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Abstract— For fixed c, the Prolate Spheroidal Wave Functions (PSWFs) ψn,c form a basis with
remarkable properties for the space of band-limited functions with bandwidth c. They have been
largely studied and used after the seminal work of D. Slepian, H. Landau and H. Pollack. Recently,
they have been used for the approximation of functions in the Sobolev space Hs([−1, 1]). In view
of this, we give new estimates on the decay rate of eigenvalues of the Sinc kernel integral operators.
This is one of the main issues of this work. A second one is the choice of the parameter c when
approximating a function in Hs([−1, 1]) by its truncated PSWFs series expansion. Such functions
may be seen as the restriction to [−1, 1] of almost time-limited and band-limited functions, for which
PSWFs expansions are still well adapted. Finally, we provide the reader with some numerical ex-
amples that illustrate the different results of this work.
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Key words and phrases. Prolate spheroidal wave functions, eigenvalues and eigenfunctions estimates,
asymptotic estimates, spectral approximation, Sobolev spaces.

1 Introduction

For a given value c > 0, called the bandwidth, PSWFs (ψn,c(·))n≥0 constitute an orthonormal basis
of L2([−1,+1]), an orthogonal system of L2(R) and an orthogonal basis of the Paley-Wiener space

Bc, given by Bc =
{
f ∈ L2(R), Support f̂ ⊂ [−c, c]

}
. Here, f̂ denotes the Fourier transform of

f . They are eigenfunctions of the compact integral operators Fc and Qc = c
2πF∗

cFc, defined on
L2([−1, 1]) by

Fc(f)(x) =

∫ 1

−1

ei c x yf(y) dy, Qc(f)(x) =

∫ 1

−1

sin c(x− y)

π(x− y)
f(y) dy. (1)

Since the operator Fc commutes with the Sturm-Liouville operator Lc,

Lc(ψ) = − d

d x

[
(1− x2)

dψ

dx

]
+ c2x2ψ, (2)

PSWFs (ψn,c(·))n≥0 are also eigenfunctions of Lc. They are ordered in such a way that the cor-
responding eigenvalues of Lc, called χn(c), are strictly increasing. Functions ψn,c are restrictions
to the interval [−1,+1] of real analytic functions on the whole real line and eigenvalues χn(c) are
values of λ such that the equation Lcψ = λψ has a bounded solution.
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PSWFs have been introduced by D. Slepian, H. Landau and H. Pollak [15, 27, 28, 29] in rela-
tion with signal processing. For a detailed review on the properties, the numerical computations,
asymptotic results and first applications of the PSWFs, the reader is refereed to the recent books
on the subject, [18], [24].

By Plancherel identity, PSWFs are normalized so that

∫ 1

−1

|ψn,c(x)|2 dx = 1,

∫

R

|ψn,c(x)|2 dx =
1

λn(c)
, n ≥ 0. (3)

Here, (λn(c))n is the infinite sequence of the eigenvalues of Qc, also arranged in the decreasing order
1 > λ0(c) > λ1(c) > · · · > λn(c) > · · · . We call µn(c) the eigenvalues of Fc. They are given by

µn(c) = in
√

2π

c
λn(c).

Also, we will adopt the following sign normalization of the PSWFs, given by

ψn,c(0) > 0 for even n, ψ′
n,c(0) > 0, for odd n. (4)

One of the main issues that we discuss here is the decay rate of the eigenvalues λn(c). This decay
rate plays a crucial role in most of the various concrete applications of the PSWFs. In this direction,
one knows their asymptotic behaviour for c fixed, which has been given in 1964 by Widom, see [32].

λn(c) ∼
(

ec

4(n+ 1
2 )

)2n+1

. (5)

This gives the exact decay for n large enough, but one would like to have a more precise information
in terms of uniformity of this behaviour, both in n and c. On the other hand, Landau has considered
the value of the smallest integer n such that λn(c) ≤ 1/2 in [14]. More precisely, if we note c∗n the
unique value of c such that λn(c) = 1/2, then he proves that

π

2
(n− 1) ≤ c∗n ≤ π

2
(n+ 1) λn(c

∗
n) =

1

2
. (6)

So, for c fixed, we almost know when λn(c) passes through the value 1/2. Landau and Widom have
also described the asymptotic behaviour, when c tends to ∞, of the distribution of the eigenvalues
λn(c).

The search for more precise estimates has attracted a considerable interest, both in numerical
and theoretical studies. We try here to give approximate values for λn(c) for c ≤ c∗n, with some
uniformity in the quality of approximation. We rely on the exact formula

λn(c) =
1

2
exp

(
−2

∫ c∗n

c

(ψn,τ (1))
2

τ
dτ

)
. (7)

We use our recent work [4, 5] to estimate the value ψn,τ (1). In the first paper it is proved that
|ψn,τ (1)| ≤ 2χn(τ)

1/4, which is not sufficient to find a sharp estimate for all values c. The approx-
imation given in the second paper leads to a second estimate, valid for πn

2 − c larger than some

multiple of lnn. We finally find an explicit expression λ̃n(c), and prove that it is comparable with
λn(c) up to some power of n. This is given by

λ̃n(c) =
1

2
exp


−π

2(n+ 1
2 )

2

∫ 1

Φ

(
2c

π(n+1
2
)

)
1

t(E(t))2
dt


 (8)
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Here E is the elliptic Legendre integral of the second kind. The function Φ is the inverse of the
function t 7→ t

E(t) .

When n tends to ∞ with c fixed, we recover the asymptotic behavior given by Widom, which is
already a good test of validity. Numerical experiments prove that this approximation is surprisingly
accurate.

As a corollary we have the following, which may be seen as a kind of quantitative Widom’s
Theorem.

Theorem 1. Let m > 0 be a positive real number and let M > m, ε > 0 be given. Then there exists
a constant A(ε,m,M) such that, for all m ≤ c ≤M

√
n and all n, we have the inequality

λn(c) ≤ A(ε,m,M)eεn
(

ec

4(n+ 1
2 )

)2n+1

. (9)

One can give an explicit constant A(ε,m,M). When c may take larger values, there is another

statement, where the equivalent found by Widom is replaced by λ̃n(c).

Let us mention that another method to approximate the values λn(c) has been used by Osipov
in [23]. The estimates given in his paper are of different nature and do not propose such a simple
formula. In addition, he mainly considers values of n such that πn

2 − c is smaller than some multiple
of ln c. At this moment both works may be seen complementary. But we underline the fact that
numerical tests validate the accuracy of the approximant (8) even when c is close to the critical
value, while our theoretical approach is not yet sufficient to do it.

Our second contribution is related to the quality of approximation in Sobolev spaces when a
function is replaced by the partial sum of its expansion in some PSWF basis. This question has
attracted a growing interest while, at the same time, were built PSWFs based numerical schemes for
solving various problems from numerical analysis, see [6, 7, 8, 30, 31]. In particular, in [6], the author
has shown that a PSWF approximation based method outperforms in terms of spatial resolution
and stability of timestep, the classical approximation methods based on Legendre or Tchebyshev
polynomials. The authors of [8] were among the first to study the quality of approximation by the
PSWFs in the Sobolev space Hs(I), s > 0, I = [−1, 1]. In particular, they have given an estimate of
the decay of the PSWFs expansion coefficients of a function f ∈ Hs(I), see also [6]. Recently, in [30],
the author studied the speed of convergence of the expansion of such a function in a basis of PSWFs.
We should mention that the methods used in the previous three references are heavily based on the
use of the properties of the PSWFs as eigenfunctions of the differential operator Lc, given by (2).
They pose the problem of the best choice of the value of the band-width c > 0, for approximating
well a given f ∈ Hs(I), but their answer is mainly experimental. It has been numerically checked
in [6, 30] that the smaller the value of s, the larger the value of c should be.

