
HAL Id: hal-00547116
https://hal.science/hal-00547116

Submitted on 15 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Aging and stationary properties of non-equilibrium
symmetrical three-state models

Christophe Chatelain, Tânia Tomé, Mario J. de Oliveira

To cite this version:
Christophe Chatelain, Tânia Tomé, Mario J. de Oliveira. Aging and stationary properties of non-
equilibrium symmetrical three-state models. Journal of Statistical Mechanics: Theory and Experi-
ment, 2011, pp.P02018. �10.1088/1742-5468/2011/02/P02018�. �hal-00547116�

https://hal.science/hal-00547116
https://hal.archives-ouvertes.fr


Aging and stationary properties of non-equilibrium

symmetrical three-state models
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Abstract. We consider a non-equilibrium three-state model whose dynamics is

Markovian and displays the same symmetry as the three-state Potts model, i.e., the

transition rates are invariant under the permutation of the states. Unlike the Potts

model, detailed balance is in general not satisfied. The aging and the stationary

properties of the model defined on a square lattice are obtained by means of large-

scale Monte Carlo simulations. We show that the phase diagram presents a critical

line, belonging to the three-state Potts universality class, that ends at a point whose

universality class is that of the voter model. Aging is considered on the critical line,

at the voter point and in the ferromagnetic phase.
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1. Introduction

The critical behavior of equilibrium systems can be classified according to universality

classes that are characterized by a small number of features such as symmetries,

conservation laws and dimensionality [1]. The universality classes of non-equilibrium

systems without detailed balance are also characterized by these features and possibly

others [2, 3, 4, 5]. It seems that any universality class that encompasses systems in

equilibrium includes also non-equilibrium systems although the reverse is not true.

The universality class of directed percolation for instance does not include systems

in equilibrium. In other words, some classes of universality comprehend equilibrium as

well as non-equilibrium systems and in this case we may say that the lack of detailed

balance is irrelevant. Other classes are constituted only by non-equilibrium systems and

the lack of detailed balance is a relevant property.

Here we study a two-parameter non-equilibrium model that belongs to the

universality class of the three-state Potts model. As happens to the latter, the non-

equilibrium model studied here displays a continuous phase transition from an ordered

to a disordered phase. As one varies the parameters along the critical line separating

the ordered and disordered phases, the model leaves the Potts universality class and

displays a crossover to the non-equilibrium universality class of the voter model at the

terminus of the critical line. The model is studied on a regular square lattice and the

transition probabilities depend only on the four neighbors of a given site. We set up the

most general model obeying the same symmetry as the equilibrium Potts model. In this

case the symmetry of the model is identified as the symmetry of the transition rates in

contrast to equilibrium models for which the symmetry of the model is identified as the

symmetry of the Hamiltonian. The most generic model has five parameters but here we

focus on a certain two-dimensional section of the space of parameters.

The model is presented in section 2. The critical line and the critical exponents

in the stationary state are determined by Monte Carlo simulations and the results are

presented in the section 3. Finally, the aging of the model when quenched from the

high-temperature phase is studied in section 4. In order to define a response function,

the coupling to an external field is implemented by an appropriate modification of the

transition rate as detailed in the Appendix.

2. Model

We consider a general non-equilibrium three-state model on a square lattice with full

symmetry Z3. Any permutation of the three states leaves the transition probabilities

invariant. On a square lattice, in which each site has four nearest neighbor sites, the

most general model has five parameters as shown in table 2. Several non-equilibrium

models as well as the stochastic equilibrium Potts model [6] are particular cases of this

general model.

Among them we found the non-equilibrium majority Potts model [7, 8] defined in
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such a way that a site takes the state of the majority of the neighboring sites with

probability p and any one of the other state with probability (1 − p)/2. With our

definition, it is recovered when

p1 = p2 = p3 = p4 = 1− 2p5 = p. (1)

This model does not obey detailed balance and therefore displays irreversibility at

the stationary state. It has been shown [7] that it presents a phase transition from

a disordered (paramagnetic) to an ordered state (ferromagnetic), for sufficiently large

values of p, which is similar to the phase transition in the ordinary equilibrium three-

state Potts model. Both models are in the same universality class with the critical

exponents ν = 5/6 and β = 2/15.

