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Sharp rate for the dual quantization problem

Gilles Pagès∗ Benedikt Wilbertz†

December 15, 2010

Abstract

In this paper we establish the sharp rate of the optimal dual quantization problem. The
notion of dual quantization was recently introduced in the paper [8], where it was shown that,
at least in an Euclidean setting, dual quantizers are based on a Delaunay triangulation, the
dual counterpart of the Voronoi tessellation on which “regular” quantization relies. Moreover,
this new approach shares an intrinsic stationarity property, which makes it very valuable for
numerical applications.

We establish in this paper the counterpart for dual quantization of the celebrated Zador
theorem, which describes the sharp asymptotics for the quantization error when the quantizer
size tends to infinity. The proof of this theorem relies among others on an extension of the
so-called Pierce Lemma by means of a random quantization argument.

Keywords: Quantization, Rate, Zador’s Theorem, Pierce’s Lemma, Dual Quantization, Delaunay
triangulation, Random Quantization.

MSC: 60F25

1 Introduction

In [8], we introduced a new notion of vector quantization called dual quantization (or Delaunay
quantization in an Euclidean framework). The principle of dual quantization is to map an R

d-
valued random vector (r.v.) onto a finite grid Γ ⊂ R

d using an appropriate random splitting
operator JΓ : Ω0 × R

d → Γ (defined on an exogenous probability space (Ω0,S0,P0)) satisfying
an intrinsic stationary property

∀ ξ∈ conv(Γ), EP0(JΓ(ξ)) =

∫

Ω0

JΓ(ω0, ξ)P0(dω0) = ξ. (1)

Then, for every random vector (r.v.) X taking values in conv(Γ) defined on a probability space
(Ω,S,P) (once canonically extended on (Ω0 × Ω,S0 ⊗ S,P0 ⊗ P)),

EP0⊗P(JΓ(X) |X) = X.

This means that the resulting approximation JΓ(X) of X always satisfies a reverse stationarity
property which can be compared to the one satisfied by the nearest neighbour projection ProjΓ(X)
of X onto Γ, namely E(X |ProjΓ(X)) = ProjΓ(X) which is mainly satisfied by optimal grids for
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the mean (regular) quadratic quantization error (see below) in an Euclidean framework. It has
been emphasized in [8, 6, 7] how to take advantage of this intrinsic stationary property to produce
more accurate cubature formulae for (conditional) expectation approximation regardless of any
optimality property of the grid(s). This new quantization modulus leads to an optimal dual
quantization problem

dn,p(X) = inf
{
‖Fp(X ; Γ)‖p, Γ⊂ R

d, |Γ| ≤ n
}
,

where Fp denotes the local dual quantization error function

Fp(ξ; Γ) = inf

{(∑

x∈Γ

λx‖ξ − x‖p
) 1

p

, λx∈ [0, 1],
∑

x∈Γ

λx x = ξ,
∑

x∈Γ

λx = 1

}
.

Since this notion only makes sense for compactly supported r.v. X , we also consider the extension
to unbounded r.v. X (see [8]) defined by

F̄p(ξ; Γ) := Fp(ξ; Γ)1conv(Γ)(ξ) + dist(X,Γ)1conv(Γ)c(ξ).

and the extended dual quantization error given by

d̄n,p(X) = inf
{
‖F̄p(X ; Γ)‖p, Γ⊂ R

d, |Γ| ≤ n
}
.

Recall that the “regular” Voronoi optimal quantization problem reads

en,p(X) = inf

{(
Emin

x∈Γ
‖X − x‖p

) 1
p

, Γ ⊂ R
d, |Γ| ≤ n

}

It is well-known that en,p(X) ↓ 0 as soon as n → ∞ and X ∈ Lp(P). Moreover, this rate of
convergence to 0 of en,p(X) is ruled by the celebrated Zador Theorem (see [3])

Theorem 1. Let X ∈ Lp′

Rd(P), p′ > p. Assume the distribution PX of X is decomposed as
PX = h.λd + ν, ν ⊥ λd. Then

lim
n→∞

n
1
d en,p(X) = Qvq

‖·‖,p,d ‖h‖
1
p

d
p+d

where
Qvq

‖·‖,p,d = inf
n→∞

n
1
d en,p(U([0, 1]d))∈ (0,∞).

This rate depending on d is known as the curse of dimensionality. Its statement and proof go back
to Zador in 1954 for uniform distribution, with an extension to possibly unbounded absolutely
continuous distributions by Bucklew and Wise (see [1]). It has been finally established rigourously
(as far as mathematical standard are concerned) in [3] in 2000. A comprehensive survey of the
history of quantization can be found in [4].

The aim of this paper is to prove for any p > 0 and any norm on R
d a counterpart of Zador’s

Theorem in the framework of dual quantization for both dn,p and d̄n,p error moduli.

Theorem 2. (a) Let X ∈ L∞
Rd(P). Assume the distribution PX of X reads PX = h.λd + ν,

ν ⊥ λd. Then

lim
n→∞

n
1
d dn,p(X) = lim

n→∞
n

1
d d̄n,p(X) = Qdq

‖·‖,p,d ‖h‖
1
p

d
p+d

where
Qdq

‖·‖,p,d = inf
n→∞

n
1
d dn,p(U([0, 1]d))∈ (0,∞).
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(b) Let X ∈ Lp′

Rd(P), p
′ > p. Assume the distribution PX of X reads PX = h.λd + ν, ν ⊥ λd.

Then

lim
n→∞

n
1
d d̄n,p(X) = Qdq

‖·‖,p,d ‖h‖
1
p

d
p+d

.

(c) If d = 1, then

dn,p(U([0, 1])) =

(
2

(p+ 1)(p+ 2)

) 1
p 1

n− 1
,

which implies Qdq
| . |,p,1 =

(
2p+1

p+2

) 1
p

Qvq
| . |,p,1.

Moreover we will also establish in Section 4 a upper bound for the dual quantization coefficient
Qdq

‖·‖,p,d when ‖·‖ = |·|ℓr .

Proposition 1. Let r, p ∈ [1,∞) and r ≤ p. Then it holds for every d ∈ N

Qdq

|·|ℓr ,p,d
≤ d

1
r ·Qdq

|·|,p,1.

Since this upper bound realizes the same asymptotic rate as in the case of regular quantization
(cf. Cor. 9.4 in [3]), we believe the rate of d

1
r to be also the true one for Qdq

‖·‖,p,d as d → ∞.

The paper is entirely devoted to the proof of Theorem 2. Our global strategy of proof is close
to that adopted in [3] for the original Zador’s Theorem. However, it differs at some points when
dealing with the extended modulus d̄n,p(X). In one dimension the exact rate O(n−1) for dn,p(X)
and d̄n,p(X) follows from a random quantization argument detailed in Section 3 which is an
extension of the so-called Pierce Lemma dn,p(X) (in fact, we even state a slightly more general

result than requested for or purpose). This rate can be transferred to O(n− 1
d ) in a d-dimensional

framework using a product (dual) quantization argument (see Section 2.2). Finally the sharp
upper bound is obtained in Section 4 by successive approximation procedures of the density of X
which follow the approach developed in [3] to prove the corresponding part of Zador’s Lemma,
whereas the lower bound relies on a new “firewall” Lemma.

Notations: conv(A) stands for the convex hull of A, |A| for its cardinality and ⌊x⌋ will denote
the (lower) integral part of the real x.

2 Dual quantization: definition and basic properties

2.1 Definitions

Assume R
d equipped with a norm ‖·‖. First we recall the definition of the regular quantization

problem for a random vector (r.v.) X : (Ω,S,P) → (Rd,Bd) and

Definition 1. Let X ∈ Lp
Rd(P) and Γ ⊂ R

d.

1. We define the Lp-mean regular quantization error for a grid Γ as

ep(X ; Γ) = (Emin
x∈Γ

‖X − x‖p)1/p = ‖d(X,Γ)‖Lp .

2. The optimal regular quantization error, which can be achieved by a grid Γ of size not ex-
ceeding n is given by

en,p(X) = inf
{
ep(X ; Γ) : Γ ⊂ R

d, |Γ| ≤ n
}
.
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Following [8], the dual quantization error can be introduced as follows.

Definition 2. Let X ∈ Lp(P) and Γ ⊂ R
d.

1. We define the local p-dual quantization error for a grid Γ as

Fp(ξ; Γ) = inf
{(∑

x∈Γ

λx‖ξ − x‖p
) 1

p

: λx ∈ [0, 1],
∑

x∈Γ

λxx = ξ,
∑

x∈Γ

λx = 1
}

2. The Lp-mean dual quantization error for X induced by a grid Γ is then given by

dp(X ; Γ) = ‖Fp(X ; Γ)‖Lp

=

(
E inf

{∑

x∈Γ

λx‖ξ − x‖p : λx ∈ [0, 1] and
∑

x∈Γ

λxx = ξ,
∑

x∈Γ

λx = 1
})1/p

.

3. The optimal dual quantization error, which can be achieved by a grid Γ of size not exceeding
n will be denoted by

dn,p(X) = inf
{
dp(X ; Γ) : Γ ⊂ R

d, |Γ| ≤ n
}
.

4. The extended Lp-mean dual quantization error induces by a grid Γ is defined by

d̄p(X,Γ) =
∥∥∥Fp(X ; Γ)1conv(Γ)(X) + dist(X,Γ)1conv(Γ)c(X)

∥∥∥
Lp

.

5. The optimal extended dual quantization error, which can be achieved by a grid Γ of size not
exceeding n will be denoted by

d̄n,p(X) = inf
{
d̄p(X ; Γ) : Γ ⊂ R

d, |Γ| ≤ n
}
.

Remarks. 1. Since the above quantities only depend on the distribution of the r.v. X we will
also write dp(P,Γ) for dp(X,Γ) and dn,p(P) for dn,p(X) where P = PX .

2. To alleviate notations, we will use throughout the paper F p, dp and d̄p, . . . instead of F p
p ,

dpp and d̄pp,. . .