Our study tries to give a satisfactory answer to this important problem of the choice of the
parameter c. More precisely, we show that if f ∈ Hs(I), for some positive real number s > 0, then
for any integer N ≥ 1, we have

‖f − SNf‖L2(I) ≤ K(1 + c2)−s/2‖f‖Hs(I) +K
√
λN (c)‖f‖L2(I). (10)

Here, SNf =
N∑

k=0

< f, ψn,c > ψn,c and K is a constant depending only on s. Moreover, we study an

L2(I)−convergence rate of the projection SNf to f. This is done by using the decay of the eigenvalues
(λn(c))n as well as the use of some estimates of Legendre expansion coefficients of PSWFs, combined
with the following exponential decay rate of the PSWFs expansion coefficients for the exponential
trigonometric functions

|〈eikπx, ψn,c(x)〉| ≤M ′e−an, |k| ≤ n/M, n ≥ max (cM, 3) . (11)
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Here, c ≥ 1, M ≥ 1.40 and M ′, a > 0 are two positive constants. Under these hypotheses and
notations, our rate of convergence of SNf to f ∈ Hs(I), s > 0, s 6∈ 1

2 + N, is given as follows

‖f − SN (f)‖L2(I) ≤M ′(1 + (πN)2)−s/2‖f‖Hs +M ′e−aN‖f‖L2 . (12)

This work is organized as follows. In Section 2, we list some estimates of the PSWFs and
their associated eigenvalues χn(c). In Section 3, we prove a sharp exponential decay rate of the
eigenvalues λn(c) associated with the integral operator Qc. In section 4, we first give some useful
bounds of the moments of the PSWFs, then we give some practical and useful estimates of the
decay of the Legendre expansion coefficients of the PSWFs. In Section 5 we first give the quality
of approximation by the PSWFs in the set of almost time and band-limited functions. Then, we
combine these results with those of Section 4 and give a first L2(I)−error bound of approximating
a function f ∈ Hs(I) by its Nth terms truncated PSWFs series expansion. The proof of this bound
is based on the use of the quality of approximation of almost bandlimited functions by the PSWFs.
Then, we study a more elaborated error analysis of the spectral approximation by the PSWFs in the
periodic Sobolev space. This quality of approximation is then extended to the usual Sobolev space
Hs(I). These new estimates provide us with a way for the choice of the appropriate bandwidth c > 0
to be used by a PSWFs based method for the approximation in a given Sobolev space Hs(I). In
Section 6, we provide the reader with some numerical examples that illustrate the different results
of this work.

We will frequently skip the parameter c in χn(c) and ψn,c, when there is no doubt on the value
of the bandwidth. We then note q = c2/χn and skip both parameters n and c when their values are
obvious from the context.

2 Estimates of PSWFs and eigenvalues χn(c).

Here we first list some classical as well as some recent results on PSWFs and their eigenvalues χn(c),
then we push forward the methods and adapt them to our study. We systematically use the same
notations as in [5]. It is well known that the eigenvalues χn satisfy the classical inequalities

n(n+ 1) ≤ χn ≤ n(n+ 1) + c2. (13)

In case where q = c2/χn ≤ 1, the following better lower bound of χn has been recently given in [4],

n(n+ 1) + (3− 2
√
2)c2 ≤ χn. (14)

Next, we recall the elliptic Legendre integral of the first and second kind,that are given respectively,
by

K(k) =

∫ 1

0

dt√
(1− t2)(1− k2t2)

, E(k) =

∫ 1

0

√
1− k2t2

1− t2
dt, 0 ≤ k ≤ 1. (15)

Osipov has proved in [22] that the condition q = c2

χn
< 1 is fulfilled when c < πn

2 , while it is not when

c > π(n+1)
2 . This is part of the following statement, which gives precise lower and upper bounds of

the quantity
√
q =

c√
χn

, see [5].

Lemma 1. For all c > 0 and n ≥ 2 we have

Φ

(
2c

π(n+ 1)

)
<

c√
χn

< Φ

(
2c

πn

)
, (16)

where Φ is the inverse of the function k 7→ k
E(k) = Ψ(k), 0 ≤ k ≤ 1.
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This is equivalent to the fact that

πn

2E(
√
q)
<

√
χn <

π(n+ 1)

2E(
√
q)
. (17)

The left hand side is due to Osipov [22]. Note that Φ(0) = 0 and Φ(1) = 1. Also, we should mention
that since

Ψ′(x) =
E(x)− xE′(x)

(E(x))2
=

K(x)

(E(x))2
, 0 ≤ x < 1, (18)

then

0 ≤ Φ′(x) =
(E(Φ(x)))2

K(Φ(x))
≤ (E(0))2

K(0)
=
π

2
, 0 ≤ x < 1. (19)

Hence, Φ is an increasing function on [0, 1]. Moreover, since
2

π
≤ 1

E(x)
≤ 1, we have

2x

π
≤ Ψ(x) ≤ x.

One gets the following useful bounds of Φ,

x ≤ Φ(x) ≤ πx

2
, 0 ≤ x ≤ 1. (20)

We will use bounds for ψn,c given in [5], which have been established under the condition that

(1 − q)
√
χn > 3.5E(

√
q). Compared to [5], where the condition (1 − q)

√
χn(c) > 3.5E(

√
q) is

systematically used to develop the uniform estimates over [−1, 1] of the ψn, we leave some flexibility
for the choice of the constant κ. We will only need estimates at 1, which we give here in a slightly
different form compared to [5].

Let us first recall some notations.

εn = ((1− q)
√
χn)

−1
, α = 1.5, β = 0.37. (21)

At this moment we do not systematically replace α and β by numerical values to simplify further
improvements.

Lemma 2. Let n ≥ 3. We assume that the condition

(1− q)
√
χn(c) > κ (22)

is satisfied for some κ ≥ 4. Then, there exists a constant δ(κ) (independent of c and n) such that
one has the following bounds for A = ψn,c(1)χn(c)

−1/4.

π

2K(
√
q)

(1− δ(κ) εn) ≤ A2 ≤ π

2K(
√
q)

(1 + δ(κ) εn) . (23)

We refer to [4], Theorem 3, for the proof. Explicit values for the constant δ(κ) can also be
deduced from [5]. We can choose

δ(κ) = η
(
2 +

η

κ

)
, η = C(κ)

(
β

1 + (1− κ−1β)1/2
+

√
2ακ

κ− α

)
(24)

with C(κ)−1 = (1− κ−1β)1/2 −
√
2α

κ−α .
In any case, we see that the theoretical values of δ(κ) are larger that 4.6. This corresponds

to a systematic error in the approximation of the PSWFs. We find approximatively δ(4) ≈ 90,
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δ(12) ≈ 7.7. Numerical tests (see Example 1 in Section 6) tend to prove that the quantities δ(κ)
may be taken far much smaller.

We have proved in [4] that one has the inequality

|A| = |ψn,c(1)|χn(c)
−1/4 ≤ 2 for c ≤ π(n+ 1)

2
. (25)

So in particular the right hand side bound of (23) is not accurate when κ is small.

We need to translate Condition (22) in terms of the parameters n, c, which can be done by using
[Proposition 4, [5]]. The inequality given there is the following. For n ≥ 2 and q < 1,

(1− q)
√
χn ≥ (n− 2c

π )− e−1

log n+ 5
, (26)

A further improvement of the previous inequality is given by the following lemma:

Lemma 3. Let n ≥ 3, q < 1 and κ ≥ 4. Then one of the following conditions,

c ≤ n− κ, (27)

πn

2
− c >

κ

4
(ln(n) + 9), (28)

implies the inequality (22), that is,

(1− q)
√
χn(c) > κ.

Moreover, if we assume already that c > n+1
2 , then the condition πn

2 − c > κ
4 (ln(n)+ 6) is sufficient.

Proof. Let γ = 2c
πn . It follows from (17) that

1− γ < 1−√
q +

E(
√
q)− 1

E(
√
q)

. (29)

We claim that

E(x)− 1 ≤ (1− x2)

(
1

4
ln

(
1

1− x2

)
+ ln 2

)
. (30)

Let us assume this and go on with the proof. It follows that

1− γ <
1− q

E(
√
q)

(
1

4
ln

(
1

1− q

)
+

E(
√
q)

1 +
√
q
+ ln 2

)
. (31)

We then use the elementary inequality, valid for 0 < s < 1,

s ln(1/s) ≤ 1/n+ s ln(n/e).

It implies that

1− γ − 1

4nE(
√
q)
<

1− q

E(
√
q)

(
1

4
ln(n/e) +

E(
√
q)

1 +
√
q
+ ln 2

)
.

We use also (17) to conclude that

(1− q)
√
χn ≥ πn

2E(
√
q)
(1− q) > κ (32)

whenever
πn

2
− c > κ

(
1

4
ln(n/e)+)

E(
√
q)

1 +
√
q
+ ln 2

)
+

1

4n
.
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This is the case, in particular, when πn
2 − c > κ

4 (ln(n) + 9), using the fact that
E(

√
q)

1+
√
q ≤ π

2 .

The condition c ≥ n+1
2 implies that q > 1

π . Then, by using the value of E(
√
π−1), the constant

9 in (28) can be replaced by 6.
It remains to prove (30). We write

E(x)− 1 ≤ (1− x2)

∫ 1

0

1

(
√
1− x2t2 +

√
1− t2)

t dt√
1− t2

(33)

=

∫ 1

0

ds

(1− x2 + s2x2)
1
2 + s

. (34)

We cut the last integral into two parts. For the first one, from
√
1− x2 to 1, we replace the

denominator by 2s and find the logarithm term. For the second one we replace the denominator by√
1− x2 + s and find ln 2.

We will need another inequality of the same type:

1− 2c

πn
≤ 2(1− q)K(

√
q). (35)

This is a consequence of (29), using the fact that E(x) − 1 ≤ (1 − x2)K(x), which comes directly
from (33).