The equilibrium Potts model [6] with a Glauber dynamics is recovered when the

parameters are such that detailed balance is fulfilled. This occurs when

p1 =
r4

2 + r4
, (2)

p2 =
r3

1 + r + r3
, p5 =

r

1 + r + r3
, (3)

p3 =
2r2

1 + 2r2
, p4 =

r

2 + r
, (4)

where r = eβJ and J is the nearest-neighbor exchange coupling of the Potts model.

Another particular case is the so called linear voter model obtained when we set

p1 =
1

3
(1 + 2γ), (5)

p2 =
1

3
(1 +

5

4
γ), p5 =

1

3
(1− 1

4
γ), (6)

p3 =
1

3
(2 + γ), p4 =

1

3
(1 +

1

2
γ). (7)

This model is particularly interesting because it can be solved exactly [16]. It displays

a disordered phase except at γ = 1 corresponding in our notations to

p1 = 1, p2 = 3/4, p5 = 1/4, p3 = 1, p4 = 1/2. (8)

In this particular case it is called the voter Potts model and undergoes a first-order phase

transition with a magnetization jump but divergences of susceptibility and correlation

length associated to critical exponents γ = 1 and ν = 1/2.

The general model includes also models with absorbing states. Due to the Potts

symmetry these models display three absorbing states represented by a lattice full of

each of the three states. The class of absorbing models occurs when p1 = 1. A particular

case of this class is the Potts voter model already mentioned and defined by Eq. (8).

Here we are interested in a subclass of models that interpolates between the majority

vote model, defined by (1), and the voter model (8). This subclass of models is defined
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Table 1. Transition probabilities of the general non-equilibrium three-state model on

a square lattice. The first column shows the states of the four nearest neighbor sites.

The first row shows the final states. The parameters p1, p2, p3, p4, and p5 are restricted

to the interval [0,1]. The other transition probabilities are obtained by permutation of

the states.

1 2 3

1 1 1 1 p1 (1− p1)/2 (1− p1)/2

1 1 1 2 p2 p5 1− p2 − p5
1 1 2 2 p3/2 p3/2 1− p3
1 1 2 3 p4 (1− p4)/2 (1− p4)/2

by a set of two parameters a and b that corresponds to a section of the full space spanned

by the parameters {pi}. The relation between a, b and {pi} is given by

p1 = b, p3 = b, p4 = a, (9)

p2 = b

(

1 +
a− b

2

)

, p5 =
b

2
(1− a) +

1

2
(1− b)2. (10)

The phase diagram, to be presented shortly, is therefore a bidimensional section of the

full five-dimensional space. The majority Potts model is recovered when a = b. When

b = 1, we get a model with absorbing state with the particular case of the voter Potts

model occurring at b = 1 and a = 1/2.

The construction that is presented above is easily generalized to any number of

states q of the Potts model. Such a construction has already been proposed in the case

q = 2, i.e., with the symmetry of the Ising model [9, 10]. Among the models appearing as

special case in the q = 2 construction, voter and linear models were studied analytically

[11] and the Glauber-Ising model was studied by Monte Carlo simulations [9, 10, 12, 13].

Aging was also considered [14].

3. Critical properties in the stationary state

In this section, we give numerical evidences that the phase diagram in the a− b plane

presents a critical line separating a ferromagnetic phase from a paramagnetic one and

ending at the point a = 1/2 and b = 1. Excluding this special point, the universality

class of all points along the critical line is that of the three-state Potts model. Along the

line b = 1, the system undergoes a dynamical absorbant-active phase transition. The

intersection of the two lines, at a = 1/2 and b = 1, belongs to the voter universality

class.

3.1. Numerical methodology

The phase diagram of the model was investigated by means of Monte Carlo simulations

on a square lattices with N = L2 sites and periodic boundary conditions. The system
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is initially prepared in the ferromagnetic state. ntherm. Monte Carlo steps (MCS) are

performed to let the system reach a stationary state. Then niter. MCS are made to

sample the stationary probability distribution. The order parameter, abusively called

magnetization in the following, is measured for a given spin configuration σ = {σi} as

m(σ) =
qρmax(σ)− 1

q − 1
, (11)

where q = 3 is the number of Potts states and ρmax is the density of spin in the majority

state. If we denote by σmax the majority state (among the q possible states) then

ρmax(σ) =
1

N

∑

i

δσi,σmax
. (12)

Of particular interest for the determination of the critical line are the susceptibility

χ = N(〈m2〉 − 〈m〉2), (13)

and the Binder cumulant U

U = 1− 〈m4〉
3〈m2〉2 . (14)