In fact the terminology dual quantization refers to a canonical example of intrinsic stationary
splitting operator: the dual quantization operator.

To be more precise, assume R
d is equipped with a norm ‖ . ‖ and let p ∈ [1,+∞). Let Γ =

{x1, . . . , xn} ⊂ R
d be a grid of size n ≥ d+ 1 such that aff.dim(Γ) ≥ d+ 1.

The idea is to “split” ξ ∈ conv(Γ) among at most d + 1 affinely independent points in Γ (which
convex hull contains ξ) proportionally to its barycentric coordinates. There are usually many
possible choices so we introduced a minimal inertia based criterion to select the most appropriate
“neighbours” of ξ, namely the function Fp(ξ; Γ) defined for every ξ as the value of the minimization
problem

Fp(ξ; Γ) = inf
(λ1,...,λn)





(
n∑

i=1

λi‖ξ − xi‖
p

) 1
p

, λi ≥ 0,
∑

i

λi

[
xi

1

]
=

[
ξ
1

]


Owing to the compactness of constraint set, there exist at least one solution λ∗(ξ) and for any such
solution, one shows using convex extremality arguments that the set I∗(ξ) := {i∈ I s.t. λ∗

i (ξ) >
0} defines an affinely independent subset {xi, i∈ I∗(ξ)}.
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When this solution is always unique, the dual quantization operator is simply defined on conv(Γ)
by

∀ ξ∈ conv(Γ), ∀ω0∈ Ω0, J ∗
Γ (ω0, ξ) =

∑

i∈I(ξ)∗

xi1{
∑i−1

j=1 λ∗
j (ξ)≤U(ω0)<

∑
i
j=1 λ∗

j (ξ)}
.

Thus in the quadratic (p = 2) Euclidean case and when Γ is in the so-called “general position”,

then
{
{ξ s.t. I∗(ξ) = I}, |I| ≤ d+1

}
makes up a Borel partition of conv(Γ) (with possibly empty

elements), known in 2-dimension as the Delaunay triangulation of Γ (see [10] for the connection
to Delaunay triangulations). In a general framework, we refer to [8] for a construction of dual
quantization operators.
These operators plays the role of the nearest neighbour projections for “regular” Voronoi quan-
tization and one checks that

‖J ∗
Γ (X)−X‖Lp(P0⊗P) = ‖Fp(X ; Γ)‖Lp(P)

= E inf





(
n∑

i=1

λi‖X − xi‖
p

) 1
p

, λi ≥ 0,
∑

i

λi

[
xi

1

]
=

[
X
1

]
 .

The second step of the optimization process is to find grids which are optimally “fitting” (the
distribution of) X i.e. that are solution to the second level optimization problem

dn,p(X) = inf
{
‖J ∗

Γ (X)−X‖Lp(P0⊗P), J
∗
Γ : Ω0 × conv(Γ) → Γ, conv(Γ) ⊃ suppPX , |Γ| ≤ n

}
.

Note that if X ∈ L∞(P), dn,p(X) < +∞ iff n ≥ d + 1 (and is identically infinite if X is not
essentially bounded). The existence of an optimal grid (or dual quantizer) has been established
in [8] as well as the following characterization dn,p(X) as the lowest Lp-mean approximation error
by r.v. taking at most n values and satisfying the intrinsic stationary property i.e.

dn,p(X) = inf
{
‖X − X̂‖Lp(P0⊗P), |X̂(Ω0 × Ω)| ≤ n, EP0⊗P(X̂ |X) = X

}
.

A stochastic optimization procedure is devised in [8] based on a stochastic gradient approach to
compute optimal grids w.r.t. various distributions.

When a random vector X is not essentially bounded, the above approach cannot be developed
since no finite grid can contain its support. In that case, we need to extend the definition of our
splitting operator JΓ outside the convex hull of Γ. One way to proceed (see [8]) is to consider
again a (deterministic) nearest neighbour projection ProjΓ

∀ ξ ∈ R
d \ conv(Γ), JΓ(ω0, ξ) = ProjΓ(ξ).

We loose the intrinsic stationary property, however we were able to show the existence of an
optimal grid solution to the resulting minimization problem

d̄n,p(X) = inf
{
‖Fp(X ; Γ)1{X∈conv(Γ)} + dist(X,Γ)1{X/∈conv(Γ)}‖Lp(P)

}
.

It is clear that dn,p(X) and d̄n,p(X) do not coincide even for bounded r.v. but one can show that

min(dn,p(X), d̄n,p(X)) ≥ en,p(X)

where en,p(X) is the “regular” Voronoi Lp-mean quantization error at level n defined by

en,p(X) = inf
{
‖X − ProjΓ(X)‖Lp(P), |Γ| ≤ n

}
.

The above dual quantization problem is characterized in terms of best approximation in Lp by
the following theorem established in [8].

5



Theorem 3. Let X ∈ L0(Ω,S,P) and n ∈ N. Then

dn,p(X) = inf
{
E‖X − JΓ(X)‖Lp : JΓ : Ω0 × R

d → Γ, intrinsic stationary,

supp(PX) ⊂ conv(Γ), |Γ| ≤ n
}

= inf
{
E‖X − X̂‖Lp : X̂ : (Ω0 × Ω,S0 ⊗ S,P0 ⊗ P) → R

d,

|X̂(Ω0 × Ω)| ≤ n, E(X̂|X) = X
}
≤ +∞.

These quantities are finite iff X ∈ L∞(Ω,S,P).

As already mentioned, we established in [8] the existence of dual quantizers at level n ∈ N for
the Lp-norm when p ∈ (1,∞). We reproduce this result only for the reader’s convenience:

Theorem 4 (Existence of optimal quantizers). Let X ∈ Lp(P) for some p ∈ (1,∞).

(a) If supp(PX) is compact, then there exists for every n ∈ N a grid Γ∗
n ⊂ R

d, |Γ∗
n | ≤ n such

that dp(X ; Γ∗
n) = dn,p(X).

(b) If PX is strongly continuous in the sense that it assigns mass zero to all hyperplanes in R
d,

then there exists for every n ∈ N a grid Γ∗
n ⊂ R

d, |Γ∗
n | ≤ n such that d̄p(X ; Γ∗

n) = d̄n,p(X).

If furthermore |supp(PX)| ≥ n, then the above statements hold with |Γ∗
n | = n.

2.2 Local properties of the dual quantization functional

We establish in this paragraph some general properties for the local dual quantization functional
F p, which will be needed for the final proof of Theorem 2.

Proposition 2. Let Γ1, Γ2 ⊂ R
d be finite grids and let ξ∈ R

d. Then

Γ1 ⊂ Γ2 =⇒ Fp(ξ; Γ2) ≤ Fp(ξ; Γ1).

Proof. Assume Γ1 = {x1, . . . , xm} and Γ2 = {x1, . . . , xm, xm+1, . . . , xn}. Then

F p(ξ; Γ2) = min
λ∈Rn

n∑

i=1

λi ‖ξ − xi‖
p

s.t. [x1 ... xn

1 ... 1 ]λ=
[
ξ
1

]
, λ≥0

≤ min
λ=(λ1,0)

n∑

i=1

λi ‖ξ − xi‖
p

s.t. [x1 ... xm

1 ... 1 ]λ1=
[
ξ
1

]
, λ1≥0

= min
λ∈Rm

m∑

i=1

λi ‖ξ − xi‖
p

s.t. [x1 ... xm

1 ... 1 ]λ=
[
ξ
1

]
, λ≥0

= F p(ξ; Γ1).

Moreover, we will make use of the following three properties established in [8].

Proposition 3 (Scalar bound). Let Γ = {x1, . . . , xn} ⊂ R with x1 ≤ . . . ≤ xn. Then

∀ξ ∈ [x1, xn], F p(ξ; Γ) ≤ max
1≤i≤n−1

(xi+1 − xi

2

)p
.
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Proposition 4 (Local product Quantization). Let ‖·‖ = | · |ℓp defined for every ξ = (ξ1, . . . , ξd)∈

R
d by |ξ|ℓp =

(∑
1≤i≤d |ξ

i|p
)1/p

and Γ =

d∏

j=1

Γj for some Γj ⊂ R. Then

Fp(ξ; Γ) =




d∑

j=1

F p(ξj ,Γj)




1
p

.

One then may derive in the next proposition a first upper bound for the asymptotics of the
optimal dual quantization error of distributions with bounded support when the size of the grid
tends to infinity.

Proposition 5 (Product Quantization). Let C = a + ℓ[0, 1]d, a = (a1, . . . , ad) ∈ R
d, ℓ > 0,

be a hypercube, parallel to the coordinate axis with common edge length l. Let Γ be the product
quantizer of size (m+ 1)d defined by

Γ =

d∏

k=1

{
aj +

iℓ

m
, i = 0, . . . ,m

}
.

There exists a positive real constant Cd,‖·‖ such that

∀ξ ∈ C, F p(ξ; Γ) ≤ Cd,‖·‖ ·
( l
2

)p
·m−p. (2)

3 Extended Pierce lemma and applications

The aim of this section is to provide a non-asymptotic upper-bound for the optimal dual quanti-
zation error in the spirit of [9], which achieves nevertheless the optimal rate of convergence when
the size n goes to infinity. Like for “regular” Voronoi quantization this upper-bound deeply relies
on a random quantization argument. In fact, it can be established for a (slightly) more general
family of error functionals than the ones cosidered so far for dual and regular quantization.

3.1 One dimensional extended Pierce Lemma

Let
In := {(x1, . . . , xn)∈ R

n, −∞ < x1 ≤ x2 ≤ · · · ≤ xn < +∞}

be the set of “non-decreasing” n-tuples of Rn.