We end this section by giving bounds for the values of the successive derivatives of ψn at 0. We
have proved in [4] that

|ψn(0)|2 + χ−1
n |ψ′

n(0)|2 ≤
{

1 if 0 ≤ q ≤ 2
q+1√

q if q > 2.
(36)

Let us prove that, furthermore, successive derivatives at 0 may be also bounded.

Proposition 1. Assume that q =
c2

χn
< 1. Then for any integer k ≥ 0 satisfying k(k+1) ≤ χn, we

have ∣∣∣ψ(k)
n (0)

∣∣∣ ≤ (
√
χn)

k. (37)

Proof. Because of (36), it is sufficient to prove thatmk = (
√
χn)

−k
∣∣∣ψ(k)

n (0)
∣∣∣ is bounded by (|ψn(0)|2+

χ−1
n |ψ′

n(0)|2)1/2. Moreover, since ψn,c has same parity as n, then it is sufficient to consider even
derivatives or odd derivatives depending on the parity of n. Assume first that n is even and consider

k = 2l. We show that for a fixed n, ψ(2l)
n,c (0) has alternating signs, that is ψ

(k)
n,c(0)ψ

(k−2)
n,c (0) < 0.

Indeed, by an iterative use of the identity

(1− x2)ψ′′
n(x) = 2xψ′

n(x) + (c2x2 − χn)ψn(x),

one can easily check that the ψ(k)
n,c(0) = ψ(k)(0) are given by the following recurrence relation,

ψ(k+2)(0) = (k(k + 1)− χn)ψ
(k)(0) + k(k − 1)c2ψ(k−2)(0), k ≥ 0, (38)

with ψ(0) > 0, ψ(2)(0) = −χnψ(0). Note that ψ(2)(0)ψ(0) < 0. Assume that ψ(k)(0)ψ(k−2)(0) <
0. Multiplying both sides of (38) by ψ(k)(0), using the assumption that k(k + 1) ≤ χn as well
as the induction hypothesis, one concludes that the induction assumption holds for the order k.
Consequently, we have,

∣∣∣ψ(k+2)(0)
∣∣∣ = (χn − k(k + 1))

∣∣∣ψ(k)(0)
∣∣∣+ k(k − 1)c2

∣∣∣ψ(k−2)(0)
∣∣∣ , k ≥ 0. (39)
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This may be rewritten as

mk+2 =

(
1− k(k + 1)

χn

)
mk + k(k − 1)

q

χn
mk−2. (40)

The fact that all m2l are bounded by m0 = |ψ(0)| = m2 follows at once by induction. For n odd
the proof follows the same lines.

As a consequence of the previous proposition, we have the following corollary concerning the sign
and the bounds of the different moments of the ψn.

Corollary 1. Let c > 0, be a positive real number. We assume that q = c2/χn < 1. Then, for

j(j + 1) ≤ χn, all moments
∫ 1

−1
yjψn(y) dy of the same parity as n have the same sign and

∣∣∣∣
∫ 1

−1

yjψn(y) dy

∣∣∣∣ ≤
(
1

q

)j/2

|µn(c)|. (41)

Proof. By taking the j−th derivative at zero on both sides of

∫ 1

−1

eicxyψn(y) dy = µn(c)ψn(x), one

gets ∫ 1

−1

yjψn(y) dy = (−i)jc−jµn(c)ψ
(j)
n (0), with i2 = −1. (42)

Since ψ
(j)
n (0) and ψ

(j+2)
n (0) have opposite signs, then the previous equation implies that moments

have the same sign for any positive integer j with j(j + 1) ≤ χn. The second inequality of (41)
follows from the previous proposition.

3 Sharp decay estimates of eigenvalues λn(c).

In this section, we use some of the estimates we have given in the previous section and we prove a
sharp over-exponential decay rate of the eigenvalues (λn(c))n. We first recall that these λn(c) are
governed by the following differential equation, see for example [33],

∂c lnλn(c) =
2|ψn,c(1)|2

c
. (43)

As a consequence, for fixed n there exists a unique value of c for which λn(c) = 1/2, which we call
c∗n. We know from [14] that it can be bounded below and above, namely

π

2
(n− 1) ≤ c∗n ≤ π

2
(n+ 1) with λn(c

∗
n) =

1

2
. (44)

By combining (43) and (44), one gets

λn(c) =
1

2
exp

(
−2

∫ c∗n

c

(ψn,τ (1))
2

τ
dτ

)
. (45)

Our main result is the following theorem.

Theorem 2. There exist three constants δ1 ≥ 1, δ2, δ3,≥ 0 such that, for n ≥ 3 and c ≤ πn
2 ,

δ−1
1 n−δ2

(
c

c+ 1

)δ3

≤ λ̃n(c)

λn(c)
≤ δ1n

δ2

(
c

c+ 1

)−δ3

, (46)
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where

λ̃n(c) =
1

2
exp


−π

2(n+ 1
2 )

2

∫ 1

Φ

(
2c

π(n+1
2
)

)
1

t(E(t))2
dt


 . (47)

The factor c
c+1 can be replaced by 1 when c > 1 and replaced by c when c < 1. We have written

the formula this way to avoid to have to distinguish between the two cases, c ≥ 1 and 0 < c < 1.
It is simpler to write equivalent inequalities for logarithms, which is done in the following propo-

sition. We keep the same notations for constants, which are of course not the same. We note ln+(x)
the positive part of the Logarithm, that is, max(0, ln(x)). The following theorem is a fundamental
theorem that is required in the proof of the main Theorem 2.

Theorem 3. There exist three non negative constants δ1, δ2, δ3 such that, for n ≥ 3 and c ≤ πn
2 , we

have ∫ c∗n

c

(ψn,τ (1))
2

τ
dτ =

π2(n+ 1
2 )

4

∫ 1

Φ

(
2c

π(n+1
2
)

)
1

t(E(t))2
dt+ E , (48)

with
|E| ≤ δ1 + δ2 ln(n) + δ3 ln

+(1/c). (49)

Let us make some comments before starting the proof. At this moment the three constants are
not sufficiently small and cannot be used reasonably to obtain numerical values. But they can be
computed and are not that enormous. There is no hope, of course, to have found an exact formula
for λn(c) and (47) gives only an approximation. But these theoretical approximation errors may be
seen as a kind of theoretical validation of the quality of approximation, which we test numerically
in Section 6.

It has been observed by many authors, and predicted by the work of Landau and Widom [15],
that for fixed c the eigenvalues λn(c) decrease first exponentially in some interval starting at [ 2cπ ]+1
with length a multiple of ln(c), then super-exponentially as in the asymptotic behavior given by
Widom. This is what one observes in Formula (47), but the error terms do not allow to observe the
decay rate at the small decay starting region. In fact the tools that we use, that is, the lower and
upper bounds for ψn,τ (1)

2, are only valid for c∗n − τ sufficiently large in terms of ln(n).
We try to have small constants at each step but are certainly far from the best possible. We give

an explicit bound for E in (70).
The following notations will be used frequently in the sequel. We define

I(a, b) =

∫ b

a

(ψn,τ (1))
2

τ
dτ. (50)

J (y) =
π2

4

∫ 1

Φ( 2y
π )

1

t(E(t))2
dt (51)

We should mention that the proofs of Theorems 2 and Theorem 3, require many steps, so we
start by giving a sketch of these proofs.

Sketch of the proofs.

We want to prove that

I(c, c∗n) ≈ (n+
1

2
)J
(

c

n+ 1
2

)
.

Lemma 2 expresses the fact that, under some condition depending on a parameter κ, we have

ψn,τ (1))
2 ≈ π

√
χn(τ)

2K(
√
q(τ))

=
πτ

2
√
q(τ)K(

√
q(τ))

.

9



The parameter κ is related with the quality of approximation and Lemma 3 proves that the condition
for this may be written c < cκn for some cκn. From the last equivalence, it follows that

I(c, cκn) ≈
∫ cκn

c

πdτ

2
√
q(τ)K(

√
q(τ))

.

Then Lemma 1 will be interpreted as the fact that

√
q(τ)K(

√
q(τ)) ≈ Φ

(
2τ

π(n+ 1
2 )

)
K ◦ Φ

(
2τ

π(n+ 1
2 )

)
.

It is then elementary to rely the new integral with the function J and finally find that

I(c, cκn) ≈ (n+
1

2
)J
(

c

n+ 1
2

)
.

It remains to bound the tails of the integrals I(cκn, c
∗
n), which we can do because the two values are

sufficiently close.

Let us start the proof itself. We need a set of intermediate results that can be classified into
three main steps. The first step will concern the properties of the function J . In the second step, we
give bounds of the tails of the integrals. Finally, in the third step, we use the results of the previous
two steps and complete the proofs of Theorems 2 and 3.

First step: Properties of J .

We define

Jl(c) =
π

2

∫ πl
2

c

dτ

Φ
(
2τ
πl

)
K ◦ Φ

(
2τ
πl

) . (52)

Such integrals are clearly involved in the proof as seen in the sketch. We first see that they are
related with J .

