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Discrimination measures for survival outcomes: connection
between the AUC and the predictiveness curve

Vivian Viallon and Aurélien Latouche

Abstract

Finding out biomarkers and building risk scores to predict the occurrence of survival outcomes
is a major concern of clinical epidemiology, and so is the evaluation of prognostic models. In this
paper, we are concerned with the estimation of the time-dependent AUC — area under the receiver
operating curve — which naturally extends standard AUC to the setting of survival outcomes and
enables to evaluate the discriminative power of prognostic models. We establish a simple and
useful relation between the predictiveness curve and the time-dependent AUC — AUC(t). This
relation confirms that the predictiveness curve is the key concept for evaluating calibration and
discrimination of prognostic models. It also highlights that accurate estimates of the conditional
absolute risk function should yield accurate estimates for AUC(t). From this observation, we
derive several estimators for AUC(t) relying on distinct estimators of the conditional absolute
risk function. An empirical study was conducted to compare our estimators with existing ones
and assess the effect of model misspecification — when estimating the conditional absolute risk
function— on the AUC(t) estimation. We further illustrate the methodology on the Mayo PBC
and the VA lung cancer data sets.

1 Introduction

Finding out biomarkers and developing risk scores to predict the occurrence of survival outcomes is a
major concern of clinical epidemiology (Steyerberg et al., 2010). As a result, a very active domain of
research in clinical epidemiology and biostatistics is the development of evaluation criteria for prog-
nostic tools (Steyerberg et al., 2010; Schemper, 2003). Overall, most criteria proposed in the literature
are either devoted to calibration or discrimination evaluation (Gail and Pfeiffer, 2005). Calibration
evaluates the goodness-of-fit of, mostly, risk prediction tools by comparing average predicted risks with
the observed proportion of events in groups of patients (it is usually evaluated on the whole sample
and/or each decile of predicted risks). On the other hand, discrimination measures the ability of a
risk prediction tool or a single biomarker to distinguish the individuals who developed the disease and
those who did not. Most of the existing criteria were originally defined for diagnostic tests and rely on
the observation of a binary outcome representing, for instance, disease status. Extending these criteria
to survival outcomes is generally not straightforward, especially because of the presence of censored
data (see, e.g., Viallon et al. (2009) for the calibration of risk prediction tools). In the present work we
will focus on methods that assess discrimination of prognostic tools. More precisely, we are concerned
here with an extension of the area under the receiver operating curve (AUC) to survival outcomes.
The AUC is a standard tool for evaluating the discrimination of diagnostic models. Originally, the
ROC curve was designed for a continuous (bio)marker X and a binary outcome D. In this simple case,
it plots sensitivity, P(X > ¢|D = 1), against 1 minus specificity, 1 — P(X < ¢|D = 0), for all possible
values ¢; the AUC is then simply computed as the area under this curve. Several extensions of the AUC
have been developed to account for survival outcomes. We shall notably evoke Harrel’s concordance
index (Harrell et al., 1982), which is the fraction of pairs of patients whose predicted survival times
are correctly ordered among all pairs that can actually be ordered. More recently Génen and Heller
(2005) derived an analytical expression of the c-index under the Cox model (Cox, 1972) leading to an



estimator that is not affected by censoring. Another recently proposed approach consists in considering
time-dependent AUC (see Heagerty et al. (2000); Heagerty and Zheng (2005); Chambless and Diao
(2006); Pepe et al. (2008b)). Indeed, in prospective cohort studies, binary outcomes such as disease
status can change over time, and it is therefore legitimate to consider time-dependent ROC curves.
This concept requires to define time-dependent sensitivity and specificity accordingly. Various such
definitions have been proposed in the literature, leading, on turn, to various definitions for the time-
dependent ROC curve and time-dependent AUC, AUC(¢) (Heagerty and Zheng, 2005). Heagerty and
Zheng (2005) suggested extensions of the standard cross-sectional sensitivity and specificity based on
extended definitions of cases and controls for survival outcomes. According to Heagerty and Zheng’s
terminology and denoting by 7; survival time for subject i, cases are said to be incident if T; =t
is used to define cases at time ¢, and cumulative if T; < t is used instead. Similarly, depending on
whether T; > t* for a fixed t* > t or T; > t is used for defining controls at time ¢, they are said to
be static or dynamic controls. In the sequel we focus on the setting of cumulative cases and dynamic
controls, originally developed by Heagerty et al. (2000) and further studied by Chambless and Diao
(2006). The static controls setting is detailed in Pepe et al. (2008b), while the incident/dynamic one
is described in depth in Heagerty and Zheng (2005).

Recently, the predictiveness curve, which describes the distribution of the predicted disease risk,
was advocated as a unifying approach for discrimination (Pepe et al., 2008a; Gu and Pepe, 2009).
Indeed, many criteria used for evaluating discrimination, such as the proportion of explained variation,
the standardized total gain and some recently proposed risk reclassification measures (Pencina et al.,
2007), were shown to express as simple functions of the predictiveness curve (Gu and Pepe, 2009).
On the contrary, no relation has been obtained between the AUC and the predictiveness curve. In
this paper, we derive such a relation, show that is still holds in the setting of survival outcomes and,
accordingly, propose an estimator of AUC(t) relying on the estimation of the conditional absolute
risk. Our result highlights that proper estimation of the conditional absolute risk function would yield
accurate estimates for AUC(¢).

The paper is organized as follows. In Section 2, we first recall some basics about time-dependent
AUC for survival outcomes following Heagerty and Zheng’s terminology (Heagerty and Zheng, 2005).
Then, we establish a useful relation between the cumulative/dynamic AUC(t), that we shall denote by
AUCC’D(t) hereafter, and the predictiveness curve. This relation allows us to propose a bunch of new
estimators for AUC®P(t) based on several estimators of the conditional absolute risk function. Section
3 shows some results from an empirical comparative study. In Section 4, we illustrate the use of the
proposed methods on the Mayo PBC and the VA lung cancer data sets. We close with a discussion.

