (top) and T = 432 (bottom).

Table 5.1: Number of degrees of freedom and computational time needed to reach an L
2-error of 1%

with fifth order approximation, for T = 432s - Leap-frog scheme

Mesh used L2-error Nb of dofs ∆t CPU Time

Nodal Ortho

Hybrid 0.0093 22.4 millions 0.032 4d 2h 36min 3d 17h 2min

Tetrahedral 0.011 37.9 millions 0.046 11d 10h 19min -

References

[1] J. Hesthaven and T. Warburton, High order discontinuous Galerkin methods for the Maxwell

eigenvalue problem, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 1816 (2004),

493–524.

[2] G. Cohen and S. Fauqueux, Mixed finite elements with mass-lumping for the transient wave

equation, Journal of Computational Acoustics, 8 (2000), 171–188.

[3] G. Cohen, X. Ferrieres and S. Pernet, A spatial high-order hexahedral discontinuous Galerkin

method to solve Maxwell equations in time domain, Journal of Computational Physics, 217 (2006),

340–363.

[4] S. Pernet and X. Ferrieres, hp a-priori error estimates for a non-dissipative spectral discontinuous

galerkin method to solve the maxwell equations in the time domain, Mathematics of Computation,

76 (2007), 1801–1832.

[5] M. Duruflé, Intégration numérique et éléments finis d’ordre élevé appliqués aux équations de

Maxwell en régime harmonique., PhD thesis, Université Paris IX-Dauphine, 2006.

[6] M. Duruflé, P. Grob and P. Joly, Influence of the gauss and gauss-lobatto quadrature rules on

the accuracy of a quadrilateral finite element method in the time domain, Numerical Methods for

Partial Differential Equations, 25 (2009), 526–551.

[7] L. Demkowicz, J. Kurtz, D. Pardo, M. Paszynski, W. Rachowicz and A. Zdunek, Computing

With hp-Adaptive Finite Element, Volume II, Chapman and Hal, 2007.

[8] N. Nigam and J. Phillips, Higher-order finite elements on pyramids, Technical report, 2007.

[9] N. Nigam and J. Phillips, Numerical integration for high order pyramidal finite elements, Technical

report, 2010.

28

[10] M. Bergot, G. Cohen and M. Duruflé, Higher-order finite elements for hybrid meshes using new

nodal pyramidal elements, Journal of Scientific Computing, 42:3 (2010), 345–381.

[11] S. Sherwin, T. Warburton and G. Karniadakis, Spectral/hp methods for elliptic problems on

hybrid grids, Contemporary Mathematics, 218 (1998), 191–216.

[12] M. Bluck and S. Walker, Polynomial basis functions on pyramidal elements, Comm. Numer.

Meth. Engng., 24 (2008), 1827–1837.

[13] C. Wieners, Conforming discretizations on tetrahedrons, pyramids, prisms and hexahedrons, 1957.

[14] R. Kirby, T. Warburton, I. Lomtev and G. Karniadakis, A discontinuous galerkin spectral/hp

method on hybrid grids, Applied Numerical Mathematics, 33 (2000), 393–405.

[15] G. Gassner, F. Lörcher, C. Munz and J. Hesthaven, Polymorphic nodal elements and their

application in discontinuous galerkin methods, Journal of Computational Physics, 228:5 (2009),

1573–1590.

[16] G. Cohen, Higher-Order Numerical Methods for Transient Wave Equations, Springer Verlag,

2002.

[17] M.J.S.Chin-Joe-Kong, W. Mulder and M.V. Veldhuizen, Higher-order triangular and tetrahe-

dral finite element with mass lumping for solving the wave equation, Journal of Engineering

Mathematics, 35 (1999), 405–426.

[18] M. Costabel and M. Dauge, Weighted regularization of Maxwell equations in polyhedral domains

a rehabilitation of nodal finite element, Numer. Math., 93 (2002), 239–277.

[19] P.R. E. Godlewski, Hyperbolic Systems of Conservation Laws, Ellipses, 1991.

[20] J. Hesthaven and T. Warburton, High-order nodal methods on unstructured grids. i. time-domain

solution of maxwell’s equations, J. Comput. Phys., 181:1 (2002), 186–221.

[21] P. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, 1978.

[22] G. Bedrosian, Shape functions and integration formulas for three-dimensional finite element

analysis, International Journal of Numerical Methods in Engineering, 35 (1992), 95–108.

[23] S. Pernet, Étude de méthodes d’ordre élevé pour résoudre les équations de Maxwell dans le

domaine temporel. Application á la détection et á la compatibilité électromagnétique, PhD thesis,

Université de Paris IX Dauphine, 2004.

[24] H. Carpenter and C.A. Kennedy, Fourth-order 2n-storage runge-kutta schemes, Technical report,

NASA Langley Research Center, 1994.

[25] P. Monk, Finite elements methods for Maxwell’s equations, Oxford Science Publication, 2002,

2002.

[26] P. Hammer, O. Marlowe and A. Stroud, Numerical integration over simplexes and cones, Mathe-

matical Tables and Other Aids to Computation, 10:55 (1956), 130–137.

[27] G. Szegö, Orthogonal Polynomials - Ch. 4 Jacobi Polynomials, 4th ed Amer. Math. Soc., Provi-

dence, RI, 1975.

[28] P. Amestoy, T.A. Davis and I.S. Duff, Algorithm 837 - amd, an approximate minimum degree

ordering algorithm, ACM Transactions on Mathematical Software, 30:3 (2004), 381–388.

[29] T. Warburton, Spectral/hp Methods on Polymorphic Multi-Domains: Algorithms and Applica-

tions, PhD thesis, Brown University, 1999.

[30] D. Dunavant, High degree efficient symmetrical gaussian quadrature rules for the triangle,

21 (1985), 1129–1148.