Lemma 4. We have the identity
Jl(c) = lJ (c/l). (53)

Proof. We consider the substitution

s = Φ

(
2τ

πl

)
, τ =

πl

2
Ψ(s). (54)

We have already seen in (18) that Ψ′(x) = K(x)
(E(x))2 . Hence, we have

Jl(c) = l

∫ 1

Φ( 2c
πl

)

ds

s(E(s))2
= lJ (c/l).

The following proposition gives us upper and lower bounds, as well as the asymptotic behavior
of J .

Proposition 2. For x ∈ (0, π/2), one has the upper and lower bounds

ln+
(
1

x

)
≤ J (x) ≤ π2

4
ln
( π
2x

)
. (55)

Moreover, one can write

J (x) =
π2

4

∫ 1

Φ(2x/π)

dt

t(E(t))2
= ln

(
4

ex

)
+ E ′, (56)

with |E ′| ≤ π2x2

8 .
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Proof. The first inequalities are an easy consequence of bounds below and above of Φ, given by (20).
Let us prove (56). We first write, for 0 < y < 1,

π2

4

∫ 1

y

dt

t(E(t))2
+ ln(y) = ∆−

∫ y

0

π2

4 −E(t)2

t(E(t))2
dt = ∆− I1(y). (57)

Here

∆ =

∫ 1

0

π2

4 −E(t)2

t(E(t))2
dt.

It is probably well-known that

∆ = ln

(
4

e

)
(58)

but we did not find any reference. We will see it as a corollary of Widom’s Theorem. The integral

I1(y) is bounded by π2y2

8 . This is a consequence of the elementary inequalities

1 ≤ E(s) ≤ π

2
,

π

2
−E(s) ≤ x2

∫ 1

0

t2 dt√
1− t2

=
πs2

4
.

Let us now fix y = Φ(2x/π). At this point we have proved that

0 ≤ ln

(
x

y

)
− E ′ = I1(y) ≤

π2y2

8
.

From the inequalities

2y

π
≤ 2x

π
=

y

E(y)
≤ 2y

π
(1− y2

2
)−1 ≤ 2y

π
(1 + y2),

it follows that 0 ≤ ln
(

x
y

)
+ y2. We have proved the proposition.

This proposition leads to the following corollary, where we recognize the equivalent given by
Widom.

Corollary 2. We have the double inequality

1

2

(
ec

4(n+ 1
2 )

)2n+1

e
−π2

4
c2

n+1
2 ≤ λ̃n(c) ≤

1

2

(
ec

4(n+ 1
2 )

)2n+1

e
+π2

4
c2

n+1
2 . (59)

Proof. Just note that λ̃n(c) =
1

2
exp (−(2n+ 1)J (c/(n+ 1/2))) and use (56) with x = c

n+1/2 .

Let us go back to quantities Jl. It is a straightforward consequence of (53) that the quantity
Jl(c) increases with l. The next lemma gives reverse inequalities.

Lemma 5. We have the inequalities

Jn+1(c)−
π2

8
ln

(
π(n+ 1)

2c

)
− π3

16
≤ Jn+ 1

2
(c) ≤ Jn(c)−

π2

8
ln

(
π(n+ 1

2 )

2c

)
+
π3

16
. (60)

Proof. We will prove only one of the inequalities, the other one being identical. Elementary compu-
tations give

Jn+1(c)− Jn+ 1
2
(c) ≤ 1

2
J
(

c

n+ 1

)
+
π2

4
(n+

1

2
) ln



Φ
(

2c
π(n+ 1

2 )

)

Φ
(

2c
π(n+1)

)


 .

11



We use (55) for the first term. The second one is bounded by

π2

4
(n+

1

2
)
Φ
(

2c
π(n+ 1

2 )

)
− Φ

(
2c

π(n+1)

)

Φ
(

2c
π(n+1)

) ≤ π3

16
.

Indeed, this is a consequence of the fact that Φ′(x) ≤ π/2 and
x

Φ(x)
≤ 1, for 0 < x ≤ 1.

Second step: tails of the integrals.

We fix some constant κ ≥ 4 (for instance κ = 12) and we assume that n ≥ 2κ + 1. Then, we
know from Lemma 3, that the condition (22), that is,

(1− q)
√
χn > κ,

is satisfied for c < n+1
2 . Next, if we define

cκn = max

(
πn

2
− κ

4
(ln(n) + 6),

n+ 1

2

)
(61)

then, we have the following.

Lemma 6. For n ≥ 2κ+ 1 we have the inequality

I(cκn, c
∗
n) ≤ πκ ln(n) + 6πκ+ 2π2. (62)

Proof. Recall that |ψn,c(1)| ≤ 2χ1/4
n and

√
χn(c) ≤

π

2
(n+ 1), [22], so that

|ψn,τ (1)|2 ≤ 4
√
χn(τ) ≤ 2π(n+ 1).

Hence, we have

∫ c∗n

cκn

(ψn,τ (1))
2

τ
dτ ≤ 2π(n+ 1) ln

(
1 +

π
2 + κ

4 (ln(n) + 6)

cκn

)
.

We conclude by using the fact that cκn ≥ n+1
2 .

We claim that we can conclude the proof of Theorem 3 when n ≥ 2κ + 1 and c < cκn. More
precisely, we get, under these conditions, the inequalities

−π
2

16
(κ ln(n) + 6πκ+ π) ≤ I(c, c∗n)− (n+

1

2
)J
(

c

n+ 1
2

)
≤ πκ ln(n) + 6πκ+ 2π2 (63)

The right hand side comes from the previous lemma, the left hand side from (55).
We will conclude this paragraph by showing that we have also the conclusions of Theorem 3 and

Theorem 2 for the finite number of missing values of n, that is, n ≤ 2κ+ 1. There is no problem to
have upper bounds and lower bounds that do not depend on c for c < 1. From Corollary 2, we have

a precise estimate in terms of c2n+1 for λ̃n(c). The same is given for λn(c) by the following lemma.

Lemma 7. Assume that n ≥ 1 is fixed and let 0 < c < 1. Then there exist two constants δ(n), δ′(n)
such that

δ(n) c2n+1 ≤ λn(c) ≤ δ′(n) c2n+1. (64)
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Proof. We first note that I(1, c∗n) ≤ I(1, π(n+1)
2 ). We recall that on this interval we have the

inequality |ψn,τ (1)|2 ≤ 4π(n+1)
2 . So I(1, c∗n) ≤ 2π(n + 1) ln(π(n+1)

2 ). Inside the integral defining
I(c, 1) we use the following inequality, that may be found in [5],

∣∣∣∣∣|ψn,τ (1)| −
√
n+

1

2

∣∣∣∣∣ ≤
τ2

2
. (65)

So
∣∣I(c, 1)− (n+ 1

2 ) ln
(
1
c

)∣∣ ≤ 1, from which we conclude.

Third step: Proofs of Theorems 2 and 3.

We fix κ > 4. Because of the previous steps, which allowed to conclude in the other cases, we
can assume that

n ≥ 2κ+ 1 c < cκn = max

(
πn

2
− κ

4
(ln(n) + 6),

n+ 1

2

)
.

In view of (48), we want to give a bound to

E = I(c, c∗n)−
(
n+

1

2

)
J
(

c

n+ 1
2

)
.

We have already given a bound to a first error term

E1 = I(c, c∗n)− I(c, cκn).

Because of (62) we know that

0 ≤ E1 ≤ πκ ln(n) + 6πκ+ 2π2. (66)

Next, the conditions on κ allow to use the double inequality (23). Namely,

(ψn,τ (1))
2
=

π

2K(
√
q)

√
χn(τ) +R(τ), |R(τ)| ≤ δ(κ)

(1− q(τ))K(
√
q(τ))

, 0 ≤ τ ≤ cκn. (67)

This leads to a second error,

E2 = I(c, cκn)−
π

2

∫ cκn

c

dτ√
q(τ)K(

√
q(τ))

,

which is bounded by

|E2| ≤ δ(κ)

∫ cκn

c

1

(1− q(τ))K(
√
q(τ))

dτ

τ
.

Lemma 8. We have the inequality

|E2| ≤ 2δ(κ)

(
(1 +

πκ

4
) ln(n) + ln+(c) +

3πκ

2

)
. (68)

Proof. By (35), we know that

2(1− q(τ))K(
√
q(τ)) ≥ 1− 2τ

πn
.

So we have the inequality

|E2| ≤ 2δ(κ)

∫ 2cκn
πn

2c
πn

ds

(1− s)s
≤ 2δ(κ)

(
ln
(n
c

)
+ ln

(
1

1− 2cκn
πn

))
.