2 Time—-dependent ROC curves and AUC(¢)

2.1 Notations

Let T; and C; denote survival and censoring times respectively for subject ¢, i = 1,...,n, so that the
only available information about T} is (Z;, ;) where Z; = min(7T;, C;) and 6; = I(T; < C;) stand for the
follow-up time and the censoring indicator respectively. Further denote by D;(t) the time-dependent
outcome status for subject i at time ¢, t > 0; D;(¢) will be defined precisely hereafter.

In this paper, our concern is the estimation of AUCC’D(tO) for a marker X and some fixed time
to. Throughout, we will use the terminology ”marker” when referring to X, but X may also denote
a risk score computed from a given regression model or a published score, in which case, generally,
X = X(to) = P(T < to|Z), where Z stands for a vector of covariates. It is noteworthy that, even
in this setting, X can be considered as fixed since ty is fixed. We then denote by G, G~! and g¢
the cumulative distribution function, the corresponding quantile function and the density function of
marker X, respectively. Further denote by F(t) = P(T < t) the absolute risk and let F(t; X = z) =
P(T < t|X = ) be the conditional absolute risk, S(t; X = z) =1 — F(t; X = x) the corresponding
conditional survival function and set f(t; X = z) = OF(t; X = x)/0t.



For any threshold ¢, the true positive and false positive rates are time-dependent functions defined
as TPR(c,t) = P(X > ¢|D(t) = 1) and FPR(¢,t) = P(X > ¢|D(t) = 0). The time-dependent
ROC curve ROC(t) plots TPR(e, t) vs FPR(c, t) for any threshold ¢, so that the time-dependent AUC
evaluated at tg is given by

AUC(tp) :/ TPR(c,t0)d [FPR(c, to)], (1)
where d [FPR(c, t9)] = dc x (OFPR(c, tp)/0c).
The setting of cumulative cases and dynamic controls corresponds to defining D;(t) = N} (t), where
N7 (t) = I{T; < t} is related to the counting process attached to T; (Aalen et al., 2009). It follows
that cumulative true positive rates and dynamic false positive rates are respectively defined as

TPR®(c,t) = P(X > T <t)=P(X >c|N*(t) =1) (2)
FPR®(¢,t) = P(X >c|[T >1t)=P(X > c|[N*(t) =0). (3)

For survival outcomes, estimators of the cumulative true positive and dynamic false positive rates,
and on turn of AUC(t), can not be directly derived from the above definitions because quantities
N7 (t) involved in (2) and (3) are generally not fully observable due to drop-outs (i.e., due to right
censoring). To get round this issue, Bayes’ theorem has to be used. When combined with (1), (2) and
(3), AUC®P(#y) can notably be shown to be

Avee ) = [ [ I —Igtto_)]?(fg))( =W g(ayg(c)dude. (4)

From this equation, Chambless and Diao (2006) proposed, an estimator of AUC®P(¢) partly based
on a primary estimator of the conditional absolute risk F(to; X = ¢) (see paragraph 2.3 below for
more details). Equation (4) can further be refined to get a useful relation between AUCSP(¢) and the
time-dependent predictiveness curve introduced in the next paragraph.

Before that, and as a complement, we shall add that the setting of incident cases and dynamic
controls corresponds to defining

Dty = 0 N
(

where dN}(t) = N} (t) — N} (t—) refers to the increment of the counting process attached to T; (Aalen
et al., 2009). An analog of (4) for the incident/dynamic AUC evaluated at time to, AUC™?(t0), is then

given by
suci = [ [ e S twla( e

2.2 A new estimator for AUC“"(¢)

In this paragraph, we state a useful relation between the AUC and the predictiveness curve. This
relation will enable us to derive estimators for AUCSP(¢) relying on estimates of the conditional
absolute risk function. For the sake of clarity, we first consider the binary outcomes setting for which
the presentation is easier. The survival outcomes setting follows as a natural extension.

For a binary outcome D, let R(q) = P [D =1|X = G~*(q)] denote the conditional absolute risk
associated to the ¢g-th quantile G=1(q) of marker X. The predictiveness curve plots R(q) versus q and
describes the distribution of P(D = 1|X) (Huang et al., 2007; Pepe et al., 2008a). It can be shown

that .
Jo aR(q)dq — p*/2

AUC - )
p(1—p)

(5)



where we set p = P(D fo q)dgq. The proof of Equation (5) follows from arguments similar
to those used to estabhsh Equatlon (6) below (see the Appendix) and is then omitted. Equation (5)
states that the AUC is a simple function of the predictiveness curve R and completes the results of Gu
and Pepe (2009). It is easy to check that AUC=1/2 if R(q) = p while AUC=11if R(q) = I(¢ > 1 —p).
Figure 1 shows some examples of predictiveness curves and the corresponding AUC values in the case
where p = 1/2: the closer the predictiveness curve from the step function I(q > 1 — p), the higher the
value of the corresponding AUC.

It is noteworthy that Equation (5) suggests that accurate estimates of R(q) (especially for high
values of ¢) should yield accurate estimates of AUC.