Definition 3. Let (Ω0,A) be a measurable space and let n ≥ 1 be an integer. A measurable
functional Φn : (Ω0 ×In ×R,A⊗BorIn⊗Bor(R)) → (R,Bor(R)) is called a splitting functional
at level n if it satisfies:

∀ (x1, . . . , xn)∈ In, ∀ ξ∈ R,




(i) ξ∈ [xi, xi+1], i = 1, . . . , n− 1 =⇒ ∀ω∈ Ω0, Φn(ω, x1, . . . , xn, ξ)∈ [xi, xi+1],
(ii) ξ∈ (−∞, x1] =⇒ ∀ω∈ Ω0, Φn(ω, x1, . . . , xn, ξ) = x1,
(iii) ξ∈ [xn,∞) =⇒ ∀ω∈ Ω0, Φn(ω, x1, . . . , xn, ξ) = xn

Examples: (a) Nearest neighbour/Voronoi quantization. For every i = 1, . . . , n− 1, let xi+ 1
2
:=

xi+xi+1

2 . Set

Φn(ω, x1, . . . , xn, ξ) =





xi if ξ∈ [xi, xi+ 1
2
),

∈ {xi, xi+1} if ξ = xi+ 1
2
,

xi+1 if ξ∈ (xi+ 1
2
, xi+1].
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(b) Dual quantization. Ω0 = [0, 1] and

Φn(ω, x1, . . . , xn, ξ) =

n−1∑

i=1

(
xi1{ω≤

xi+1−ξ

xi+1−xi
}

+xi+11{
ξ−xi

xi+1−xi
≥xn}

)
1[xi,xi+1)(ξ) + x11{ξ<x1}(ξ) + xn1{ξ≥xn}(ξ).

It follows from (i) that a splitting functional at level n satisfies for every p > 0, ω ∈ Ω0,
(x1, . . . , xn)∈ In, ξ∈ R,

d(ξ, {x1, . . . , xn})
p ≤ |ξ − Φn(ω, x1, . . . , xn, ξ)|

p ≤ Ap,n(x1, . . . , xn, ξ)
p (3)

where

Ap,n(x1, . . . , xn, ξ) =

(
n−1∑

i=1

(xi+1 − xi)
p1{xi≤ξ<xi+1} + (ξ − xn)

p1{ξ≥xn} + (x1 − ξ)p1{ξ<x1}

) 1
p

.

Let X be random variable defined on (Ω0,A,P).

X∈ Lp(P) =⇒ X − Φn(., x1, . . . , xn, X), A(x1, . . . , xn, X)∈ Lp(P).

Furthermore, it follows from (3) that

inf
(x1,...,xn)∈In

‖Ap,n(x1, . . . , xn, X)‖Lp ≥ inf
(x1,...,xn)∈In

‖X − Φn(., x1, . . . , xn, X)‖Lp ≥ en,p(X).

The functionals Ap,n share two important properties extensively used in what follows:

• Consistency : if, for every (x1, . . . , xn)∈ In and for every ξ∈ R,

∀ i ∈ {1, . . . , n− 1}, Ap,n(x1, . . . , xn, ξ) = Ap,n+1(x1, . . . , xi−1, xi, xi, xi+1, . . . , xn, ξ).

As a straightforward consequence, it follows that

n 7→ inf
(x1,...,xn)∈In

‖Ap,n(x1, . . . , xn, X)‖Lp is non-increasing. (4)

• Scaling: ∀ω∈ Ω0, ∀ (x1, . . . , xn)∈ In, ∀ ξ∈ R, ∀α∈ R+, ∀β∈ R

Ap,n(αx1 + µ, . . . , α xn + β, ξ) = αAp,n(x1, . . . , xn, ξ),

Ap,n(x1, . . . , xn,−ξ) = Ap,n(−xn, . . . ,−x1, ξ).

The main result of this section shows the existence of a universal non-asymptotic upper bounds
for the error induced by splitting functionals which appears as an extension of the so-called
Pierce Lemma established in [3] (see also [5]) as crucial step towards Zador’s Theorem for regular
Voronoi quantization.

Theorem 5. Let p, η > 0. There exists a positive real constant Cp,η > 0 and an integer np,η ≥ 1
such that for any random variables X : (Ω,A,P) → R and any sequence of splitting functionals
(Φn)n≥1 defined on a probability space (Ω0,A0,P0)

∀n ≥ np,η, inf
(x1,...,xn)∈In

‖X − Φn(., x1, . . . , xn, X)‖Lp ≤ Cp,η‖X‖Lp+η(P0⊗P)n
−1

(where X and Φn have been canonically extended to Ω0 × Ω).
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Proof. Step 1. We first assume that X is [1,+∞)-valued. Let (Yn)n≥1 be a sequence of i.i.d.
Pareto(δ)-distributed random variables (with probability density f

Y
(y) = δyδ−11{y≥1}) defined

on a probability space (Ω′,A′,P′). By considering Ω̃ = Ω × Ω′, Ã = A ⊗ A′, P̃ = P ⊗ P
′, one

may assume without loss of generality that X and the sequence (Yn)n≥1 are independent (and
defined on the same probability space (Ω,A,P)). For convenience we will denote throughout the
proof by ‖ . ‖Lp the Lp-norm on (Ω0 × Ω,A0 ⊗A,P0 ⊗ P).

Let δ = δ(p, η)∈ (0, p
η ), let ℓ = ℓ(p, η) = p

δ(p,η) . For every n ≥ ℓ(p, η), let ñ = n− ℓ+ 2.

inf
(x1,...,xn)∈In

‖X − Φn(., x1, . . . , xn, X)‖Lp ≤ inf
(x1,...,xn)∈In

‖Ap,n(x1, . . . , xn, X)‖Lp

≤ inf
(1,x2,...,xñ)∈Iñ

‖Ap,ñ(1, x2, . . . , xñ, X)‖Lp

≤ ‖Ap,ñ(1, Y
(n)
1 , . . . , Y

(n)
ñ , X)‖Lp

where, for every n ≥ 1, Y (n) = (Y
(n)
1 , . . . , Y

(n)
n ) denotes the standard order statistics of the first

n terms of the sequence (Yn)n≥1. For notational convenience we set Y
(n)
0 = 1. Then, using that

X and (Yk)k≥1 are independent, we get

EAp,ñ(1, Y
(n)
1 , . . . , Y

(n)
ñ , X)p ≤

n−ℓ∑

i=0

E

((
Y

(n)
i+1 − Y

(n)
i

)p
1
{X∈[Y

(n)
i ,Y

(n)
i+1)}

)

+E

((
X − Y

(n)
n−ℓ+1

)p
1
{X≥Y

(n)
n−ℓ+1}

)
.

Step 3. Now we will compute the successive terms of the above sum. Set κ = p + η. Let
i∈ {1, . . . , n− ℓ}.

E

((
Y

(n)
i+1 − Y

(n)
i

)p
1
{X∈[Y

(n)
i ,Y

(n)
i+1)}

)
≤ E

((
Y

(n)
i+1 − Y

(n)
i

)p
1
{X≥Y

(n)
i }

)

≤ E

((
Y

(n)
i+1 − Y

(n)
i

)p
(Y

(n)
i )−κ

)
EXκ.

where we used that X and (Yk)k≥1 are independent. Now, denoting by F
Y
(u) = (1−u−δ)1{y≥1}

the distribution function of the Pareto(δ)-distribution, elementary computations show that

E

((
Y

(n)
i+1 − Y

(n)
i

)p
(Y

(n)
i )−κ

)

=

∫

1≤u≤v

du dv u−κ(v − u)pF
Y
(u)i−1(1− F

Y
(u))n−i−1f

Y
(u)f

Y
(v)

n!

(i − 1)!(n− i − 1)!

= δB(n− i+
η

δ
, i)B((n− i)δ − r, r + 1)

Γ(n+ 1)

Γ(i)Γ(n− i)

= δ
Γ(n− i+ η

δ )Γ(i)

Γ(n+ η
δ )

Γ((n− i)δ − r)Γ(p+ 1)

Γ((n− i)δ + 1)

Γ(n+ 1)

Γ(i)Γ(n− i)

where the functions

Γ(t) =

∫ ∞

0

ut−1e−ud, t > 0 and B(a, b) =

∫ 1

0

ua−1(1− u)b−1du, a, b > 0

are known to satisfy B(a, b) = Γ(a)Γ(b)
Γ(a+b) .

One checks likewise that the above equality still holds for i = 0.
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Then one derives

n−ℓ∑

i=0

E

((
Y

(n)
i+1 − Y

(n)
i

)p
(Y

(n)
i )−κ

)
= δΓ(p+ 1)

Γ(n+ 1)

Γ(n+ η
δ )

n−ℓ∑

i=0

Γ(n− i+ η
δ )Γ((n − i)δ − r)

Γ((n− i)δ + 1)Γ(n− i)

= δΓ(p+ 1)
Γ(n+ 1)

Γ(n+ η
δ )

n∑

i=ℓ

Γ(i+ η
δ )Γ(iδ − r)

Γ(iδ + 1)Γ(i)
.

Using that, for every a > 0,
Γ(x+ a)

Γ(x)
∼ xa as x → ∞, we derive that

Γ(i+ η
δ )

Γ(i)
∼ i

η
δ ,

Γ(iδ − r)

Γ(iδ + 1)
∼ (iδ − r)−(p+1) ∼ (iδ)−(p+1) as i → ∞

and
Γ(n+ 1)

Γ(n+ η
δ )

∼ n1− η
δ as n → ∞.

Consequently,

n−ℓ∑

i=0

E

((
Y

(n)
i+1 − Y

(n)
i

)p
(Y

(n)
i )−κ

)
∼ n1− η

δ

n∑

i=1

δ−(p+1) 1

ip+1− η
δ

= δ−(p+1)n−p 1

n

n∑

i=ℓ

(
i

n

) η
δ
−r−1

∼ δ−(p+1)n−p

∫ 1

0

u
η
δ
−r−1du

︸ ︷︷ ︸
<+∞ since η

δ
>p

as n → ∞

so that
n−ℓ∑

i=0

E

((
Y

(n)
i+1 − Y

(n)
i

)p
(Y

(n)
i )−κ

)
∼ Cp,ηn

−p as i → ∞.