We conclude at once.
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It remains to consider the main term, that is,

Imain(c, c
κ
n) =

π

2

∫ cκn

c

√
χn(τ)

K(
√
q(τ))

dτ

τ
=
π

2

∫ cκn

c

dτ√
q(τ)K(

√
q(τ))

. (69)

We will use the monotonicity properties of
√
q(τ)K(

√
q(τ)) , namely

Φ

(
2τ

π(n+ 1)

)
K ◦ Φ

(
2τ

π(n+ 1)

)
≤
√
q(τ)K(

√
q(τ)) ≤ Φ

(
2τ

πn

)
K ◦ Φ

(
2τ

πn

)
.

It follows that
Jn(c)− Jn(c

κ
n) ≤ Imain(c, c

κ
n) ≤ Jn+1(c).

So the last error,

E3 = Imain(c, c
κ
n)− Jn+ 1

2
(c) = Imain(c, c

κ
n)−

(
n+

1

2

)
J
(

c

n+ 1
2

)
,

satisfies the inequalities

Jn(c)− Jn+ 1
2
(c)− Jn(c

κ
n) ≤ E3 ≤ Jn+1(c)− Jn+ 1

2
(c).

It remains to use (60) and (55) to conclude. We finally find that

|E| ≤ πκ ln(n)+6πκ+2π2+2δ(κ)

(
(1 +

πκ

4
) ln(n) + ln+(c) +

3πκ

2

)
+
π2

8
ln

(
π(n+ 1

2 )

2c

)
+
π3

16
. (70)

So we can take the following values for δ1, δ2, δ3.

δ1 = 22 + 3πκ(2 + δ(κ))

δ2 =
π2

8
+ πκ+ 2δ(κ)(1 +

πκ

4
)

δ3 =
π2

8
+ 2δ(κ)(1 +

πκ

4
).

It is easy to see from the proof above that this bound is also valid for cκn < c < nπ
2 , that is,

under the assumptions of Theorem 3, except for the values n ≤ 2κ + 1. These estimates are not
sharp enough to justify a further study to minimize the sum by a specific choice of κ. When κ = 12
we find δ2 ≈ 200. We could have improved bounds at each step, but not significantly. Numerical
experiments tend to prove that they are much smaller.

This concludes the proofs of Theorem 3 and Theorem 2.

From Theorem 3 and Corollary 2 we get the following corollary:

Corollary 3. There exist three constants δ1 ≥ 1, δ2, δ3,≥ 0 such that, for n ≥ 3 and c ≤ πn
2 ,

A(n, c)−1

(
ec

2(2n+ 1)

)2n+1

≤ λn(c) ≤ A(n, c)

(
ec

2(2n+ 1)

)2n+1

. (71)

with

A(n, c) = δ1n
δ2

(
c

c+ 1

)−δ3

e+
π2

4
c2

n .
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Widom’s Theorem says that A(n, c) can be replaced by a quantity that tends to 1 for n tending
to ∞. We cannot give such an asymptotic behavior at this moment, but we can estimate errors for
fixed c and n, which he does not. Remark that we used the fact that ∆ = ln(4/e), see (58), without
proving it or giving a reference. This is a consequence of the asymptotic behavior found by Widom,
which cannot be valid at the same time as (71) if e/4 is replaced by another constant. This implies
in particular Theorem 1.

It may be useful to give also the following corollary.

Corollary 4. There exist constants a > 0 and δ ≥ 1 such that, for c ≥ 1 and n > 1.35 c, we have

λn(c) ≤ δe−an. (72)

Proof. The constant 1.35 has been chosen so that 2 ln( 4nec ) >
π2c2

4n2 for n > 1.35 c.

Also, by using (71), one gets the following corollary.

Corollary 5. Let c ≥ 1, then for any 0 ≤ a < 4
e , there exists Na ∈ N such that

λn(c) ≤ e−2n log( an
c ), ∀ n ≥ Na.

Moreover, for any b > 4
e , there exists Nb ∈ N such that

λn(c) > e−2n log( bn
c ), ∀ n ≥ Nb.

4 Decay estimates of the Legendre expansion coefficients

Recently, there is an extensive amount of work devoted to new highly accurate computational meth-
ods of the PSWFs, see [3, 12, 33]. In particular, the methods given in [3, 33] are based on an
efficient quadrature method on the unit circle that provides highly accurate values of the PSWFs
inside [−1, 1], as well as accurate approximations of the different eigenvalues µn(c), n ≥ 0. The
methods developed in [12] for computing the values of the ψn,c(x) inside [−1, 1] and the eigenvalues
µn(c) are based on an appropriate matrix representation of the finite Fourier transform operator Fc,
given by (1). Also, we should mention a classical method known as Flammer’s method, [9] that uses
the differential operator Lc, is extensively used to compute the PSWFs and their eigenvalues. This
method is based on the following Legendre expansion of the PSWFs,

ψn(x) =
∑

k≥0

βn
kPk(x). (73)

Recall that ψn has the same parity as n. Hence, the previous Legendre expansion coefficients of
the ψn satisfy βn

k = 0 if n and k have different parities. The expansion (73) is in particular used
to compute the eigenvalues in terms of the coefficients βn

k . Indeed, using the fact that the Fourier
transform of the Legendre polynomials can be expressed in terms of Bessel functions, as well as the
property of ψn of being an eigenfunction of Fc, we have

ψn(x) =

√
2π

|µn(c)|
∑

k≥0

(−1)kβn
k

√
k + 1/2

Jk+1/2(cx)√
cx

, (74)

which extends analytically outside I. Here Jα denotes the Bessel function of the first kind and order
α > −1. As a consequence, Slepian has proved in [27] that

µn(c) =
2π

c

[∑
k≥0i

k
√
k + 1/2 βn

k Jk+1/2(c)∑
k≥0β

n
k

√
k + 1/2

]
, (75)
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is the exact value of the n−th eigenvalue of the finite Fourier transform operator Fc.
It is well known that the different expansion coefficients (βn

k )k as well as the corresponding
eigenvalues χn are obtained by solving the following eigensystem

(k + 1)(k + 2)

(2k + 3)
√
(2k + 5)(2k + 1)

c2βn
k+2 +

(
k(k + 1) +

2k(k + 1)− 1

(2k + 3)(2k − 1)
c2
)
βn
k (76)

+
k(k − 1)

(2k − 1)
√
(2k + 1)(2k − 3)

c2βn
k−2 = χn(c)β

n
k , k ≥ 0.

A useful decay estimate of the βn
k is based on the following positivity result of the βn

k .

Lemma 9. Let c > 0, be a fixed positive real number. Then, for all positive integers k, n such that
k(k − 1) + 1.13 c2 ≤ χn(c), we have βn

k ≥ 0.

Proof. We recall that the βn
k are given by the eigensystem (76). Let us first consider k = 2 (when

n is even) and k = 3 (when n is odd) satisfying the condition. We compute

βn
2 =

3
√
5

2c2

(
χn − c2

3

)
βn
0 ≥ βn

0 ≥ 0, βn
3 =

5
√
21

6c2

(
χn − 2− 3c2

5

)
βn
1 ≥ βn

1 ≥ 0.

For k ≥ 2, taking upper bounds for the fractions as in [8], Equation (76) implies that

2c2

3
√
5
(βn

k+2 + βn
k−2) ≥ (χn(c)− k(k + 1)− 11c2

21
)βn

k .

The constant 1.13 has been chosen so that 1.13 > 4
3
√
5
+ 11

21 . By the assumption on k it is not possible

for βk+2 and βk−2 to be bounded by βk, with βk > 0. The same is valid at each step k−2, k−4, · · · .
Since β2 ≥ β0 > 0 (resp. β3 ≥ β1 > 0) depending on the parity of n, the sequence β2j (resp. β2j+1)
is non decreasing for 2j ≤ k + 2 (resp. 2j + 1 ≤ k + 2). This implies the positivity.

The following proposition provides us with a useful decay rate of the expansion coefficients βn
k .

Proposition 3. Let c > 0, be a fixed positive real number. Then, for all positive integers n, k such
that k(k − 1) + 1.13 c2 ≤ χn(c), we have

|βn
0 | ≤

1√
2
|µn(c)| and |βn

k | ≤
√

5

4π

(
2√
q

)k

|µn(c)|. (77)

Proof. The first inequality follows from Corollary 1 and the fact that βn
0 =

1√
2

∫ 1

−1

ψn(y) dy. To

prove the second inequality, we first note that the moments of the normalized Legendre polynomials
are non-negative and they are given in [2], by

ajk =

∫ 1

−1

xjPk(x)dx =

{
0 if j < k or j − k is odd√

πj!

2j( j−k

2 )!Γ( k+j+3
2 )

if j − k ≥ 0 and j − k is even. (78)

Since xj =

j∑

k=0

ajkPk(x), then the moments of the ψn are related to the PSWFs Legendre expansion

coefficients by the following rule,

∫ 1

−1

xjψn(x) dx =

j∑

k=0

ajkβ
n
k .
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Since by the previous lemma, we have βn
k ≥ 0, for any 0 ≤ k ≤ j and since the ajk are positive, then

the previous equality implies that

βn
j ≤ 1

ajj

∫ 1

−1

xjψn(x) dx ≤ 1

ajj

(
1

q

)j/2

|µn(c)|. (79)

The last inequality follows from the previous corollary. On the other hand, we have

ajj =

√
π
√
j + 1/2j!