We now turn our attention to the survival outcomes setting. Set R(t;q) = P(D(t) = 1|1X =
G~ 1(q)) = F(t|X = G~ Y(q)) (since we recall that D;(t) = I(T; < t) in the cumulative/dynamic
setting). For any ¢, the function R(f;-) is a natural extension of the predictiveness curve defined
above. Accordingly, it will be referred to as the time-dependent predictiveness curve at time ¢. In this
context, we have

fo qR(to; q)dq — F>(tg)/2
F(to)[1 — F(to)]

The proof of (6) is deferred to the Appendix. Observing that F'(tg) fo (to; q)dg, it follows from

(6) that AUC®P(ty) is a simple function of the time-dependent, predictiveness curve.
The relation stated in Equation (6) will be the basis of our estimating procedure. We now give
more details about the estimation of each component appearing in the right hand-side of (6). Assume

AUCEP (1) =

(6)

we are given an estimator F,(to:x) of the conditional absolute risk F(to;z) and recall that G and g
denote the cumulative distribution function and the density function of X. Since fol qR(to;q)dq =
ffooo G(z)F (to; x)g(x)dz, the empirical counterpart of the quantity fol qR(to; q)dq is given by

n

> b

i=1

n t07 a

§|N.

where X ;) denotes the i-th order statistic attached to the sample X7, ..., X;,. As for the marginal ab-
solute risk function F', it can be directly estimated using Kaplan-Meier estimator ﬁn)(l) (to). Observing

that F(to) = [ F(to;z)g(x)dz, an alternative to ﬁnﬁ(l)(t) relying on the conditional risk estimate is
the quantity

F (2)(to) = Zﬁn(tO;Xi)'
i=1
This yields two estimators for AUCC’D(tO), namely, for kK = 1,2,

Sy EF(to; X)) = F2 ) (t0) /2
Foy(to) [1 = Friy(t0)]

__ For illustration, we now will work under standard survival models and recall how to obtain estimates
F,,(to; ) of the conditional absolute risk which, when combined with Equation (7) above, will lead to
estimates for AUCEP ().

Denote by A(t; X = x) the conditional hazard rate and A(t; X = z) = fg Mu; X = x)du the
conditional cumulative hazard rate of T given X. The conditional absolute risk function expresses as
F(t; X = 2) =1 —exp{—A(t; X = z)}. First consider the Cox model (Cox, 1972) under which the
conditional hazard rate A\(¢; X = z) is of the form A\o(¢) exp(ag + ax), where A\g denotes the baseline
hazard rate, g is an intercept and « is the log hazard ratio pertaining to X. Denote by Ao(t), Qo and

C,D
AUC (k)( 0) =

(7)

& the estimators of the quantities fg Ao(w)du, ag and « respectively. Then a estimator of F(t; X = x)
is given by

Fpcox(to; X =2) =1— eXP{ — Ao(to) exp(do + d:c)}. (8)



Next, under Aalen’s additive model (Aalen, 1989), the conditional hazard rate A(t; X = z) is of the
form Bo(t)+ B1(t)z. Thus F(t;x) = 1 —exp{—Bo(t) — B1(t)z} with B;(t) = fg Bi(u)du,i =0,1. Given
estimates By(t) and By (t) of By(t) and By (t) respectively, we can then define

~

P asten(to; X = ) = 1= exp { = Bo(to) - Bi(to)a}. (9)

Checking that the assumptions of any statistical model are not violated is often tricky, especially when
the sample size is small (and the statistical power is low). Consequently, it is often legitimate to use
nonparametric estimators, at least for comparison matters. Several local or conditional versions of
the Kaplan-Meier estimator have been proposed and studied in the literature (Beran, 1981; Akritas,
1994). Any of them can be used to estimate the conditional absolute risk for survival outcomes. For

instance, denoting the empirical distribution function of X by G , a nearest-neighbor type-estimator of
F(to; x) is defined as

=~ Kg (Xl,:v)
F KMcond (to; X =) =1 — 1- g ; (10)
con Zigtlo_,[&:l Ej 1(Z; > Z;—)Ky, (X, x)

where £,, is the smoothing parameter of the 0/1 symmetric nearest-neighbor kernel K,_, e.g., K, (z,y) =
I(|G(z) — G(y)| < £,) (Akritas, 1994). The smoothing parameter £, needs to be carefully chosen to
ensure good balance between bias and variance. Data-driven rules are generally employed for selecting
{,, in an optimal manner .

It is noteworthy that, in most applications, several evaluation times may be of interest: for instance,
in the setting of cancer risk prediction, ¢y might be set to 1,5 and 10 years. Should AUCC’D(t) be
estimated for several t’s in the situation where X = X (¢), the estimation procedure of the conditional
absolute risk have in general to be performed for every value of ¢ (while, of course, a single estimation
is needed in the context of a purely constant marker or score X).

2.3 Existing estimators for AUC®"(¢)

Following the proposal of Heagerty et al. (2000), several estimators of AUC®P(¢) have been presented
in the literature. We briefly recall their principles in this paragraph.

Heagerty et al. (2000) developed a nonparametric estimator for AUC®P () based on the nearest-
neighbor bivariate distribution estimator of Akritas (1994). Rewriting sensitivity P(X > ¢|D(t) =
1) = F(t|X > ¢)P(X > ¢)/F(t) and specificity P(X < ¢|D(t) =0) = S(t|X < c)P(X <¢)/{1 - F(t)},
the authors first observed that "naive” estimators of sensitivity and specifity obtained by pluging in
the Kaplan-Meier estimator for S and G(c) = 3. I(X; < ¢)/n for P(X < ¢) may not be monotone in
c. Proper estimates follow from first expressing sensitivity and specificity as functions of the bivariate
survival function S(c,t) = P(X > ¢, T > t), that is

_1-G(c) = S(c, 1)
- F(t)

S(c,t)

P(X > ¢|D(t) = 1) et

and P(X <¢|D(t)=0)=1

Heagerty et al. (2000) then proposed to use the Nearest Neighbor Estimator of Akritas (1994) of S(c, ),
which relies on the conditional representation of the bivariate survival function S(c,t) = [ S(t|X =
$)dGx (s). That is, the NNE estimator is given by §Z(C, t)y=>{1- ﬁn7KMCOHd(tQ; X =X)xI(X; >
¢)/n with ﬁn7KMCOHd(tQ; X = z) asin (10). Given these proper estimators for sensitivity and specificity,
an estimator of AUC®P(#) follows from (1) by simple numerical integration (using the trapezoidal rule
for instance). This method will be referred to as HLP.