The remaining term can be treated as follows.

E

((
X − Y

(n)
n−ℓ+1

)p
1
{X≥Y

(n)
n−ℓ+1

}

)
≤ EXp1

{X≥Y
(n)
n−ℓ+1

}

≤ EXp Xη

(Y
(n)
n−ℓ+1)

η

= EXκ
E(Y

(n)
n−ℓ+1)

−η.

Note that

E(Y
(n)
n−ℓ+1)

−η =
Γ(n+ 1)

Γ(n− ℓ+ 1)Γ(ℓ)

∫ 1

0

(1 − v)n−ℓvℓ+
η
δ
−1dv

=
Γ(n+ 1)

Γ(n− ℓ+ 1)Γ(ℓ)

Γ(n− ℓ+ 1)Γ(ℓ+ η
δ )

Γ(n+ η
δ )

∼
Γ(ℓ+ η

δ )

Γ(ℓ)
n−η

δ = o(n−p)

since η
δ > r. Finally

lim sup
n

np

(
n−ℓ∑

i=0

E

((
Y

(n)
i+1 − Y

(n)
i

)p
(Y

(n)
i )−κ

)
+ E(Y

(n)
n−ℓ+1)

−η

)
< +∞
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so that

sup
n≥ℓ(p,η)

np

(
n−ℓ∑

i=0

E

((
Y

(n)
i+1 − Y

(n)
i

)p
(Y

(n)
i )−κ

)
+ E(Y

(n)
n−ℓ+1)

−η

)
< +∞.

This shows that for every n ≥ np,η := ℓ(p, η),

inf
(x1,...,xn)∈In

‖Ap,n(x1, . . . , xn, X)‖Lp ≤ Cp,η

‖X‖
1+η

p

Lp+η

n
.

Step 4. If X is a non-negative random variable, applying the second step to X + 1 and using
the scaling property satisfied by Ap,n yields for n ≥ np,η (as defined in Step 3),

inf
(1,x2,...,xn)∈In

‖Ap,n(1, x2, . . . , xn, X)‖Lp = inf
(0,x2,...,xn)∈In

‖Ap,n(x1, . . . , xn, X + 1)‖Lp

≤ Cp,η

‖1 +X‖
1+η

p

Lp+η

n

≤ C′
p,η

(1 + ‖X‖
1+η

p

Lp+η)

n
.

We may assume that ‖X‖Lp+η ∈ (0,∞). Then, applying the above bound to the non-negative

random variable X̃ = X
‖X‖

Lp+η
yields using positive homogeneity

inf
(0,x2,...,xn)∈In

‖Ap,n(0, x2, . . . , xn, X)‖Lp ≤ ‖X‖Lp+ηC′
p,η

1 + 1

n
.

Step 5. Let X be a real-valued random variable and let for every integer n ≥ 1, x1, . . . , xn ∈
(−∞, 0), xn+1 = 0 and xn+2, . . . , x2n+1∈ (0,+∞). It follows that

Ap,2n+1(x1, . . . , x2n+1, X)p = Ap,n+1(x1, . . . , xn+1, X+)
p1{X≥0}

+Ap,n+1(x1, . . . , xn+1,−X−)
p1{X<0}

= Ap,n+1(x1, . . . , xn+1, X+)
p +Ap,n+1(−xn+1, . . . ,−x1, X−)

p.

Consequently, if p ≥ 1, we get using that u
1
p + v

1
p ≤ (u + v)

1
p , u, v ≥ 0,

inf
(x1,...,x2n+1)∈I2n+1

‖Ap,2n+1(x1, . . . , x2n+1, X)‖Lp ≤ inf
(0,x2,...,xn+1)∈In+1

‖Ap,n+1(0, x2, . . . , xn+1, X+)‖Lp

+ inf
(0,x2,...,xn+1)∈In+1

‖Ap,n(0, x2, . . . , xn+1, X−)‖Lp .

Hence, it follows from Step 3 that, for every n ≥ np,η − 1,

inf
(x1,...,x2n+1)∈I2n+1

‖Ap,2n+1(x1, . . . , x2n+1, X)‖Lp ≤ C′
p,η

(
‖X−‖Lp+η + ‖X+‖Lp+η

) 1

n+ 1
,

= C′
p,η‖X‖Lp+η

1

n+ 1

where we used that ‖X‖Lp+η ≤ ‖X−‖Lp+η + ‖X+‖Lp+η . Finally, the monotonicity property (4)
implies that, for every n ≥ 2np,η,

inf
(x1,...,xn)∈In

‖Ap,n(x1, . . . , xn, X)‖Lp ≤ 2C′
p,η

‖X‖Lp+η

n
.

If p∈ (0, 1), one obtains using directly (5) that

inf
(x1,...,x2n+1)∈I2n+1

‖Ap,2n+1(x1, . . . , x2n+1, X)‖pLp ≤ (C′
p,η)

p
(
‖X−‖

p
p+η + ‖X+‖

p
p+η

) 1

(n+ 1)p
.
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Now
‖X−‖

p
p+η + ‖X+‖

p
Lp+η ≤ (‖X−‖

p+η
Lp+η + ‖X+‖

p+η
Lpp+η)

p
p+η = ‖X‖pLp+η

so that the conclusion remains the same.

3.2 A d-dimensional non-asymptotic upper-bound for the dual quanti-

zation error

Using Proposition 4 one easily shows the following d-dimensional version of the extended Pierce
Lemma.

Proposition 6 (d-dimensional extended Pierce Lemma). Let p, η > 0. There exists an integer
nd,p,η ≥ 1 and a real constant Cd,p,η such that, for every n ≥ np,η and every random variable
X∈ Lp+η

Rd (Ω0,A,P),

d̄n,p(X) ≤ Cd,p,η‖X‖Lp+ηn−1/d.

If supp(PX) is compact then the same inequality holds true for dn,p(X).

Proof. d = 1. In this one dimensional setting one may consider only ordered n-tuples γ =
(x1, . . . , xn). One derives from Theorem 5 and the example (b) that follows that, for every
n ≥ np,η,

d̄n,p(X) = inf
γ∈In

‖X − Φdq
n (U, γ)‖−p ≤ Cp,η‖X‖Lp+ηn−1

where U ∼ U([0, 1]) is independent of X .

d ≥ 2. Let γ be an optimal quantizer of size n1 · · ·nd ≤ n. Then if X = (X1, . . . , Xd) denote the
components of X , one has if minℓ nℓ ≥ np,η (from the one dimensional case) using Proposition 4

d̄pn,p(X,Γγ) = E F̄n,p(X ; γ)

≤ Cd,‖.‖,p

d∑

ℓ=1

E F̄n,p(X
ℓ;nℓ)

≤ Cd,‖.‖,pCp,η

d∑

ℓ=1

‖Xℓ‖Lp+ηn−1
ℓ

≤ Cd,‖.‖,p,η max
1≤ℓ≤d

‖Xℓ‖Lp+η × d ⌊n
1
d ⌋−1

≤ C′
d,‖.‖,p,η

∥∥ ‖X‖
∥∥
Lp+ηn

− 1
d .

4 Proof of the sharp rate theorem

On the way to proof the sharp rate theorem, we have to establish few further propositions.

Proposition 7 (Sub-linearity). Let P =
∑m

i=1 siPi,
∑m

i=1 si = 1 and
∑m

i=1 ni ≤ n. Then

dpn,p(P) ≤
m∑

i=1

si d
p
ni,p(Pi).

Proof. For ε > 0 and every i = 1, . . . ,m, let Γi ⊂ R
d, |Γi| ≤ ni such that

dp(Pi; Γi) ≤ (1 + ε) dpni
(Pi).

12



Then by Proposition 2 and with Γ =
⋃m

i=1 Γi

dpn,p(P) ≤ dpn,p(P; Γ)

=
m∑

i=1

si

∫
F p
p (ξ; Γ) dPi(ξ)

≤
m∑

i=1

si

∫
F p
p (ξ; Γi) dPi(ξ)

≤ (1 + ε)
m∑

i=1

si d
p
ni,p(Pi),

so that sending ε → 0 yields the assertion.

Remark. Proposition 7 does not hold for d̄pn, which causes substantial difficulties in the proof of
the sharp rate compared to the regular quantization setting.

Proposition 8 (Scaling property). Let C = a + ρ[0, 1]d be a d-dimensional hypercube, parallel
to the coordinate axis, with edge length ρ > 0. Then

dn,p(U(C)) = ρ · dn,p(U
(
[0, 1]d

)
).

Proof. We have

dp(U(C); {a+ ρx1, . . . , a+ ρxn}) =

∫

[0,ρ]d
min
λ∈Rn

n∑

i=1

λi ‖ξ − ρxi‖
p

s.t. [ ρx1 ... ρxn

1 ... 1 ]λ=
[
ξ
1

]
, λ≥0

dλd(ξ)

λd
(
[0, ρ]d

)

=

∫

[0,1]d
min
λ∈Rn

n∑

i=1

λi ‖ρξ − ρxi‖
p

s.t. [ ρx1 ... ρxn

1 ... 1 ]λ=
[
ρξ
1

]
, λ≥0

dλd(ξ)

= ρp
∫

[0,1]d
min
λ∈Rn

n∑

i=1

λi ‖ξ − xi‖
p

s.t. [ x1 ... xn

1 ... 1 ]λ=
[
ξ
1

]
, λ≥0

dλd(ξ)

= ρp · dp(U
(
[0, 1]d

)
; {x1, . . . , xn}),

which yields the assertion.

The following Lemma shows that also for d̄n,p the convex hull of spanned by a sequence of “semi-
optimal” quantizers asymptotically covers the interior of supp(PX), a fact which is trivial for dn,p
and compact support.