2jΓ(j + 3/2)
=

√
πj!

2j
√
j + 1/2Γ(j + 1/2)

.

Moreover, it is well known that j1−s ≤ Γ(j + 1)

Γ(j + s)
≤ (j + 1)1−s. Hence, we have

1

ajj
≤ 2j√

π

√
1 +

1

2j
≤ 2j

√
5

4π
, ∀ j ≥ 1. (80)

By combining (79) and (80), one gets the second inequality of (77).

Remark 1. The condition k(k − 1) + 1.13c2 ≤ χn(c) of the previous proposition can be replaced
with the following more explicit condition. Consider a real number A > 1, then by using (14),

one concludes that if n ≥ cα A√
A2−1

with α =
√
1.13 + 2

√
2− 3 ≈ 0.979 and k ≤ n/A, then the

conditions for (77) are satisfied. Moreover, the previous constant 0.979 is certainly not optimal, it
is a consequence of the non optimal lower bound of χn(c), given by (14).

Remark 2. In [8], by using the eigensystem (76), the authors have obtained under a stronger
condition, a decay of the Legendre coefficients (βn

k )k which is similar but less precise to the one we
have given by (77). More precisely, they have shown that if 0 < k ≤ 2m with m = O(n2/3) and
2m(2m+ 1) < log 2

2 χn, then there exists a constant D such that

|βn
k | ≤ D

(
2√
q

)k

|βn
0 |, for even k, |βn

k | ≤ D

(
2√
q

)k

|βn
1 |, for odd k.

5 Quality of the spectral approximation by the PSWFs

In this section, we first study the quality of approximation of almost band-limited functions by the
classical PSWFs, ψn that are concentrated on [−b, b], for some b > 0. Then, we extend this study
to the case of periodic and non periodic Sobolev space Hs([−1, 1]), s > 0.

5.1 Approximation of almost time and band-limited functions

In this paragraph, ‖ · ‖2 denotes the norm in L2(R). We show that the set {ψn(x), n ≥ 0} is well
adapted for the representation of almost time-limited and almost band-limited functions, which are
defined as follows.

Definition 1. Let T = [−a,+a] and Ω = [−b,+b] be two intervals. A function f , which we assume
to be normalized in such a way that ‖f‖2 = 1, is said to be ǫT−concentrated in T and ǫΩ−band
concentrated in Ω if ∫

T c

|f(t)|2 dt ≤ ǫ2T ,
1

2π

∫

Ωc

|f̂(ω)|2 dω ≤ ǫ2Ω.
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Up to a re-scaling of the function f , we can always assume that T = [−1, 1] and Ω = [−c,+c],
with c := ab. Indeed, for f that is ǫT−concentrated in T = [−a,+a] and ǫΩ−band concentrated in
Ω = [−b,+b], the normalized function g(t) =

√
af(at) is ǫT−concentrated in [−1,+1] and ǫΩ−band

concentrated in [−ab,+ab].
Before stating the theorem, let us give some notations. For f ∈ L2(R), we consider its expansion

f =
∑

n≥0 anψn,c in L2([−1,+1]). Due to the normalization of the functions ψn,c given by (3), the
following equality holds, ∫ +1

−1

|f(t)|2dt =
∑

n≥0

|an|2. (81)

We call SN,cf, the N -th partial sum, defined by

SN,cf(t) =
∑

n<N

anψn,c(t). (82)

We write more simply SNf when there is no ambiguity. In the next lemma, we prove that SNf
tends to f rapidly when f belongs to the space of band-limited functions. This statement is both
very simple and classical, see for instance [26, 27] or Theorem 3.1 in [30].

Lemma 10. Let f ∈ Bc be an L2 normalized function. Then

∫ +1

−1

|f − SNf |2dt ≤ λN (c). (83)

Proof. Since the set of functions ψn,c is also an orthogonal basis of Bc, the function f may be written
on R as f =

∑
n≥0 anψn,c, with

∫

R

|f(t)|2dt =
∑

n≥0

|λn(c)|−1|an|2. (84)

The two expansions coincide on [−1,+1], and, from (84) applied to f − SNf , it follows that

∫ +1

−1

|f − SNf |2dt ≤ sup
n≥N

|λn(c)|
∑

n≥N

|λn(c)|−1|an|2.

We use the fact that the sequence |λn(c)| decreases and (84) to conclude.

Next we define the time-limiting operator PT and the band-limiting operator ΠΩ by:

PT (f)(x) = χT (x)f(x), ΠΩ(f)(x) =
1

2π

∫

Ω

eixω f̂(ω) dω.

The following proposition provides us with the quality of approximation of almost time- and band-
limited functions by the PSWFs.

Proposition 4. If f is an L2 normalized function that is ǫT−concentrated in T = [−1,+1] and
ǫΩ−band concentrated in Ω = [−c,+c], then for any positive integer N, we have

(∫ +1

−1

|f − SNf |2dt
)1/2

≤ ǫΩ +
√
λN (c) (85)

and, as a consequence,
‖f − PTSNf‖2 ≤ ǫT + ǫΩ +

√
λN (c). (86)
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More generally, if f is an L2 normalized function that is ǫT−concentrated in T = [−a,+a] and
ǫΩ−band concentrated in Ω = [−b,+b] then, for c = ab and for any positive integer N, we have

‖f − PTSN,c,af‖2 ≤ ǫT + ǫΩ +
√
λN (c) (87)

where SN,c,a gives the N -th partial sum for the orthonormal basis 1√
a
ψn,c(t/a) on [−a,+a].

Proof: We first prove (85) by writing f as the sum of ΠΩf and g. Remark first that
∫ +1

−1
|g −

SNg|2dt ≤ ‖g‖2 ≤ ǫΩ. We then use Lemma 10 for the band limited function ΠΩf to conclude. The
rest of the proof follows at once.

Remark 3. Let f be a normalized L2 function that vanishes outside I and we assume that f ∈
Hs(R). Then f gives an example of 0-concentrated in I and ǫc-band concentrated in [−c,+c], with
ǫc ≤Mf/c

s and M2
f =

1

2π

∫
|f̂(ξ)|2|ξ|2sdξ.

5.2 Approximation by the PSWFs in Sobolev spaces

In this paragraph, we study the quality of approximation by the PSWFs in the Sobolev space
Hs([−1, 1]).We provide an L2([−1, 1])-error bound of the approximation of a function f ∈ Hs([−1, 1])
by the N−th partial sum of its expansion in the basis of PSWFs.

To simplify notation we will write I = [−1, 1]. We should mention that different spectral ap-
proximation results by the PSWFs in Hs(I) have been already given in [6, 8, 30]. More precisely,

the following result has been proved in [8]. Here ak(f) =
∫ 1

−1
f(x)ψk(x) dx.

Theorem 4. (Theorem3.1 in [8]). Let f ∈ Hs(I), s ≥ 0. Then

|aN (f)| ≤ C


N−2/3s‖f‖Hs(I) +

(√
c2

χN (c)

)δN

‖f‖L2(I)


 ,

where C, δ are independent of f,N and c.

In [30], the author has used a different approach for the study of the spectral approximation by

the PSWFs. More precisely, by considering the weighted Sobolev space H̃r(I), associated with the
differential operator Lc defined by

H̃r(I) =



f ∈ L2(I), ‖f‖2

H̃r(I)
= ‖Lr/2

c f‖2 =
∑

k≥0

(χk)
r|fk|2 < +∞



 ,

where f =
∑
fk is the expansion in the basis of PSWFs. The following result has been given in [30].

Theorem 5. (Theorem3.3 in [30]). For any f ∈ H̃r(I), with r ≥ 0, we have

‖f − SNf‖L2(I) ≤ (χN (c))−r/2‖f‖H̃r(I) ≤ N−r‖f‖H̃r(I).

It is important to mention that the error bounds of the spectral approximations given by the
previous two theorems, do not indicate how to choose a “good” value of the bandwidth c to approx-
imate a given f ∈ Hs(I). By a simultaneous use of the properties of the PSWFs as eigenfunctions
of the differential operator Lc and the integral operator Fc, we give a first answer to this question.
This is the subject of the following theorem.
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Theorem 6. Let c > 0 be a positive real number. Assume that f ∈ Hs(I), for some positive real
number s > 0. Then for any integer N ≥ 1, we have

‖f − SNf‖L2(I) ≤ K(1 + c2)−s/2‖f‖Hs(I) +K
√
λN (c)‖f‖L2(I). (88)

Here, the constant K depends only on s. Moreover it can be taken equal to 1 when f belongs to the
space Hs

0(I).