Chambless and Diao (2006) suggested a recursive calculation over the ordered times of events for
AUC(C’]D)(t)7 analogous in spirit to Kaplan Meier approach for the estimation of the survival function.



Given two random individuals i and j, it can be shown that AUC®P(t) = P(X; > X;|Di(t) =
1,D;(t) = 0), with D;(¢t) = N}(t). Then, applying Bayes’ theorem leads to the expression

) .

P(X; > X;,D;(t) = 1, D;(t
P(Di(t) = 1)P(D;(t) =

Further let ¢ be the unique ordered survival times t; < to < ... < t,. At a given time ¢, with
1 < m < n, the numerator of AUC®P(t,,) expresses as

ST wAE) T = At }S (tr-1)? = D wP At) S (te—1){1 = S(te—1)},

k<m

D _ ):
AUCEP(t) = 0)

the denominator being S(¢m,)(1 — S(tm). Chambless and Diao (2006) establish that the weights

wi = P(X; > X;|Di(ty) = 1,D;(te—1) = 0, D;(ty) = 0)
w® = P(Di(t_1) =1,D;(tx_1) = 0,D;(tx) = 1)

can then be estimated recursively. This method will be referred to hereafter as CD1. A nice property
of this nonparametric estimator is that it does not involve any smoothing parameter, unlike the one
proposed by Heagerty et al. (2000) or the one we propose using a conditional Kaplan-Meier estimator
for the conditional risk function.

Another estimator, based on the estimation of the conditional survival function, was derived by
Chambless and Diao (2006). From Equation (4) above, the authors observe that

E[{1 = StHU)ISHV)I(V < U)]

AVCS () = = 5 g XL X)) -

where U and V are independent observations of X. They then suggest to estimate the conditional
survival functions under a Cox model, while the bivariate expectation can be estimated as the mean
over all (U, V) pairs of distinct observations. The corresponding method, which will be referred to as
CD2, is very similar to our approach, when using a Cox model to estimate conditional risks. However,
our approach does not involve the computation of the bivariate expectation: because the function
L defined in the appendix is symmetric in its arguments, we were able to rewrite (11) in the more
appealing form (6) which does not involve any bivariate expectation.

3 Simulation study

In this section, we present results we obtained from an empirical study, the main objectives of which
being (i) to compare our estimators of AUCTP(#) with those proposed in the literature and (ii) to assess
the effect of a misspecified model — when estimating the conditional absolute risk— on the AUC®(t)
estimation. Towards this end, we compared six estimators of AUCC’D(t) on synthetic data : Heagerty’s
estimator relying on Akritas’ estimator for the bivariate survival function (method HLP which is
implemented in the survivalROC R package; Heagerty et al. (2000)), the two estimators proposed by
Chambless and Diao (2006) (CD1 and CD2, which are both implemented in a SAS macro available at
http://www.cscc.unc.edu/aric/addresms/), and three estimates we derived by combining equation
(7) with three distinct estimates of the conditional absolute risk. More precisely, the conditional
absolute risk was estimated under a standard Cox proportional hazard model (see (8)), an Aalen
additive model (see (9)) and using the conditional Kaplan-Meier estimator (see (10)). From our
experimental results (not shown), we observed better performances for estimates obtained with k& = 2
in (7) and we therefore only present results obtained with & = 2 in the sequel. The three corresponding
methods will be referred to as VL Cox, VL Aalen and VL. KM. Of note, we used the basehaz function of
the survival package to obtain estimates for the baseline hazard rate under a Cox model. To estimate



F(t; ) under Aalen’s additive risk model, we used the function aalen of the timereg R package which
returns estimates for both cumulative coefficients By and B. Lastly, the conditional Kaplan-Meier
estimator was computed using the prodlim package. Regarding the choice of the smoothing parameter
for method VL KM, we used the default option of the prodlim package which employs a direct plug-in
method. As for the smoothing parameter for method HLP, it was set to 0.25 x n~ /5, following the
guidelines of the survivalROC package.

3.1 Simulation design

For generating a random survival time variable with cumulative hazard rate A, it suffices to invert
an exponential random variate. More precisely, given an exponential random variate F, the survival
time T = A~!(E) is a random variable with cumulative hazard rate A (Leemis et al., 1990). In
this simulation study, we chose to consider three distinct conditional distributions for the survival
time T given marker X, that is three distinct cumulative hazard rates Aq(+; X), Aa(+; X) and As(+; X).
Denoting by A1(+; X), Aa(+; X) and A3(+; X) the corresponding hazard rates, we considered

A1(t; X) M, for some 3 € IR; (12)
1+¢
2
Xo(t; X) = texp (ﬁXt ) , for some g € R; (13)
As3(t; X) = Bot+ t—l—ilX’ for some Sy, 8 € R. (14)