In addition to the susceptibility and Binder cumulant, we also evaluated the

correlation length. For a finite system, the correlation length ξ is finite so that the

spatial correlation function decays exponentially,

C(~r, ~r′) = 〈m(~r)m(~r′)〉 ∼ 〈m〉2 + Ae−|~r−~r′|/ξ, (15)

where m(~ri) = (qδσi,σmax
−1)/(q−1) is the local magnetization on site i. The CPU time

required to compute the full spatial correlation function being prohibitive, we restricted

ourselves to the first coefficient of its Fourier transform

C(~k) =
1√
N

∑

~k

C(0, ~r)ei
~k.~r ∼ B

1/ξ2 + k2 + αk4 + . . .
, (16)

which is efficiently computed as

C(~k) = 〈m(~k)m(−~k)〉 = 〈|m(~k)|2〉, (17)

where m(~k) is the Fourier transform of the magnetization

m(~k) =
1√
N

∑

~r

m(~r)ei
~k.~r. (18)

Finally, the correlation length is estimated as

ξ ≃ 1

kmin

√

√

√

√

C(0)

C(kmin)
− 1, (19)

where kmin = (2π/L, 0) is the smallest wavevector on the lattice in order to minimize

the terms αk4 + . . . and to be able to neglect them. In the paramagnetic phase,

C(0) = 〈m2〉 while in the ferromagnetic phase, one has to remove the unconnected

term, i.e. C(0) = 〈m2〉 − 〈m〉2. Practically, we will use always the second definition

unless it leads to a negative value which often occurs in the paramagnetic phase because
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Figure 1. Auto-correlation time τ as a function of b. The different peaks corresponds

to distinct values of a. The different colors correspond to lattice sizes L = 24, 32, 48,

64 and for five values of a only L = 90 and 128.

of the numerical instability of the difference 〈m2〉 − 〈m〉2 between two small and noisy

values.

In order to adjust the number of iterations ntherm. and niter. and to calculate error

bars, we measured autocorrelation functions of m2 defined as:

C(t, s) = m2(t)m2(s)− 〈m2〉2. (20)

Assuming that these autocorrelation functions decay exponentially, C(t, s) ∼ e−|t−s|/τ ,

the so-called integrated relaxation time is estimated as

τ =
1

niter

niter
∑

t,s=1

C(t, s) ∼
∫

e−u/τdu, (21)

ntherm. and niter. are always chosen larger than 20τ and 104τ respectively. Since τ gives

a measure of the number of MCS required to obtain a spin configuration uncorrelated

from the initial one, the number of effective uncorrelated MCS is of order N/τ . As a

consequence, the error bars can be computed for an observable X as

∆X =

√

τ
〈X2〉 − 〈X〉2

N
. (22)

The error bars only measure the statistical fluctuations of the data. To detect and

potentially avoid systematic deviations due to metastable or absorbing states, the

simulation is repeated nconf = 20 times for all lattice sizes and the observables are

averaged over these configurations. In the following, we will denote for simplicity 〈X〉
this double average.

The difficulty of these simulations is that the relaxation time τ is expected to grow

very fast with the lattice size, i.e. as τ ∼ Lz where the dynamical exponent is of order



Non-equilibrium symmetrical three-state models 7

z ≃ 2 (the dynamical exponent will be determined by finite-size scaling at the end of

the next section) since the dynamics is always local (see figure 1). At the largest lattice

size L = 128, up to nconf = 20 simulations of niter. = 7.3 × 107 MCS each have been

performed. Despite the computational effort devoted to these simulations, we cannot

hope to reach the same accuracy as equilibrium simulations for the three-state Potts

model for which a cluster algorithm is available (which is not the case for our more

general model for which detailed balance does not hold). For our largest lattice size,

L = 128, the auto-correlation time reaches the maximum value of τ ≃ 7231 on the

critical line belonging to the q = 3-Potts universality class while it is only τ ≃ 25 for

the Potts model with the Swendsen-Wang algorithm [15].

3.2. Determination of the critical line

The critical line is determined from the maximum of the susceptibility. We have

considered twenty values of the parameter a between a = 1/2 and a = 1 and

lattice sizes L = 16, 20, 24, 32, 48 and 64. For five specific values of a, we made

additional simulations for lattice sizes L = 90 and 128. For each value of a and L, we

have performed Monte Carlo simulations for several values of b as shown in figure 2.