Lemma 1. Let K = conv{a1, . . . , ak} ⊂
˚︷ ︸︸ ︷

supp(P) be a set with K̊ 6= ∅ and let Γn be a sequence
of quantizers such that d̄n,p(P,Γn) → 0 as n → ∞. Then there exists n0 ∈ N such that for all
n ≥ n0

K ⊂ conv(Γn).

Proof. Set a0 = 1
k

∑k
i=1 ai and define for ρ > 0

K̃(ρ) = conv{ã1(ρ), . . . , ãk(ρ)} with ãi = a0 + (1 + ρ)(ai − a0).
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Since K ⊂
˚︷ ︸︸ ︷

supp(P) there exists a ρ0 > 0 such that K̃ = K̃(ρ0) ⊂ supp(PX). We then also denote
ãi(ρ0) by ãi. Since moreover ãi ∈ supp(PX), there exists a sequence (ani )n≥1 having values in
conv(Γn) and converging to ãi. Otherwise there would be ε0 > 0 and a subsequence (n′) such
that B(ãi, ε0) ⊂ conv(Γn′)c. Then d̄n′,p(X,Γn′) ≥

(
ε0
2

)p
P(B(ãi, ε0/2)) since ãi∈ supp(P ) which

contradicts the assumption on the sequence (Γn)n≥1.
Since K has a nonempty interior, it follows that aff. dim{a1, . . . , ak} = aff. dim{ã1, . . . , ãk} = d.
Consequently, we may choose a set I∗ ⊂ {1, . . . , k}, |I∗| = d+1 so that {ãj : j ∈ I∗} is an affinely
independent system in R

d and furthermore there exists a n0 ∈ N such that the same holds for
{anj : j ∈ I∗} and every n ≥ n0. Hence, we may write for n ≥ n0

ãi =
∑

j∈I∗

µn,i
j anj ,

∑

j∈I∗

µn,i
j = 1, i = 1, . . . , k. (5)

This linear system has the unique asymptotic solution µ∞,i
j = δij (Kronecker symbol), which

implies µn,i
j → δij for n → ∞.

Now let ξ ∈ K ⊂ K̃ and write

ξ =

k∑

i=1

λiai for some λi ≥ 0,

k∑

i=1

λi = 1.

One easily verifies that it also holds

ξ =
k∑

i=1

λ̃iãi for λ̃i =
ρ0

k(1 + ρ0)
+

λi

1 + ρ0
≥

ρ0
k(1 + ρ0)

> 0 and
k∑

i=1

λ̃i = 1,

and we furthermore may choose a n1 ≥ n0 such that for every n ≥ n1

µn,i
i >

1

2
and |µn,i

j | ≤
ρ0

4k(1 + ρ0)
∀j 6= i.

Using (5) this leads to

ξ =
∑

j∈I∗

( k∑

i=1

λ̃iµ
n,i
j

)
anj

and

k∑

i=1

λ̃iµ
n,i
j > λ̃jµ

n,j
j −

k∑

i=1,i6=j

λ̃i|µ
n,i
j | >

ρ0
2k(1 + ρ0)

−
ρ0

4k(1 + ρ0)
=

ρ0
2k(1 + ρ0)

> 0, j ∈ I∗.

Thus, noting that
∑

j∈I∗

k∑

i=1

λ̃iµ
n,i
j =

k∑

i=1

λ̃i

∑

j∈I∗

µn,i
j = 1

finally completes the proof.

As already said, Proposition 7 does not hold anymore for d̄n,p. As a consequence we have
to establish an asymptotic firewall Lemma, which will help us in the sequel to overcome this
problem also in the non-compact setting.
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Lemma 2 (Firewall). Let K ⊂ R
d be compact and convex with K̊ 6= ∅. Moreover, let ε > 0 such

that
Kε = {x ∈ K : dist(x,Kc) ≥ ε} 6= ∅,

and denote by Γα,ε a subset of the lattice αZd with edge length α > 0 satisfying

K \Kε ⊂ conv(Γα,ε).

and for every x∈ K \Kε, dist(x,Γα,ε) ≤ C‖·‖α where C‖·‖ > 0 is real constant which only depends
on the norm ‖·‖.
Then, for every grid Γ ⊂ R

d, η ∈ (0, 1) and ξ ∈ Kε, it holds

F p(ξ; Γ) ≥
1

(1 + η)p
F p(ξ; (Γ ∩ K̊) ∪ Γα,ε)−

(
1 +

1

η

)p
C̃‖·‖α

p.

Remark. An almost minimal choice for Γα,ε is

Γα,ε = αZd ∩ (K \Kε) + {0,±αei i = 1, . . . , d}

where (e1, . . . , ed) denotes the canonical basis of Rd.

Proof. Let Γ = {x1, . . . , xn} and let ξ ∈ Kε. Then we may choose I = I(ξ) ⊂ {1, . . . , n},
|I| ≤ d+ 1 such that

F p(ξ; Γ) =
∑

i∈I

λj‖ξ − xi‖
p,

∑

i∈I

λixi = ξ, λi ≥ 0,
∑

i∈I

λi = 1.

Assume now that there is a i0 ∈ I such that xi0 ∈ Γ \ K̊ and λi0 > 0 (otherwise the assertion
is trivial). Note that there are at most d such components in I(ξ) and choose θ = θ(i0)∈ (0, 1)
such that

x̃i0 = ξ + θ(xi0 − ξ) ∈ K \Kε.

Setting

λ̃0
i =

λiθ

θ + λi0(1− θ)
, i ∈ I \ {i0}, λ̃0

i0 =
λi0

θ + λi0(1 − θ)

we arrive at
λ̃0
i0 x̃i0 +

∑

i∈I\{i0}

λ̃0
i xi = ξ, λ̃0

i ≥ 0,
∑

i∈I

λ̃0
i = 1

so that

λ̃0
i0‖ξ − x̃i0‖

p +
∑

j∈I\{i0}

λ̃0
i ‖ξ − xi‖

p =
λ0
i0
θp

θ + λ0
i0
(1− θ)

‖ξ − xi0‖
p

+
∑

i∈I\{i0}

λ0
i θ

θ + λ0
i0
(1− θ)

‖ξ − xi‖
p

≤
θ

θ + λi0 (1− θ)

∑

i∈I

λ0
i ‖ξ − xi‖

p

< F p(ξ; Γ)

(6)

where we used that θp ≤ θ since p ≥ 1. Repeating the procedure (at most d times) for every
xi∈ Γ \ K̊ finally yields by induction the existence of x̃i∈ K \Kε and λ̃i, i ∈ I such that

∑

i∈I:xi /∈K̊

λ̃ix̃i +
∑

i∈I:xi∈K̊

λ̃ixi = ξ, λ̃i ≥ 0,
∑

i∈I

λi = 1
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and
F p(ξ; Γ) >

∑

i∈I:xi /∈K̊

λ̃i‖ξ − x̃i‖
p +

∑

i∈I:xi∈K̊

λ̃i‖ξ − xi‖
p.

Let us denote Γα,ε = {a1, . . . , am} and let x̃i0 be a “modified” xi0 (∈ Γ \ K̊). By construction
x̃i0 ∈ K \Kε ⊂ conv(Γα,ε) and there is Ji0 ⊂ {1, . . . ,m} such that

F p(x̃i0 ,Γα,ε) =
∑

j∈Ji0

µi0
j ‖x̃i0 − aj‖

p,
∑

j∈Ji0

µi0
j xj = x̃i0 , µ

i0
j ≥ 0,

∑

j∈Ji0

µi0
j = 1

and
∀ j∈ Ji0 , ‖x̃i0 − aj‖ ≤ C‖·‖ α

for a real constant C‖·‖ > 0, which only depends on the norm ‖·‖.
A possible explicit construction (when Γα,ε is as in the above remark) is the following: one may
select k ∈ Z

d such that αk is the nearest neighbour of x̃i0 in Γα,ε ∩K \ Kε . Then there exists

εj01 , . . . , εj0d ∈ {±1} such that

x̃i0 ∈ conv(αk, αk + εi0j ej).

The resulting index set Ji0 clearly satisfies the above claim.

Using the elementary inequality

∀η > 0, ∀u, v ≥ 0, (u+ v)p ≤ (1 + η)pup +
(
1 +

1

η

)p
vp,

we conclude for every j∈ Ji0

‖ξ − aj‖
p ≤

(
‖ξ − x̃i0‖+ ‖x̃i0 − aj‖

)p

≤ (1 + η)p‖ξ − x̃i0‖
p +

(
1 +

1

η

)p
Cp

‖·‖ α
p.

As a consequence,

∑

j∈Ji0

µi0
j ‖ξ − aj‖

p ≤ (1 + η)p‖ξ − x̃i0‖
p +

(
1 +

1

η

)p
Cp

‖·‖ α
p

which in turn implies

‖ξ − x̃i0‖
p ≥

1

(1 + η)p

∑

j∈Ji0

µi0
j ‖ξ − aj‖

p −
(
1 +

1

η

)p
Cp

‖·‖ α
p.

Plugging this inequality in (6) yields

F p(ξ; Γ) >
∑

i∈I:xi∈K̊

λ̃j‖ξ − xi‖
p

+
1

(1 + η)p

∑

i∈I:xi /∈K̊

λ̃i

∑

j∈Ji

µi
j‖ξ − aj‖

p

− d
(
1 +

1

η

)p
Cp

‖·‖ α
p

≥
1

(1 + η)p
F p
(
ξ; (Γ \ {xj0}) ∪ Γα,ε

)
−
(
1 +

1

η

)p
C̃p

‖·‖ α
p

where C̃p
‖·‖ = dCp

‖·‖ > 0.
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Now we can establish the sharp rate for the uniform distribution U([0, 1]d).

Proposition 9 (Uniform distribution). For every p ≥ 1,

Qdq

‖·‖,p,d := inf
n≥0

n1/d dn,p
(
U
(
[0, 1]d

))
= lim

n→∞
n1/d dn,p

(
U
(
[0, 1]d

))
.

Proof. Let n,m ∈ N, m < n and set k = k(n,m) =
⌊(

n
m

)1/d⌋
.