In (12), the model corresponds to a standard Cox model with a decreasing baseline hazard rate
Xo(t) = 1/(t +1). Equation (13) describes a time-varying coefficient Cox model with time-varying
coefficient 3(t) = (3Xt?)/2 and increasing baseline hazard rate \o(t) = ¢. Finally, the last case is that
of an Aalen’s additive model with time varying coefficients Syt and 3/(t+1). The conditional absolute
risk functions for models (12) and (13), and (14) are respectively given by F} (t; X) = 1—(t+1)~ <P(8X),
F(t; X) = 1 — exp[—{exp(8X1?/2) — 1}/(BX;)] and F5(t; X) = 1 — exp{—fot*/2 + (Blog(t + 1)) X }.
Moreover, the inverse functions of A; and A can be derived analytically and are given by

AN X) = exp{texp(—BX)} —1;

1 2log(BXt)

A (5 X) X

Observe that Ay '(+; X) is only defined for positive X. In this case, values of X were drawn from an
exponential distribution, while X was generated according to a N'(0, 1) distribution under model (12).
As for model (14), the uniroot R function was used to solve equations A3(T;; X;) = E;, for every
observation i = 1,....,n (X;,i = 1,...,n, was drawn from a exponential distribution again).

Under each of the three aforementioned models, we applied an ”administrative censoring” occurring
at the time corresponding to the 80% percentile of the survival time distribution. Besides this admin-
istrative censoring, we considered three censoring schemes: (i) no additional censoring, (i7) C; ~ E(m1)
and (ii7) C; ~ E(12), where rates 71 and 7 of the exponential distribution £(-) were respectively chosen
so that censoring rate attained 25% and 75% respectively.

3.2 Comparison of the AUC"”(t) estimators

Sample size was set to 500. Estimates for AUC®P(t) were computed at times tq1, tg2 and t,3 corre-
sponding to the first, second and third quartile of the survival time distribution respectively. The-
oretical values of AUCEP(t) were computed according to Equation (6). The integrate R function

was used to compute terms of the form fol qR(t;q)dg = fol qF(t; X = G~%(q))dq (gnorm and gexp R



functions were used to compute quantities G1(q)) and F(t; X = ) was computed according to (8),
(9) or (10).

Average bias and mean squared-error (MSE) were computed for each method and under each design
over 100 runs (see Table 1). Overall, higher censoring rates lead to poorer estimates of AUCSP(¢),
especially for late evaluation times (i.e., when censoring is the most sensitive). Methods CD2 and
VL Cox — both relying on a primary Cox estimate of the conditional risk function — achieved similar
performances in most examples. Their performances highly depended on the true underlying model.
They both performed the best under a Cox model and performed the worst under each of the other
considered models. This highlights that misspecifying the model for conditional risk estimations has
an important effect on the AUCC’D(t) estimation accuracy. In the same spirit, the three nonparametric
methods (CD1, HLP and VL. KM) achieved similar performances in most examples. As expected, they
were less sensitive to the underlying model than methods CD2 and VL Cox. Method CD1 slightly
outperformed its competitors for low censoring rates and for early evaluation times. Two main reasons
may be put forward to explain this result. First, CD1 does not rely on any smoothing parameter, and,
maybe more importantly, CD1 directly estimates AUCC’D(t), while alternative methods use plug-in
estimations of the conditional risk function. However, we observed chaotic performances for method
CD1 when increasing censoring rates, especially for late evaluation times. This suggests that this
method is inadvisable in these situations. On the contrary, VL KM appeared to perform the best
(compared to CD1 and HLP) in the situations of high censoring rates and late evaluation times.
Lastly, results attached to method VL Aalen were rather surprising: in terms of MSE, VL Aalen
outperformed VL KM under a Cox model, but was worse under an Aalen’s additive model (it was
worse under a time-varying coefficients Cox model too but this was somehow expected). This suggests
that estimates of AUCC’D(t) derived under VL Aalen may be less biased but, even if the underlying
model is an Aalen’s additive model, generally present larger variances than those derived under VL
KM.

3.3 Assessing the accuracy of AUC®? estimates using predictiveness curves

As mentioned above, Equation (6) shows that accurate estimates of R(to; q) (especially for high values
of ) should yield accurate estimates for AUCSP(t,). We then compared accuracies of the predictive-
ness curve and AUCC’D(tO) estimations on one sample generated under each of the three simulation
designs described above. Two evaluation times were considered: the first quartile ¢;; and the median
tq2 of the survival time distribution. The three same models as above were considered to estimate the
conditional absolute risk (and then AUCC’D(t)). Figure 2 shows the corresponding graphs, as well as
the curve AUCC’D(t) and its estimate. Overall, these graphs confirm that if the predictiveness curve
(or, equivalently, the conditional risk function) is accurately estimated, then AUC®P(¢) is accurately
estimated too. They also confirm that errors made when estimating R(t,q) for high values of ¢ are
predominant: for instance, under the time-varying coefficient Cox model, when a Cox model is used
to estimate the conditional absolute risk function, the true predictiveness curve is underestimated on
the quantiles interval [0, 0.85] and slightly overestimated on the interval [0.85,1] while AUC®P(¢) is
largely overestimated.

A natural question then arises: how to check the accuracy of the time-dependent predictiveness
curve estimation? In the binary outcomes setting Pepe et al. (2008a) showed that this problem was re-
lated to that of checking the goodness-of-fit of the underlying risk model. In a sense, the predictiveness
curve can indeed be viewed as a graphical representation of each component of the Hosmer-Lemeshow
statistic (Lemeshow and Hosmer, 1982): at the midpoint of each decile of predicted risk, the observed
proportion of cases can be superimposed on and visually compared to the predictiveness curve. To our
knowledge, the Hosmer-Lemeshow statistic has never been extended to survival outcomes. However,
as mentioned in Viallon et al. (2009), this statistic can be computed with observed counts replaced
by their estimates based on Kaplan-Meier estimator. Some more study would be needed to assess
the asymptotical distribution of the resulting statistic under the null hypothesis in order to derive a
proper statistical test. However, we can develop on this idea to propose a graphical tool, useful for



checking the goodness-of-fit of the risk model and then the accuracy of the AUCC’D(t) estimation. The
principle for a fixed evaluation time ¢ is simple. Namely, (i) compute Kaplan-Meier estimator of the
(unconditional) absolute risk for each decile of predicted risk and (i¢) superimpose these values on the
graph of the predictiveness curve (see Figure 2 for illustration).