Additional simulations were performed around the maxima of χ. In the neighborhood

of these maxima, we interpolated χ(b) with a polynomial of degree two to improve the

accuracy on the location of the maximum. For each lattice size L and each value a, we

thus defined a pseudo-critical parameter bc(a, L) as shown in figure 3. These values are

finally extrapolated in the thermodynamic limit L → +∞ with a polynomial of degree

two in 1/L. The final critical line bc(a) is presented in figure 3.

The same analysis has been applied to the correlation length ξ and to the correlation

time τ . However, since the analysis based on the susceptibility χ turned out to be the

most precise, we did not perform further simulations to refine the location of the maxima

of ξ and τ .

We have also determine the critical line from the crossing of the Binder cumulant

U at two different lattice sizes (figure 4). For each value of a and for each pair of

successive lattice sizes, we used a linear interpolation to get a trial estimation of the

crossing position. Next, we used five points around the preliminary estimation to

interpolate a polynomial of degree two from which we get a more precise estimation.

Note that for a = 1/2, the curves do not cross because bc = 1. Despite the fact

that the crossing point does not depend significantly on the lattice size, a more precise

determination of bc is forbidden by statistical fluctuations, which are greater than those

of the susceptibility and thus give a less accurate extrapolation. In the following, we

will use the determination of the critical line given by the susceptibility.

3.3. Critical behavior along the transition line

We have used finite-size scaling analysis to determine the critical exponents. Figure 5

shows the maximum of the susceptibility χ as a function of the lattice size L for several
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Figure 2. Susceptibility χ as a function of b. The different peaks corresponds to

distinct values of a. The different colors correspond to lattice sizes L = 24, 32, 48, 64

and for five values of a only L = 90 and 128.
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Figure 3. Critical line determined from the maximum of the susceptibility χ. Different

lines correspond to distinct lattice sizes and to the thermodynamic limit extrapolation.
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Figure 4. Critical line determined from the crossing of the Binder cumulant U for

distinct values of the lattice size.

values of the parameter a. According to finite size scaling, the maximum of χ behaves

as

χ ∼ Lγ/ν . (23)

We see from figure 5 that the case a = 1/2 differs significantly from the other cases.

The ratio γ/ν is estimated from the slope of the log-log plot of χ versus L. The values

obtained by this procedure are plotted as a function of a as shown in figure 6. For

a = 1/2 we get an exponent compatible with the value γ/ν = 2 of the voter model [16].

For a > 1/2, the effective critical exponent displays a plateau around 1.78(3) along the

critical line, i.e., still slightly above the value γ/ν ≃ 1.733 expected for the three-state

Potts model. The effective exponent decreases when removing the smallest lattices but

with the lattice sizes that we have been able to considered, the exact value γ/ν = 1.733

is not reached yet.

At the point a = 1/2, corresponding to the voter model, the susceptibility presents

a logarithm correction to the dominant behavior [16],

χ ∼ [(1− b) ln(1− b)]−1. (24)

In figure 7 we have plotted χ versus [(1− b) ln(1− b)]−1 for several values of the lattice

size L. The deviation from a linear behavior is due to finite size effects. Indeed, the

curves become linear over a wider range of values of [(1− b) ln(1− b)]−1 as one increases

L.

To determine the exponent ν, we have used the position bc(a, L) of the maximum

of the susceptibility and the value bc(a,∞) obtained by extrapolation. The finite-size

deviation is expected to behave as

bc(a, L)− bc(a,∞) ∼ L−1/ν . (25)
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Figure 5. Maximum of the susceptibility χ as a function of the lattice size L. Different
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function of a. The dotted lines correspond to γ/ν = 2 (voter model) and to γ/ν ≃ 1.733

(three-state Potts model). The different symbols correspond to exponents obtained by

power-law interpolation when taking into account lattice sizes L ≥ Lmin only.
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Figure 9. Scaling of the Binder cumulant U in the critical line. All data points for

lattices sizes L = 24, 32, 48, 64, 90 and 128 and for values of a above 0.7 were used. The

data for a ≃ 0.57 is also plotted (blue triangles) to show the cross-over with the voter

point. The two branches, above and below the dashed horizontal line, correspond to

high and low-temperature phases.

The exponent ν can then be obtained from the log-log plot of the deviation versus L.

Our numerical estimates are shown in figure 8. The average value 1/ν = 1.10(13) leads

to ν = 0.91(10) slightly larger, but not incompatible with the value ν = 5/6 of the

three-state Potts model.