Covering the unit hypercube [0, 1]d by kd translates C1, . . . , Ckd of the hypercube
[
0, 1

k

]d
, we

arrive at U
(
[0, 1]d

)
= k−d

∑kd

i=1 U(Ci). Hence, Proposition 7 yields

dpn,p
(
U
(
[0, 1]d

))
≤ k−d

kd∑

i=1

dpm(U(Ci)).

Furthermore, Proposition 8 states

dm,p(U(Ci)) = k−1 dm,p

(
U
(
[0, 1]d

))
,

so that we may conclude for all n,m ∈ N, m < n

dn,p
(
U
(
[0, 1]d

))
≤ k−1 dm,p

(
U
(
[0, 1]d

))
.

Thus, we arrive at

n1/d dn,p
(
U
(
[0, 1]d

))
≤ k−1 n1/d dm,p

(
U
(
[0, 1]d

))

≤
k + 1

k
m1/d dm,p

(
U
(
[0, 1]d

))
,

which yields for every integer m ≥ 1

lim sup
n→∞

n1/d dn,p
(
U
(
[0, 1]d

))
≤ m1/d dm,p

(
U
(
[0, 1]d

))
,

since limn→∞ k(n,m) = +∞.
This finally implies

lim
n→∞

n1/d dn,p
(
U
(
[0, 1]d

))
= inf

m≥0
m1/d dm,p

(
U
(
[0, 1]d

))
.

Proposition 10. For every p ≥ 1,

Qdq

‖·‖,p,d = lim
n→∞

n1/d dn,p
(
U
(
[0, 1]d

))
= lim

n→∞
n1/d d̄n,p

(
U
(
[0, 1]d

))

Proof. Since we have d̄n,p(X) ≤ dn,p(X) it remains to show

Qdq
‖·‖,p,d ≤ lim inf

n→∞
n1/d d̄n,p

(
U
(
[0, 1]d

))
.

Let (Γn) be a sequence of optimal quantizers for d̄n,p(U
(
[0, 1]d

)
) and

For 0 < ε < 1/2 let Cε = (1/2, . . . , 1/2) + 1−ε
2 [−1, 1]d be the centered hypercube in [0, 1]d with

edge length 1 − ε and midpoint (1/2, . . . , 1/2). Moreover let (Γn) be a sequence of quantizers
such that

d̄p(U
(
[0, 1]d

)
; Γn) ≤ (1 + ε)d̄n,p(U

(
[0, 1]d

)
).
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Owing to Lemma 1, there is an integer nε ∈ N such that

∀n ≥ nε, Cε ⊂ conv(Γn).

We therefore get for any n ≥ nε

(1 + ε)dn,p
(
U
(
[0, 1]d

))
≥ dp

(
U
(
[0, 1]d

)
; Γn
)
≥ dp

(
U
(
[0, 1]d

)
|Γn

; Γn
)
≥ dp

(
U
(
[0, 1]d

)
|Cε

; Γn
)
.

Normalizing U
(
[0, 1]d

)
|Cε

into a probability distribution and applying Proposition 8, we get

(1+ε)dn,p
(
U
(
[0, 1]d

))
≥ dn,p

(
U
(
[0, 1]d

)
|Cε

)
= (λd(Cε))

1
p dn,p

(
U(Cε)

)
= (1−ε)1+d/pdn,p

(
U
(
[0, 1]d

))
.

Hence, we obtain for all 0 < ε < 1/2

lim inf
n→∞

n1/d dpn,p
(
U
(
[0, 1]d

))
≥

(1− ε)1+d/p

1 + ε
Qdq

‖·‖,p,d,

so that letting ε → 0 yields the assertion.

Proposition 11. Let P =
∑m

i=1 si U(Ci),
∑m

i=1 si = 1, si > 0, i = 1, . . . ,m, where Ci =
ai + [0, l]d, i = 1, . . . ,m, are pairwise disjoint hypercubes in R

d with common edge-length l. Set

h :=
dP

dλd
=

m∑

i=1

sil
−d1Ci

.

Then

(a) lim sup
n→∞

n1/d dn,p(P) ≤ Qdq

‖·‖,p,d · ‖h‖
1
p

d/(d+p).

(b) lim inf
n→∞

n1/d d̄n,p(P) ≥ Qdq

‖·‖,p,d · ‖h‖
1
p

d/(d+p).

Proof. (a) For n ∈ N, set

ti =
s
d/(d+p)
i∑m

j=1 s
d/(d+p)
j

and ni = ⌊tin⌋, 1 ≤ i ≤ m.

Then, by Proposition 7 and Proposition 8, we get for every n ≥ max1≤i≤m(1/ti)

dpn,p(P) ≤
m∑

i=1

si d
p
n,p(U(Ci)) = lp

m∑

i=1

si d
p
ni
(U
(
[0, 1]d

)
).

Proposition 9 then yields

n
p
d dpni

(U
(
[0, 1]d

)
) =

(
n

ni

) p
d

n
p
d

i dpni
(U
(
[0, 1]d

)
) → t

− p
d

i Qdq
‖·‖,p,d as n → ∞.

Noting that ‖h‖d/(d+p) = lp
(∑

s
d/(d+p)
i

)(d+p)/d

, we get

lim sup
n→∞

n
p
d dpn,p(P) ≤ Qdq

‖·‖,p,dl
p

m∑

i=1

si t
− p

d

i ≤ Qdq
‖·‖,p,d · ‖h‖d/(d+p).
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(b) Let ε ∈ (0, l/2) and denote by Ci,ε the closed hypercube with the same center as Ci and
edge-length l − ε. For α ∈ (0, ε/2), we denote by γαn,ε,i the lattice with edge-length α̃ = l

⌈l/α⌉

covering Ci \ Ci,ε.
We then get for every i ∈ {1, . . . ,m}

|γαn,ε,i| =
( l

α̃
+ 1
)d

−
( l

α̃
− 2
⌈ε/2

α̃

⌉
− 1
)d

and define for ε ∈ (0, l/2), α ∈ (0, ε/2)

gl,ε(α) = αd|γαn,ε,i| =
(
α
l

α̃
+ α

)d
−
(
α
l

α̃
− 2α

⌈ε/2
α̃

⌉
− α

)d
.

Since α
α̃ → 1 and 2α

⌈
ε/2
α̃

⌉
→ ε as α → 0, we conclude

∀ε ∈ (0, l/2), lim
α→0

gl,ε(α) = ld − (l − ε)d. (7)

Let η ∈ (0, 1) and denote by Γn a sequence of n-quantizers such that d̄p(P; Γn) ≤ (1+η)dpn(P). It
follows from Proposition 6 that d̄p(P; Γn) → 0 for n → ∞ so that Lemma 1 yields the existence
of nε ∈ N such that for any n ≥ nε

⋃

1≤i≤m

Ci,ε ⊂ conv(Γn).

We then derive from Lemma 2

d̄p(U(Ci); Γn) = l−d

∫

Ci

F̄ p(ξ; Γn)λ
d(dξ)

≥ l−d

∫

Ci,ε

F̄ p(ξ; Γn)λ
d(dξ) = l−d

∫

Ci,ε

F p(ξ; Γn)λ
d(dξ)

≥
l−d (l − ε)d

(1 + η)p
dp
(
U(Ci,ε); (Γn ∩ C̊i) ∪ γα,ε,i

)
− l−d (l − ε)d

(
1 +

1

η

)p
· C‖·‖ · α

p.

At this stage, we set for every ρ > 0

α = αn =
(m

ρn

)1/d
(8)

and denote
ni = |(Γn ∩ C̊i) ∪ γαn,ε,i|.

Since dni,p(U(Ci,ε)) = (l − ε)dni,p(U
(
[0, 1]d

)
) owing to Proposition 8, we get

n
p
d d̄pn,p(P) ≥

1

1 + η

m∑

i=1

si n
p
d d̄p(U(Ci); Γn)

≥
l−d (l − ε)d

(1 + η)p+1

m∑

i=1

si n
p
d dp

(
U(Ci,ε); (Γn ∩ C̊i) ∪ γαn,ε,i

)

− l−d (l − ε)d
(1 + η)p+1

ηp

m∑

i=1

si · C‖·‖ · α
p · n

p
d

≥
l−d (l − ε)d+p

(1 + η)p+1

m∑

i=1

si n
p
d dpni

(
U
(
[0, 1]d

))
− l−d (l − ε)d

(1 + η)p+1

ηp
· C‖·‖ ·

(m
ρ

) p
d

.

(9)
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Since
ni

n
≤

|Γn ∩ C̊i|

n
+

gl,ε(αn)

nαd
=

|Γn ∩ C̊i|

n
+

ρ

m
gl,ε(αn),

we conclude from (7) and (8)

lim sup
n→∞

m∑

i=1

ni

n
≤ 1 + ρ

(
ld − (l − ε)d

)
.

We may choose a subsequence (still denoted by (n)), such that

n1/d d̄n,p(P) → lim inf
n→∞

n1/d dn,p(P) and
ni

n
→ vi ∈ [0, 1 + ρ(ld − (l − ε)d)].

As a matter of fact, it holds vi > 0, 1 ≤ i ≤ m: otherwise Proposition 9 would yield

n
p
d d̄pn,p(P) ≥

l−d (l − ε)d+p

(1 + η)p+1

m∑

i=1

si

(ni

n

)− p
d

n
p
d

i dpni

(
U
(
[0, 1]d

))

− l−d (l − ε)d
(1 + η)p+1

ηp
· C‖·‖ ·

(m
ρ

) p
d

→ +∞,

which contradicts (a).
Consequently, we may normalize the vi’s by setting

ṽi =
vi

1 + ρ(ld − (l − ε)d)

so that
∑m

i=1 ṽi ≤ 1. We conclude from Proposition 9

lim inf
n→∞

m∑

i=1

si n
p
d dpni

(
U
(
[0, 1]d

))
=

m∑

i=1

si lim
n→∞

(
n
(
1 + ρ(ld − (l − ε)d)

)

ni

) p
d

n
p
d

i dpni

(
U
(
[0, 1]d

))

= Qdq
‖·‖,p,d

m∑

i=1

si ṽ
− p

d

i

≥ Qdq
‖·‖,p,d inf∑

i yi≤1,yi≥0

m∑

i=1

siy
−p

d

i

= Qdq
‖·‖,p,d

( m∑

i=1

s
d/(d+p)
i

)(d+p)/d

.