Generally (and as can be seen on Figure 2), nonparametric estimators fit data well, and checking
the goodness-of-fit is mostly relevant for parametric models. For such models, an alternative to the
aforementioned extension of the Hosmer-Lemeshow statistic would be to compare the predictiveness
curve obtained under the considered parametric (or semi-parametric) model to the one obtained with
a nonparametric estimator of the conditional absolute risk (e.g., using a conditional Kaplan-Meier
estimator). The corresponding test would consist of an extension of the test proposed by Héardle and
Mammen (1993). The comparison can also be visual (see Figure 2). For instance, under the time-
varying coefficient Cox model, when a Cox model is used to estimate the conditional absolute risk
function, the predictiveness curve is quite different from the one derived from a conditional Kaplan-
Meier estimator of the conditional risk function for ¢ = ¢;,. The predictiveness curves estimates are
much closer for t = t, though. As a result, the estimator of AUC®P(t,) obtained using a Cox
estimator of the conditional risk function is much better than the estimator of AUC(t,,).

The complete study of either methods is beyond the scope of this paper and will be performed
elsewhere. Of course, more standard statistical tests might also be advocated, such as those relying
on Cox-Snell residuals (Cox and Snell, 1968).

4 Real examples

In this Section, we present results we obtained on two classical real data sets: the VA lung cancer data
and the Mayo PBD data. These two data sets are freely available through the MASS and survivalROC R
packages respectively. These data were especially used in Heagerty and Zheng (2005).

4.1 Mayo PBC data

As a first illustration, we evaluated the AUCC’D(t) of a widely used score for predicting survival after
a primary biliary cirrhosis (PBC). The data set consists of 312 subjects, enrolled at the Mayo Clinic
between 1974 and 1984, and randomized in a placebo controlled trial of the drug D-penicillamine
(Fleming and Harrington, 1991). About 40% of the patients died during the study. The score was
constructed by including 5 covariates — log(bilirubin), albumin, log(prothrombin time), edema and age
(see Heagerty and Zheng (2005))— into a Cox model. Our aim here was to evaluate the predictive
performances of this score as well as checking whether its accuracy changes over time. We then
computed estimates of AUC®P(¢) according to to the method of Heagerty et al. (2000) (HLP) and our
approach (see the right panel in Figure 3). The two left panels in Figure 3 present the predictiveness
curves estimates obtained with ¢ set to the first quartile and 35% percentile (51 ~ 1481 and ¢35 ~
2365) of the survival time respectively. For ¢t = ¢p35, the predictiveness curve obtained with a Cox
model is very similar to that obtained with a conditional Kaplan-Meier estimator. This is reflected on
the curves of the estimated AUC®P(#): estimates of AUC®P(t,35) obtained with either estimator of
the conditional absolute risk are similar. For ¢ = t,;, the difference between the predictiveness curve
obtained with a Cox model and that obtained with a conditional Kaplan-Meier estimator is bigger,
and such is the difference between the estimates of AUCC’D(tp35). In other respect, we observed that
estimates of AUCC’D(t) obtained using VL. KM and HLP were close to each other. According to either
methods, the effect of time on AUC®P(t) is moderate, but AUC®P(t) appeared to slightly decrease
with time.



4.2 VA Lung Cancer Data

The VA lung cancer data set was presented and analyzed in Kalbfleisch and Prentice (2002) for instance.
Overall, 137 males with inoperable cancer were randomized to a standard or a test chemotherapy.
Death was considered as the endpoint, and more than 93% of the participants died during the study.
Predictors of mortality include type of treatment, age, histological type of tumor and the Karnofsky
score (which is a performance status measure). As in Heagerty and Zheng (2005), we considered a
500-day follow-up and a Cox model was used to build a risk score out of these baseline covariates. Our
objective here was to estimate the AUCC"D(t) attached to this score. As above, we computed estimates
of AUC®P () according to the method of Heagerty et al. (2000) (HLP) and our approach (see the right
panel in Figure 4). The two left panels in Figure 4 present the predictiveness curves obtained with ¢
set to the first and third estimated quartiles (¢41 and ¢43) of the survival time respectively. For both
t =ty and t = t43, the predictiveness curve obtained with a Cox model is quite different from that
obtained with the conditional Kaplan-Meier estimator and this is once again reflected on the curves
of the estimated AUCC’D(t), where the estimation relying on the Cox model is sensibly different from
that obtained via the conditional Kaplan-Meier estimator. In other respect, we still observed good
agreement between estimators obtained using either HLP or VL KM. As for the Mayo score, AUCC’D(t)
for the VA lung score appeared to be a slightly decreasing function of the evaluation time t.

5 Discussion

In this paper, we derived a useful relation between the predictiveness curve and the AUC and showed
that this relation still holds when considering extensions of these concepts to survival outcomes. This
relation enabled us to propose new estimators for the cumulative/dynamic AUC, relying on primary
estimators of the conditional absolute risk function. These estimators are similar, in spirit, to one of
the two estimators formerly proposed by Chambless and Diao (2006). Through an empirical study, we
further showed that our estimation procedure attained performances similar to that reached by existing
estimates. This simulation study also highlighted that much attention had to be paid when selecting
the form of the model used to estimate the conditional risk function. Working under an appropriate
parametric model usually yields more accurate estimates (for both the conditional risk function and
AUCYP (1)) than those obtained from purely nonparametric approaches, but misspecifying the model
generally leads to dramatically biased estimates. This observation leads us to recommend to always
use nonparametric estimators of the conditional absolute risk function at least to visually check the
goodness-of-fit of parametric models, for instance by comparing estimates of the predictiveness curve.