Proof. To prove (88), we first use the fact that for any real number s ≥ 0, there exists a linear and
continuous extension operator E : Hs(I) → Hs(R). Moreover, if f ∈ Hs(I) and F = E(f) ∈ Hs(R),
then there exists a constant K > 0 such that

‖F‖L2(R) ≤ K‖f‖L2(I), ‖F‖Hs(R) ≤ K‖f‖Hs(I). (89)

We recall that the Sobolev norm of a function F on R is given by

‖F‖2Hs(R) =
1

2π

∫

R

(1 + |ξ|2)s|f̂(ξ)|2 dξ.

In particular, for F c−bandlimited, one has

‖F‖2L2(R) ≤ (1 + c2)−s‖F‖2Hs(R).

Next, if F denotes the Fourier transform operator and if

G = F−1(F̂ · 1[−c,c]), H = F−1(F̂ · (1− 1[−c,c])),

then G is c−bandlimited and F = G + H. Moreover, since ‖Ĝ‖L2(R) ≤ ‖F̂‖L2(R) and ‖H‖L2(R) ≤
c−s‖F‖Hs(R), then by using (89), one gets

‖G‖L2(R) ≤ K‖f‖L2(I), ‖H‖L2(I) ≤ K(1 + c2)−s/2‖f‖Hs(I). (90)

Finally, by using the previous inequalities and the fact that G is c−bandlimited, one concludes that

‖f − SNf‖L2(I) ≤ ‖G − SNG‖L2(I) + ‖H − SNH‖L2(I)

≤
√
λN (c)‖G‖L2(R) + ‖H‖L2(I)

≤
√
λN (c)K‖f‖L2(I) +K(1 + c2)−s‖f‖Hs(I).

This concludes the proof for general f . When f is in the subspace Hs
0(I), one can take as

extension operator the extension by 0 outside I, so that the constant K can be replaced by 1.

Remark 4. This should be compared with the results of [30], given by Theorem 5. This has the
advantage to give an error term for all values of c, while the first term in (88) is only small for c
large enough. On the other hand, Wang compares his specific Sobolev space with the classical one
and finds that

‖f‖
H̃s(I)

≤ C(1 + c2)s/2‖f‖Hs(I).

For large values of N we clearly have
(1 + c2)

χN
≪ (1 + c2)−1, but it goes the other way around when

χN and 1 + c2 are comparable. So it may be useful to have both kinds of estimates in mind for
numerical purpose and for the choice of the value of c.

Remark 5. The error bound given by the previous theorem has the advantage to be explicitly given
in terms of c and λn(c). Nonetheless, it has a drawback that it does not imply a rate of convergence,
nor the convergence of SN (f) to f in the usual L2(I)−norm. To overcome this problem, we devote
the remaining of this section to a more elaborated convergence analysis in the 2-periodic Sobolev
space Hs

per, then we extend this analysis to the usual Hs(I)−space.
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Next, we consider the subspace Hs
per of functions in Hs(I) that extend into 2−periodic functions

of the same regularity. For such functions, one can also use the norm

‖f‖Hs
per

=
∑

k∈Z

(1 + (kπ)2)s|bk(f))|2.

Here,

bk(f) =
1√
2

∫ +1

−1

f(x)e−iπkxdx =
1√
2
f̂(kπ)

is the coefficient of the Fourier series expansion of f. We then have the following theorem.

Theorem 7. Let c ≥ 1, then there exist constants M > 1.40 and M ′, a > 0 such that, when
N ≥ max(cM, 3) and f ∈ Hs

per, s > 0, we have the inequality

‖f − SN (f)‖L2(I) ≤M ′(1 + (πN)2)−s/2‖f‖Hs
per

+M ′e−aN‖f‖L2 . (91)

Proof. We start with reductions of the problem, which are analogous to the ones that we have
detailed above. It is sufficient to prove this separately with the constant M ′/2 for periodic functions
g and h = f − g, where g is the projection of f onto the subspace of Hs

per whose Fourier coefficients
bk(f) are zero for |k| > N/M. Moreover, we have directly the inequality without a second term,
since the L2 norm of h may be bounded by the first term multiplied by some constant. So, let us
prove the inequality for g. This time we will prove that the inequality holds without the first term,
that is,

‖g − SN (g)‖L2(I) ≤
M ′

2
e−aN‖g‖L2(I).

The next reduction consists of restricting to exponentials eikπx, with |k| ≤ N/M . Indeed, assume
that we prove the previous inequality for all of them, with a uniform bound by M ′′e−a′N . Then, by
linearity we will have

‖g − SN (g)‖L2(I) ≤M ′′e−a′N
∑

|bk(g))| ≤M ′′e−a′N
√
2[N/M ] + 1 e−aN‖g‖L2(I).

This in turn gives constants the required form by choosing a < a′.
So we content ourselves to consider f(x) = eikπx, with |k| ≤ N/M . Finally, since ‖f −

SNf‖2L2(I) =
∑

〈f, ψn〉2, it is sufficient to have such an estimate for each n > N , and conclude

by taking the sum
∑

n>N e−an. So the proof is a consequence of the following lemma.

Remark 6. The previous theorem gives the rate of convergence of the truncated PSWFs series
expansion of a function f from Hs

per. This rate of convergence will be generalized in the sequel to
the usual Hs(I)−space. Note that this rate of convergence drastically improves the one given by [8].
Moreover, unlike the error bound given in [30], the decay of the error bound given by the previous
theorem is still even when N is comparable to c. Nonetheless, in practice, Theorem 6 is useful in
the sense that provides us with a criteria for the choice of the bandwidth c > 0, that depends on
magnitude of the Sobolev exponent s > 0. The smaller s, the larger c should be and vice versa.

Lemma 11. Let c ≥ 1, then there exist constants M > 1.40 and M ′, a > 0 such that, when
n ≥ max (cM, 3) and f(x) = eikπx with |k| ≤ n/M, we have

|〈f, ψn〉| ≤M ′e−an. (92)
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Proof. This scalar product can be written by using (74)

< eikπx, ψn > =

∫ 1

−1

eikπx ψn(x) dx =
∑

m≥0

βn
m < eikπx, Pm >=

∑

m≥0

βn
m

√
2

k

√
m+ 1/2Jm+1/2(kπ)

=

[n/M ]∑

m=0

βn
m

√
2

k

√
m+ 1/2Jm+1/2(kπ) +

∑

m≥[n/M ]+1

βn
m

√
2

k

√
m+ 1/2Jm+1/2(kπ)

= In1 + In2 .

To bound In1 , we first remark that the Fourier transform of Pnχ[−1,1] is bounded by 1 and then we
use remark 1 to check that (77) is satisfied whenever n ≥ cM with M ≥ 1.40. Hence, we have

|In1 | ≤
[n/M ]∑

m=0

|βn
m| ≤

√
5

4π
|µn(c)|

[n/M ]∑

m=0

(
2
√
χn

c

)m

≤ K

(
2
√
χn

c

)[n/M ]+1

|µn(c)|.

Moreover, taking into account the decay of the µn(c) given by (72) and using the upper bound of
χn, we conclude that

|In1 | ≤ K ′
(
π(n+ 1)

c

) n
M

+1

e−δn ≤ K ′′e−an (93)

for some sufficiently small positive real number a, as soon as M > 1.40. To bound In2 , it suffices to
use the fact that |βn

k | ≤ 1 and the bound of the Bessel function given by [2],

|Jα(x)| ≤
|x|α

2αΓ(α+ 1)
, ∀α > −1/2, ∀x ∈ R, (94)

one concludes that

|In2 | ≤
∑

m≥n/M

√
2/k
√
m+ 1/2|Jm+1/2(kπ)| ≤

∑

m≥[n/2]+1

√
2/k
√
m+ 1/2

(kπ)m+1/2

2m+1/2Γ(m+ 3/2)

≤
∑

m≥[n/M ]+1

(kπ)m

2m
√
m+ 1/2Γ(m+ 1/2)

.

Moreover, since Γ(m+ 1/2) ≥ m!/
√
m+ 1 and m! ≥ (m/e)m

√
2πm, each term is bounded by an

exponential e−an and we find the required estimate for |In2 |.

Remark 7. We also have a bound of the error for ordinary polynomials. Indeed, if we consider the
polynomial f(x) := xj, then

an(f) =

∫ 1

−1

yjψn,c(y) dy = (−i)jc−jµn(c)ψ
(j)
n,c(0), with i2 = −1.