Hence, we derive from (9)

lim inf
n→∞

n
p
d d̄pn,p(P) ≥

l−d (l − ε)d+p

(1 + η)p+1
(
1 + ρ(ld − (l − ε)d)

) p
d

Qdq
‖·‖,p,d

( m∑

i=1

s
d/(d+p)
i

)(d+p)/d

− l−d (l − ε)d
(1 + η)p+1

ηp
· C‖·‖ ·

(m
ρ

) p
d

so that sending ε → 0 implies

lim inf
n→∞

n
p
d d̄pn,p(P) ≥

lp

(1 + η)p+1
Qdq

‖·‖,p,d

( m∑

i=1

s
d/(d+p)
i

)(d+p)/d

−
(1 + η)p+1

ηp
C‖·‖

(m
ρ

) p
d

=
1

(1 + η)p+1
Qdq

‖·‖,p,d · ‖h‖d/(d+p) −
(1 + η)p+1

ηp
C‖·‖

(m
ρ

) p
d

and, finally, letting successively ρ go to ∞ and η go to 0 yields the assertion.
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Proposition 12. Assume that P is absolutely continuous w.r.t. λd with compact support. Then

(a) lim sup
n→∞

n
p
d dn,p(P) ≤ Qdq

‖·‖,p,d · ‖h‖
1
p

d/(d+p).

(b) lim inf
n→∞

n
p
d d̄n,p(P) ≥ Qdq

‖·‖,p,d · ‖h‖
1
p

d/(d+p).

Proof. Let C = [−l/2, l/2]d be a closed hyper hypercube centered at the origin, parallel to the
coordinate axis with edge-length l, such that supp(P) ⊂ C. For k ∈ N consider the tessellation
of C into kd closed hypercubes with common edge-length l/k. To be precise, for every i =
(i1, . . . , id)∈ Z

d, we set

Ci =

d∏

r=1

[
−

l

2
+

irl

k
,−

l

2
+

(ir + 1)l

k

]
.

Set h = dP
dλd and

Pk =
∑

i∈Z
d

0≤ir<k

P(Ci)U(Ci), hk =
dPk

dλd
=

∑

i∈Z
d

0≤ir<k

P(Ci)

λd(Ci)
1Ci

. (10)

By differentiation, of measures we obtain hk → h, λd-a.s. as k → ∞. which in turn implies owing
to Scheffé’s Lemma

lim
k→∞

‖hk − h‖1 = 0,

and
lim
k→∞

‖hk‖d/(d+p) = ‖h‖d/(d+p),

since ‖hk − h‖d/(d+p) ≤
(
λd(C)

) p
d

‖hk − h‖1, owing to Jensen’s Inequality applied to the proba-

bility measure
λd |C

λd(C) . Moreover, by Proposition 11 we have

lim
n→∞

n1/d dn,p(Pk) = Qdq
‖·‖,p,d ‖hk‖

1
p

d/(d+p). (11)

Likewise, we define an inner approximation to P: Denote by

Ck =
⋃

Ci⊂

˚︷ ︸︸ ︷
supp(P)

Ci

the union of the hypercubes Ci lying in the interior of supp(P). Setting

P̊k =
∑

Ci⊂

˚︷ ︸︸ ︷
supp(P)

P(Ci)U(Ci),

h̊k =
dP̊k

dλd
= hk1Ck ,

we have as above that
h̊k → h, λd − a.s. for k → ∞.

Consequently
lim
k→∞

‖̊hk − h‖1 = 0 and lim
k→∞

‖̊hk‖d/(d+p) = ‖h‖d/(d+p).
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We get likewise by Proposition 11 that, for every k ∈ N,

lim
n→∞

n1/d dn,p(P̊k) = Qdq
‖·‖,p,d · ‖̊hk‖

1
p

d/(d+p). (12)

(a) Let 0 < ε < 1 and n ≥ 2d/ε. If we divide each edge of the hypercube C into

m =
⌊
(εn)1/d

⌋
− 1

intervals of equal length l/m, the interval endpoints define m+ 1 grid points on each edge.
Denoting by Γ1 = Γ1(ε, n) the product quantizer made up by this procedure, we clearly have

|Γ1| = (m+ 1)d =
⌊
(εn)1/d

⌋d
=: n1.

For this product quantizer it holds for all ξ ∈ C by Propositions 4 and 3

F p(ξ; Γ1) ≤ C‖·‖

d∑

i=1

( l

2m

)p

≤ C‖·‖,p,d
lp

(εn)
p
d

.

For n2 = ⌊(1 − ε)n⌋ let Γ2 be a n2-quantizer such that dp(Pk; Γ2) ≤ (1 + ε)dpn2
(Pk). We clearly

have |Γ1 ∪ Γ2| ≤ n and

n
p
d

∣∣∣∣
∫

F p(ξ; Γ1 ∪ Γ2)dPk(ξ)−

∫
F p(ξ; Γ1 ∪ Γ2)dP(ξ)

∣∣∣∣

≤ n
p
d

∫
F p(ξ; Γ1 ∪ Γ2)|hk(ξ)− h(ξ)|dλdξ

≤ C‖·‖,p,d
lp

ε
p
d

‖hk − h‖1

= c1,ε‖hk − h‖1

for k ∈ N and n ≥ max
{

2d

ǫ ,
1

1−ε

}
. This implies

n
p
d dpn,p(P) ≤ n

p
d

∫
F p(ξ; Γ1 ∪ Γ2)dP(ξ)

≤ n
p
d

∫
F p(ξ; Γ1 ∪ Γ2)dPk(ξ) + c1‖hk − h‖1

≤ n
p
d

∫
F p(ξ; Γ2)dPk(ξ) + c1‖hk − h‖1

≤ (1 + ε)n
p
d dpn2

(Pk) + c1,ε‖hk − h‖1,

so that we conclude from (11)

lim sup
n→∞

n
p
d dpn,p(P) ≤

1 + ε

(1− ε)
p
d

(Qdq
‖·‖,p,d)

p‖hk‖d/(d+p) + c1,ε‖hk − h‖1.

Letting first k go to infinity and then letting ε go to zero yields

lim sup
n→∞

n1/ddn,p(P) ≤ Qdq
‖·‖,p,d‖hk‖

1
p

d/(d+p).
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(b) Assume that Γ3 is a n2-quantizer such that d̄p(P; Γ3) ≤ (1 + ε) d̄pn2
(P). Again it holds

|Γ1 ∪ Γ3| ≤ n and we derive as above

n
p
d

∣∣∣∣
∫

F p(ξ; Γ1 ∪ Γ3)dP̊k(ξ)−

∫
F p(ξ; Γ1 ∪ Γ3)dP(ξ)

∣∣∣∣ ≤ c2,ε‖̊hk − h‖1. (13)

Moreover, Lemma 1 yields for every k ∈ N the existence of nk,ε ∈ N such that, for all n ≥ nk,ε,

(1 + ε) d̄pn2,p(P) ≥ d̄pp(P; Γ3) ≥

∫

conv(Γ3)

F p(ξ; Γ3)dP(ξ)

≥

∫

Ck

F p(ξ; Γ3)dP(ξ) ≥

∫

Ck

F p(ξ; Γ1 ∪ Γ3)dP(ξ).

Thus, we derive from (13) that, for every n ≥ max
(
nk,ε,

2d

ε , 1
1−ε

)
,

(1 + ε)n
p
d d̄pn2,p(P) ≥ n

p
d

∫

Ck

F p(ξ; Γ1 ∪ Γ3)dP(ξ)

≥ n
p
d

∫

Ck

F p(ξ; Γ1 ∪ Γ3)dP̊k(ξ)− c2,ε‖̊hk − h‖1

≥ n
p
d dpn,p(P̊k)− c2,ε‖̊hk − h‖1,

which yields, once combined with (12),

1 + ε

(1− ε)
p
d

lim inf
n→∞

n
p
d

2 d̄pn2,p(P) ≥ Qdq
‖·‖,p,d‖̊hk‖d/(d+p) − c2,ε‖̊hk − h‖1.

Letting first k go to ∞ and then letting ε go to 0, we get

lim inf
n→∞

n
1
d d̄n,p(P) ≥ Qdq

‖·‖,p,d‖h‖
1
p

d/(d+p).

Proposition 13 (Singular distribution). Assume that P is singular with respect to λd and has
compact support. Then

lim sup
n→∞

n
p
d d̄n,p(P) = 0.

Proof. (closely follows Step 4 in Graf and Luschgy’s proof of Zador’s Theorem). Let A be a Borel
set such that P(A) = 1 and λd(A) = 0. Let ε > 0; by the outside regularity of λd there exists an
open set O = O(ε) set such that λd(O) ≤ ε (and P(O) = 1). Let C be an open hypercube with
edges of length ℓ parallel to the coordinate axis containing the closure of A.
Let Ck =

∏d
i=1[ck,i, ck,i+ℓi), k∈ N be a countable partition of A consisting of nonempty half-open

hypercubes, still with edges parallel to the coordinate axis (see, e.g. Lemma 1.4.2 in [2]).

Let m = m(ε)∈ N such that
∑

k≥m+1

P(Ck) ≤ ε
p
d ℓ−p.