It is noteworthy that the proposed estimators of AUCC’D(t) are straightforward to implement:
standard survival packages indeed return estimates of the conditional absolute risk function from
which estimates of AUCTP(£) are readily obtained in view of Equation (7). Moreover, because of their
”plug-in” nature, their theoretical properties should follow from those established for estimators of the
conditional absolute risk function. Closed form expressions might further be obtained for confidence
intervals, but sub-sampling techniques (bootstrap for instance) can already be used to provide such
intervals.

We shall also recall that the nonparametric estimator of Chambless and Diao (2006) was observed
to slightly outperform its two nonparametric competitors (including our approach) in most of our
empirical examples, except for high censoring rates and late evaluation times (where our approach
appeared to perform the best). This might be due to the fact that the nonparametric proposal of
Chambless and Diao (2006) directly estimates AUC®P(¢) instead of using plug-in estimates. Some
theoretical study would be needed to confirm this observation. We may also recall here that most
estimators of the conditional absolute risk function rely on some independence assumption between
censoring time C and the pair (T, X), and so does our proposal for estimating AUCC’D(t). Because it is
based on the estimation of the bivariate survival function, the nearest-neighbor estimator of Heagerty
et al. (2000) does not rely on any such assumption, and this method is then advisable in situations
where these assumptions might be violated.
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Another important remark is that if X actually stands for a risk score, the methodology presented
here only applies for external validation. That is, we supposed that the risk score had been constructed
on some sample and our goal was to evaluate its discriminative power on an external sample. Should
the score be evaluated on the sample used to construct it, standard sub-sampling methods are further
needed (Harrell et al., 1996).

In other respect, the results we obtained for (time-dependent) AUC are easy to extend to (time-
dependent) partial AUC, p-AUC, which has recently gained popularity in epidemiology (Dodd and
Pepe, 2003). The definition of p-AUC is similar to (1), with the interval of integration restricted to
(Cmins Cmax), for some cpin > —o0 and ¢max < 0o. In the binary outcome setting, an analog of Equation
(5) is then obtained by replacing the integration interval (0,1) by (G(¢min), G(¢max)). The survival
outcome setting can be handled proceeding to the same replacement, and derivations of empirical
counterparts are also straightforward. Therefore, it follows from our results that (time-dependent)
partial AUC is also directly related to the predictiveness curve.

To conclude, this paper completes in some sense the work of Gu and Pepe (2009), confirming that
the conditional risk function, through the predictiveness curve, is the key when assessing discrimination
of prognostic tools.

Appendix

Proof of (6). Considering the numerator of (4), and using the changes of variables x = G~!(u) and
¢ =G (v), we have

/ / F(t; X =x)[1 — F(t; X = ¢)]g(x)g(c)dzde
// (1 X = G )1 — F(t: X = G—(v))]dudv
/0 / [1—S(t; X =G w)]S(t; X =G 1 (v))dudv
/1 /1[S(t;X —GUw)) = S(EX = G w)S( X = G- (v))]dudv
01 : 1 1
= / (1-v)StX =G (v))dv —/ / St; X =G Hu)S(t; X = G (v))dudv
0 0 Jo
= / (1—-v)St; X =G Hv))dv —/ / St X =G Hw)S(t; X =G ) (u > v)dudv.
0 o Jo

Settin
’ L(u,v) = St; X = G u)S(t; X = G Hw)I(u > v),

we have L(u,v) = L(v,u) so that

/ / Ft; X =x)[1 — F(t; X = ¢)]g(x)g(c)dxde

1o » o
/ (1—0)S(tX = G- (v))dv—i/o /0 S(t X = G- (u)S(t: X = G (v))dudy

0

/01(1 —0)S(tX =G (v))dv — % (/01 St X = v)dv)Z
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Therefore, we have

S = v)S(t: X = G (v))dv — L=EWE

C,D
e FO = ()
_ 1-F(t) = Jy o[l - F(t X = G~ (v))Jv — 2500
- F(H)[1 - F(1)]
1= F@) - BEOE 1oy [LeF(H X =G (0)dy
- F(t)[1 - F(1)]
B fol cR(t; ¢)de — %t)z
T FOD-F@®)]
which is (6).
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Figure 1: Generic predictiveness curves and their corresponding AUC values. A flat predictiveness
curve, R(q) = p, where p is the proportion of events, is associated to an AUC of 0.5. The closer the
predictiveness curve is from the step function I(¢ > 1 — p), the closer the corresponding AUC is to 1.

14



Table 1: Results of the simulation study. Comparisons between several estimators of AUCC’D(t).
Averaged bias (multiplied by 100) and MSE (multiplied by 1000) obtained from 100 runs are reported.