We can then use Proposition 5 to conclude that if c2/χN < 1, then

‖f − SNf‖22 ≤ C2
∑

k≥N

(
χk(c)

c2

)j

|µk(c)|2. (95)

As a corollary of the previous theorem and remark, we obtain the following corollary that extends
the result of the previous theorem to the case of the usual Sobolev space Hs([−1, 1]).
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Corollary 6. Let c ≥ 1, and let s > 0 with [s] = m ∈ N, and s 6∈ 1
2 + N. Let f ∈ Hs(I), then there

exist constants M ≥ 1.40 and M ′,M ′
s > 0 such that, when N ≥ max (cM, 3), we have the inequality

‖f − SN (f)‖L2(I) ≤M ′
s(1 +N2)−s/2‖f‖Hs([−1,1]) +M ′e−aN‖f‖L2([−1,1]). (96)

Proof. Since f ∈ Hs([−1, 1]) with [s] = m, and s 6∈ 1
2 + N, then there exists a polynomial P , of

degree at most m, such that f + P ∈ Hs
per. Consequently, by using the previous theorem and the

inequality (95), one concludes for (96).

6 Numerical results

In this section, we illustrate the results of the previous sections by various numerical examples.

Example 1: In this first example, we illustrate the fact that the actual values of the constants κ
and δ(κ), given by (22) and (23), respectively, are far much smaller than the theoretical values given
in the proof of Lemma 2. We are interested in these values for n ≥ 2c/π. For this purpose, we have
considered the values of c = mπ,m = 10, 20, 30, 40. Then, we have used Flammer’s method and
computed high accurate values of χn(c) and ψn,c(1). Then, we have computed the smallest value of
κ, denoted by κc and ensuring the bounds (23). Also, we have computed the corresponding values
δ(κc) so that A2 is equal to its upper bound given in (23). It turns out that κc, the critical value
of κ, is obtained for n−th eigenvalues χn(c) with n = nc = [2c/π]. Also, by considering various
consecutive values of nc ≤ n ≤ nc + 40 and by computing the corresponding values of κ and δ(κ),
we found that the max δ(κ) is of the same size as κc. Table 1 shows the values of the critical values
κc and δ(κc) for the different values of the bandwidth c. Also, we give the values of max δ(κ).

c nc κc δ(κc) max δ(κ).
10π 20 0.447 0.058 0.091
20π 40 0.413 0.051 0.084
30π 60 0.394 0.047 0.080
40π 80 0.335 0.025 0.048

Table 1: Critical values of κ, δ(κ) and max δ(κ) for different values of c.

Example 2: In this example, we compare the explicit formula given by Theorem 2 to compute
highly accurate values of λn(c). For this purpose, we have considered the values of c = 10π, 20π, 30π
and computed λn(c) by using the method given in [12]. Then, we have implemented our formula
(47) in a Maple computing software code. Figure 1 (a), (b), (c) show the graph of ln(λn(c)) versus

the graph of ln(λ̃n(c)), for the different values of c and n. Also, we have plotted in Figure 2, the

graphs of the corresponding values of ln

(
λn(c)

λ̃n(c)

)
. These figures illustrate the surprising precision

of the explicit formula of Theorem 3 for computing the λn(c) which is numerically valid whenever
q < 1.

Next, to illustrate the quality of approximation by the ψn in the Sobolev space Hs(I), we first
describe a numerical method for the computation of the PSWFs series expansion coefficients of a
function from the Sobolev space Hs(I). Note that if f ∈ Hs

per, s > 0, then its different PSWFs
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Figure 1: Graphs of ln(λ̃n(c)) (boxes) and ln(λn(c)) (red) with c = 10π for (a), c = 20π for (b) and
c = 30π for (c).

Figure 2: Graphs of ln

(
λn(c)

λ̃n(c)

)
with c = 10π for (a), c = 20π for (b) and c = 30π for (c).

series expansion coefficients can be easily approximated as follows. For a positive integer K, an
approximation aKn (f) to an(f) is given by the following formula

aKn (f) =
µn(c)√

2

K∑

k=−K

bk(f)ψn,c

(
kπ

c

)
= an(f) + ǫK , (97)

where the bk(f) are the Fourier coefficients of f and where ǫK =
1√
2

∑

|k|≥K+1

µn(c)bk(f)ψn,c

(
kπ

c

)
.

Moreover, from the well known asymptotic behavior of the ψn,c(x), for large values of x, see for

example [12], one can easily check that ǫK = o

(
1

((K + 1)π)1+s

)
. This computational method of

the an(f) has the advantage to work for small as well as large values of the smoothness coefficient
s > 0.

Also, note that if f ∈ Hs([−1, 1]), where s > 1/2 + 2m,m ≥ 1, is an integer, then f ∈
C2m([−1, 1]). Moreover since ψn,c ∈ C∞(R), then the classical Gaussian quadrature method, see
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Table 2: Values of EN (s) for various values of N and s.

s = 0.75 s = 1 s = 1.25 s = 1.5 s = 1.75 s = 2.0
N EN (s) EN (s) EN (s) EN (s) EN (s) EN (s)
20 4.57329E-01 4.66173E-01 4.85990E-01 5.05973E-01 5.23232E-01 5.37227E-01
30 3.15869E-01 3.11677E-01 3.28241E-01 3.48562E-01 3.67260E-01 3.82963E-01
40 1.06843E-01 1.52009E-01 1.91237E-01 2.20969E-01 2.43432E-01 2.60523E-01
50 4.09844E-02 6.88472E-02 1.01827E-01 1.26518E-01 1.44809E-01 1.58520E-01
60 3.30178E-02 2.09084E-02 3.25551E-02 4.28999E-02 5.06959E-02 5.65531E-02
70 3.15097E-02 8.82446E-03 2.51157E-03 7.35725E-04 2.33066E-04 1.04137E-04
80 3.01566E-02 8.55598E-03 2.40312E-03 6.87458E-04 1.98993E-04 5.80481E-05
90 2.67972E-02 7.64167E-03 2.14661E-03 6.15062E-04 1.78461E-04 5.22848E-05
100 2.39141E-02 6.72825E-03 1.82818E-03 5.10057E-04 1.45036E-04 4.19238E-05

for example [2] gives us the following approximate value ãn(f) of the (n + 1)−th expansion coeffi-
cient an(f) =< f, ψn,c >,

ãn(f) =

m∑

l=1

ωlf(xl)ψn,c(xl) = an(f) + ǫn, (98)

with |ǫn| ≤ sup
η∈[−1,1]

1

b2m

(f · ψn,c)
(2m)(η)

(2m)!
. Here, bm is the highest coefficient of Pm, and the different

weights ωl and nodes xl, are easily computed by the special method given in [2].
The following examples illustrate the quality of approximation in Hs(I) by the PSWFs.

Example 3: In this example, we consider the Weierstrass function

Ws(x) =
∑

k≥0

cos(2kx)

2ks
, −1 ≤ x ≤ 1. (99)

Note thatWs ∈ Hs−ǫ([−1, 1]), ∀ǫ < s, s > 0.We have considered the value of c = 100, and computed

Ws,N , the N−th terms truncated PSWFs series expansion of Ws with different values of
3

4
≤ s ≤ 2

and different values of 20 ≤ N ≤ 100. Also, for each pair (s,N), we have computed the corresponding

approximate L2− error bound EN (s) =

[
1

50

50∑

k=−50

(Ws,N (k/50)−Ws(k/50))
2

]1/2
. Table 2 lists the

obtained values of EN (s). Note that the numerical results given by Table 2, follow what has been
predicted by the theoretical results of the previous section. In fact, the L2−errors ‖Ws − ΠNWs‖2
is of order O(N−s), whenever N ≥ Nc ∼

[
2c

π

]
+ 4. In the case, where c = 100, Nc = 67. The graphs

of W3/4(x) and W3/4,N (x), N = 90 are given by Figure 3.

Example 4: In this example, we let s > 0 be any positive real number and we consider the Brownian
motion function Bs(x) given by as follows.

Bs(x) =
∑

k≥1

Xk

ks
cos(kπx), −1 ≤ x ≤ 1. (100)
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Figure 3: (a) graph of W3/4(x), (b) graph of W3/4,N (x), N = 90.

Here, Xk is a Gaussian random variable. It is well known that Bs ∈ Hs([−1, 1]). For the special
case s = 1, we consider the band-width c = 100, a truncation order N = 80 and compute B1,N the
approximation of B1 by its N−th terms truncated PSWFs series expansion. The graphs of B1 and
B1,N are given by Figure 4.

Figure 4: (a) graph of B1(x), (b) graph of B1,N (x), N = 80.

Remark 8. From the quality of approximation in the Sobolev spaces Hs([−1, 1]) given in this paper
and in [6, 8, 30], one concludes that for any value of the bandwidth c ≥ 0, the approximation error
‖f − SNf‖2 has the asymptotic order O(N−s). Nonetheless, for a given f ∈ Hs([−1, 1]), s > 0
which we may assume to have a unit L2−norm and for a given error tolerance ǫ, the appropriate
value of the bandwidth c ≥ 0, corresponding to the minimum truncation order N, ensuring that
‖f − SNf‖2 ≤ ǫ, depends on whether or not, f has some significant Fourier expansion coefficients,
corresponding to large frequency components. In other words, the faster decay to zero of the Fourier
coefficients of f, the smaller the value of the bandwidth should be and vice versa.
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