Let n∈ N, n ≥ 2d+1 and let n1, . . . , nd ≥ 2 be integers such that the product nd
1+ · · ·+nd

m ≤ n/2.
One designs a grid Γ as follows.
For every k∈ {1, . . . ,m}, we consider the lattice of Ck of size nd

i defined by

d∏

i=1

{
ck,i +

ri
nk − 1

ℓi, ri = 0, . . . , nk − 1, i = 1, . . . , d
}
.
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Then one defines likewise the lattice of C of size nd
m+1 ≤ n/2

d∏

i=1

{
ck,i +

ri
nm+1 − 1

ℓi, ri = 0, . . . , nm+1 − 1, i = 1, . . . , d
}
.

The grid Γ is made up with all the points of the m+ 1 above finite lattices.
Now let ξ∈ A. It is clear from the definition of the function Fp that

Fp(ξ; Γ) ≤

{
C‖.‖

(
ℓk/nk

)p
if ξ∈

⋃m
k=1 Ck

C‖.‖

(
ℓ/nm+1

)p
if ξ∈ C \

⋃m
k=1 Ck

where C‖.‖ > 0 is a real constant only depending on the norm.
As a consequence

dpn,p(P) =

m∑

k=1

∫

Ck

F p(ξ; Γ)dP (ξ) +

∫

C\
⋃

m
k=1 Ck

F p(ξ; Γ)dP (ξ)

≤ C‖.‖

( m∑

k=1

(ℓk/nk)
pP (Ck) + (ℓ/nm+1)

pP (C \
m⋃

k=1

Ck)
)
.

Set for every k∈ {1, . . . ,m},

nk =

⌊
ℓk(n/2)

1
d

(
∑d

k′=1 ℓ
d
k′)

1
d

⌋

and nm+1 = ⌊(n/2)
1
d ⌋. Note that

d∑

k′=1

ℓdk′ =

m∑

k=1

λd(Ck) ≤ λd(A) ≤ ε.

Elementary computations show that for large enough n all the nk are greater than 1 and that

m∑

k=1

(ℓk/nk)
pP (Ck)+(ℓ/nm+1)

pP (C\
m⋃

k=1

Ck) ≤ (

d∑

k′=1

ℓdk′)
p
d (n/2)−

p
dP
(
∪1≤k≤mCk

)
+(n/2)−

p
d ℓpP

(
C\

m⋃

k=1

Ck

)

so that
lim sup

n
n

p
d dpn,p(P) ≤ C‖.‖(ε/2)

p
d

which in turn implies by letting ε go to 0 that

lim sup
n

n
p
d dpn,p(P) = 0.

Proof of Theorem 2: The assertion (a) follows directly from Propositions 12 and 13 and the
fact that it holds d̄n,p(X) ≤ dn,p(X) for every n ∈ N. Furthermore, part (c) was derived in [8],
Section 5.1. Hence, it remains to prove (b).

Proof. Step 1. (Lower bound) If X is compactly supported, the assertion follows from Proposi-
tion 12. Otherwise, set for every R∈ (0,∞),

C
R
= [−R,R]d
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and for k ∈ N

P(·|Ck) =
h1Ck

P(Ck)
λd.

Proposition 12 yields again

lim
n→∞

n
1
d d̄n,p(P(·|Ck)) = Qdq

‖·‖,p,d · ‖h1Ck
/P(Ck)‖

1
p

d/(d+p), (14)

so that d̄pn,p(P) ≥ P(·|Ck)d̄
p
n,p(P(·|Ck)) implies for all k ∈ N

lim inf
n→∞

n
1
d d̄n,p(P) ≥ Qdq

‖·‖,p,d · ‖h1Ck
‖

1
p

d/(d+p).

Sending k to infinity, we arrive at

lim inf
n→∞

n
1
d d̄n,p(P) ≥ Qdq

‖·‖,p,d · ‖h‖
1
p

d/(d+p).

Step 2 (Upper bound, supp(P) = R
d). Let ρ∈ (0, 1). Set K = Ck+ρ and Kρ = Ck. Let Γk,α,ρ

be the lattice grid associated to K \Kρ with edge α > 0 as defined in the remark that follows
the firewall lemma. It is straightforward that there exists a real constant C > 0 such that

∀ k ∈ N, ∀ ρ ∈ (0, 1), ∀α ∈ (0, ρ) : |Γα,ρ| ≤ Cdρkd−1α−d.

Let ε∈ (0, 1). For every n ≥ 1, set αn = α̃0n
− 1

d where α̃0 ∈ (0, 1) is a real constant and

n0 = |Γk,αn,ρ|, n1 = ⌊(1− ε)(n− n0)⌋, n2 = ⌊ε(n− n0)⌋,

so that αn ∈ (0.ρ), n0 + n1 + n2 ≤ n and ni ≥ 1 for large enough n. For every ξ∈ Kρ = Ck, for

every grid Γ ⊂ R
d, we know by the firewall lemma that

F p(ξ; (Γ ∩ K̊) ∪ Γα,ρ) ≤ (1 + η)pF p(ξ; Γ) + (1 + η)p(1 + 1/η)pC‖.‖α
p.

Let Γ1 = Γ1(n1, k) be a n1 quantizer such that dpn1
(P(.|Ck); Γ1) ≤ (1 + η)dpn1

(P(.|Ck)). Set

Γ′
1 = ((Γ1 ∩ C̊k+ρ) ∪ Γk,αn,ρ). One has Γ′

1 ⊂ Ck+2ρ for large enough n (so that αn < ρ).
Let moreover Γ2 = Γ2(n2, k) be a n2 quantizer such that d̄pn2

(P(.|Cc
k); Γ2) ≤ (1 + η)d̄pn2

(P(.|Cc
k)).

For n ≥ nρ, we may assume that Ck+2ρ ⊂ convΓ2 owing to Lemma 1 since Ck+2ρ = conv(Ck+2ρ \

Ck+ 3
2 ρ
) and Ck+2ρ \ Ck+ 3

2ρ
⊂

˚︷ ︸︸ ︷
suppP(.|Cc

k). As a consequence Γ′
1 ⊂ conv(Γ2) so that conv(Γ′

1) ⊂

conv(Γ2) = conv(Γ) where Γ = Γ′
1 ∪ Γ2and

Ck+ρ ⊂ conv(Γ) = conv(Γ2).

Now

d̄pn,p(P) ≤

∫

Ck


F p(ξ; Γ)1{ξ∈conv(Γ2)} + d(ξ,Γ)p1{ξ/∈conv(Γ2)}︸ ︷︷ ︸

=0


 dP(ξ)

+

∫

Cc
k

(
F p(ξ; Γ)1{ξ∈conv(Γ2)} + d(ξ,Γ)p1{ξ/∈conv(Γ2)}

)
dP(ξ).

Using that, for every ξ∈ Ck,

F p(ξ; Γ) ≤ F p(ξ; Γ′
1)

≤ (1 + η)p
(
F p(ξ; Γ1) + (1 + 1/η)p C‖.‖ α

p
n

)
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implies

d̄pn,p(P) ≤ P(Ck)(1 + η)p
(
(1 + η) dpn1,p(P(.|Ck)) + (1 + 1/η)pC‖.‖ α̃0 n

− 1
d

)

+P(Cc
k) (1 + η) d̄n2,p(P(.|Cc

k)).

Consequently

n
p
d d̄pn,p(P) ≤ P(Ck)(1 + η)p

[
(1 + η)

(
n

n1

) p
d

n
p
d

1 dpn1,p(P(.|Ck)) + (1 + 1/η)pC‖.‖α̃0

]

+(1 + η)

(
n

n2

) p
d

P(Cc
k)n

p
d

2 d̄n2,p(P(.|Cc
k))

which in turn implies, using the d-dimensional version of the extended Pierce Lemma (Proposi-
tion 6),

lim sup
n

n
p
d d̄pn,p(P) ≤ P(Ck)(1 + η)p

((
(1 + η)−p/d

(1− ε)(1− Cdρkd−1α̃−d
0 )

) p
d

Qdq
‖.‖‖h1Ck

‖
L

d
d+p

+(1 + 1/η)pC‖.‖α̃0

)

+P(Cc
k) (1 + η) Cp,d ‖X1{X∈Cc

k
}‖

p
Lp+δ

(
1

ε(1− Cdρkd−1α̃−d
0 )

) p
d

.

One concludes by letting successively ρ, α̃0 and η go to 0, sending k → ∞ and finally ε to 0.
Step 3. (Upper bound: general case). Let ρ ∈ (0, 1). Set Pρ = ρP + (1 − ρ)P0 where P0 =
N (0; Id) (d-dimensional normal distribution). It is clear from the very definition of d̄n,p that
d̄n,p(P) ≤ 1

ρ d̄n,p(Pρ) since P ≤ 1
ρ ≤ Pρ. The distribution Pρ has hρ = ρh + (1 − ρ)h0 (with

obvious notations) and one concludes by noting that

lim
ρ→0

‖hρ‖d/(d+p) = ‖h‖d/(d+p)

owing to the Lebesgue dominated convergence Theorem.

Proof of Proposition 1:

Proof. Using Hoelder’s inequality one easily checks that for 0 ≤ r ≤ p and x ∈ R
d it holds

|x|ℓr ≤ d
1
r
− 1

p |x|ℓp .

Moreover, for m ∈ N set n = md and let Γ′ be an optimal quantizer for dm,p(U
(
[0, 1]

)
) (or at

least (1 + ε)-optimal for ε > 0). Denoting Γ =
∏d

i=1 Γ
′, it then follows from Proposition 4 that

n
p
d dpn(U

(
[0, 1]d

)
) ≤ n

p
d dp(U

(
[0, 1]d

)
; Γ) = mp

d∑

i=1

dp(U
(
[0, 1]

)
; Γ′) = dmp dpm(U

(
[0, 1]

)
).

Combining both results and reminding that Qdq
‖·‖,p,d holds as an infimum, we arrive for 0 ≤ r ≤ p

at (
Qdq

|·|ℓr ,p,d

)p
≤ d

p
r
−1 n

p
d dpn,|·|ℓp (U

(
[0, 1]d

)
) ≤ d

p
r mp dpm(U

(
[0, 1]

)
),

which finally proves the assertion by sending m → ∞.
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