Eval. 100x Bias 1000x MSE
Time CD2 VL Cox VL Aalen CD1 Heag VL KM ‘ CD2 VL Cox VL Aalen CD1 Heag VL KM
Standard Cox model
Censoring scheme 1
tq1 -0.388 -0.168 -0.361 0.131 -0.638 -1.052 0.203 0.190 0.356 0.570 0.623 0.683
tg2 -0.358 -0.082 0.301 -0.239  -0.930 -1.262 0.189 0.176 0.317 0.465 0.565 0.640
tq3 -0.359 0.103 1.485 -0.598  -1.319 -1.413 0.168 0.155 0.533 0.416 0.557 0.584
Censoring scheme 2
tq1 -0.103 0.117 -0.288 0.031 -1.191 -1.111 0.263 0.262 0.395 0.631 0.798 0.723
tg2 -0.104 0.170 0.423 -0.159  -1.304 -1.115 0.266 0.267 0.308 0.427 0.700 0.578
tq3 -0.042 0.415 2.132 -0.280  -0.853 -0.774 0.252 0.269 0.910 0.730 0.735 0.645
Censoring scheme 3
tq1 0.167 0.384 -0.459 -0.166  -1.609 -1.361 0.626 0.636 0.614 0.977 1.277 1.125
tg2 0.128 0.367 -0.134 -1.023  -2.427  -1.571 0.636 0.645 1.403 2401  2.833  2.573
tq3 -2.434 -1.963 -1.533 -4.471  -7.270 -5.485 1.450 1.331 7.333 13.981  8.949 8.327
Time-varying Cox model
Censoring scheme 1
tq1 6.686 6.906 2.882 0.163 -0.468 -0.731 4.651 4.949 2.291 1.159 1.184 1.174
a2 -2.388 -2.107 6.199 0.274 -0.197 -0.556 0.714 0.587 4.510 0.524 0.534 0.571
a3 -9.126 -8.629 7.377 -0.047  -0.417 -0.317 8.464 7.582 5.812 0.338 0.347 0.335
Censoring scheme 2
tq1 5.716 5.927 2.528 -0.229 -2.457 -1.196 3.564 3.803 2.042 1.272 1.752 1.365
tg2 -3.272 -3.004 5.867 0.071 -2.828 -0.881 1.310 1.135 4.268 0.832 1.683 0.909
tq3 -10.005 -9.535 7.536 0.492 -1.343 -0.057 10.232 9.304 6.190 0.587 0.741 0.487
Censoring scheme 3
tq1 3.044 3.268 2.152 0.042 -2.198 -0.845 1.307 1.448 2.616 2.156 2.775 2.198
tg2 -5.532 -5.250 5.327 0.746 -2.799 -0.592 3.372 3.067 4.459 1.407 2.414 1.348
tqs -11.932 -11.460 6.576 1.724 -2.637 -0.200 14.562 13.462 6.399 4.178 2.912 1.896
Aalen additive model
Censoring scheme 1
tq1 -7.898 -7.674 0.603 0.496 -0.190 -0.554 6.558 6.209 1.113 0.582 0.571 0.590
tg2 -5.245 -4.955 0.248 -0.015  -0.551 -0.779 3.020 2.724 0.625 0.464 0.489 0.516
tq3 -2.269 -1.778 0.621 0.294 -0.128 -0.099 0.762 0.564 0.777 0.671 0.657 0.640
Censoring scheme 2
tq1 -7.847 -7.624 -0.204 -0.416 -2.247 -1.420 6.514 6.168 1.172 0.715 1.293 0.879
tg2 -5.186 -4.898 -0.070 -0.199  -1.638 -0.718 2.993 2.703 0.842 0.720 1.059 0.755
tq3 -2.188 -1.703 -0.022 -1.342 -1.791 -0.593 0.750 0.563 0.877 1.036 1.126 0.729
Censoring scheme 3
tq1 -6.831 -6.615 -0.271 -0.187  -2.124 -1.110 5.349 5.051 1.994 1.231 1.796 1.316
tg2 -4.273 -3.998 0.308 -0.666  -1.506 -0.285 2.396 2.164 2.728 2.490 2.880 2.315
tq3 -1.291 -0.944 3.252 -7.243 -2.914 -0.877 0.764 0.679 13.687 31.585  6.311 7.095
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Figure 2: Time-dependent predictiveness curves (left panel) and estimates of AUCSP(¢) (right panel)
under the three simulation designs considered in this paper: Cox model (top), time-varying Cox model
(center) and Aalen’s additive model (bottom). Results were obtained on one sample of size n = 500.
In each case, time-dependent predictiveness curves were computed at the times corresponding to the
first quartile and median of the survival time distribution (represented by the dotted vertical lines on
the right panel). In addition, black bullets represent Kaplan-Meier estimators of the (unconditional)
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absolute risk for each decile of predicted risk.

16

AUC C/ID

AUC C/ID

AUC C/D

0.7

0.7

0.7

— Tue
- Hedgerty
— KMcond.

+ Add. Aalen
Cox

— True
Heagerty

— Add. Aalen
— Cox

— True
Heagerty !
“— KMcond.!

Add. Aalen
Cox '

Time



standard Cox o tandard Cox o/
Aalen A © Aalen .
conditional KM ~ 3 conditional KM 4 3

Predictiveness curve
Predictiveness curve
AUC C/D

— Cox

- - Add. Aalen

++++ KM cond
Heagerty

T T T T T T T T T T T T T T T T T T
0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0 500 1000 1500 2000 2500

Quantile of Mayo Score Quantile of Mayo Score Time (days)

Figure 3: Time-dependent predictiveness curves (left panel) and estimates of AUCSP(¢) (right panel)
on the Mayo data. Time-dependent predictiveness curves were computed at the times corresponding to
the 25% and 35% percentiles of the survival time distribution (represented by the dotted vertical lines
on the right panel). Black bullets represent Kaplan-Meier estimators of the (unconditional) absolute
risk for each decile of predicted risk.
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Figure 4: Time-dependent predictiveness curves (left panel) and estimates of AUCSP(¢) (right panel)
on the VA Lung data. Time-dependent predictiveness curves were computed at the times corresponding
to the 25% and 75% percentiles of the survival time distribution (represented by the dotted vertical
lines on the right panel). Black bullets represent Kaplan-Meier estimators of the (unconditional)
absolute risk for each decile of predicted risk.
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