The scaling of the Binder cumulant is presented on figure 9. For parameters a

smaller than a ∼ 0.7, a strong cross-over is observed: the data do not fall on a single

curve for different values of a. For a > 0.7, the cross-over effects become smaller than

the error bars and all data fall on a unique curve, providing further evidence that the

universality class is the same along the critical line, at least for a > 0.7. From the curve,

we can see that the universal value of the Binder cumulant is U = 0.615(5) in agreement

with [8].

On figure 10, the scaling function Fξ of the correlation length ξ such that

ξ ∼ LFξ((b− bc(a))L
ν), (26)

is plotted for values of a larger than 0.7. Again a strong cross-over is observed below

a ∼ 0.7. In the finite-size regime (b − bc(a))L
ν < 0.1, the scaling function displays a

plateau at a value ξ/L that is expected to be universal. The values of a considered in

the plot leads to a compatible value of ξ/L. Note that our value of ξ/L differs from that

given in ref. [15] for the 3-state Potts model because of a different correlation function

used for the definition of the correlation length ξ.
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Figure 10. Scaling of the correlation length ξ on the critical line. All data points for

lattices sizes L = 24, 32, 48, 64, 90 and 128 and for twelve values of a above 0.7 were

used. The points on the second branch at the right of the figure correspond to data

in the paramagnetic phase for which for numerical reasons (see previous section), the

definition of ξ has to be chosen differently.

To determine the dynamical exponent z we consider the maximum of the auto-

correlation time τ . According to finite size scaling this quantity behaves as

τ ∼ Lz. (27)

Figure 11 shows the log-log plot of this quantity versus L for several values of a. The

dynamical exponent z, estimated from the slope of these curves, is shown in figure 12.

We obtain an exponent z ≃ 2.25(6) compatible with the recent values, around z ≃ 2.197,

obtained for the three-state Potts model [17, 18]. The value z = 2 of the voter model

is reproduced by the data at a = 1/2 for large lattice sizes only. A strong cross-over is

observed for values of a close to 1/2. The effective exponents z smaller than 2 close to

a = 1/2 are artificial: these too small values are due to the fact that the auto-correlation

times display first a regime in the voter universality class and then a second one in the

Potts universality class. But for the same value of L the auto-correlation time is larger

at the voter point than in the critical line so that in the cross-over region, τ has to first

reduce its growth to join the second regime (see figure 11).

4. Aging

4.1. Numerical methodology

The system is now considered out of the stationary regime, that is, in the transient

regime occurring before it reaches the stationary state. It is initially prepared in a
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Figure 11. Auto-correlation time τ on the critical line as a function of the lattice size

L. The different curves correspond to different values of the parameter a.
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Figure 12. Dynamical exponent z obtained by interpolation of the auto-correlation

time τ . The different symbols correspond to exponents obtained by power-law

interpolation with taking into account lattice size L ≥ Lmin only.
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random state, i.e., in the paramagnetic phase. At time t = 0, it is ”quenched” to

some values of a and b. A number tf of Monte Carlo steps are then performed. The

numerical experiment is repeated nconf times. In this section, X(t) means an average of

the observable X at time t over all these nconf histories.

Motivated by the fact that it is possible to couple a magnetic field to any of the

q spin states and thus to define q possible response functions, we will now define q

spin-spin autocorrelation functions as

Cσ(i; t, s) = mσ(i; t)mσ(i; s), (28)

where mσ(i; t) = (qδσi(t),σ − 1)/(q − 1) is the local magnetization at time t on site i.

Since translation invariance is expected, we can average over the lattice to get a more

stable estimate:

Cσ(t, s) =
1

N

∑

i

Cσ(i; t, s). (29)

Finally, all Potts states being equivalent, one can define a spin-spin autocorrelation

function as

C(t, s) =
q
∑

σ=1

Cσ(t, s). (30)

One can easily check that these definitions lead simply to

C(t, s) =
1

(q − 1)2

(

q2

N

∑

i

δσi(t),σi(s) − q

)

. (31)

For uncorrelated spins at times t and s, this autocorrelation function vanishes.

A magnetic field h is coupled to a particular value σh among the q Potts states by

modifying the transition rates by a multiplicative factor [16, 19, 20]:

w(σi → σ′
i) = w0(σi → σ′

i)e
−hδσi,σh . (32)

The magnetic field is branched only during one MCS, at time s. The linear response of

magnetization to this field is defined as

Rσ(i; t, s) =
δmσh

(i; t)

δh(s)
, (33)

where again mσ(i; t) = (qδσi(t),σ − 1)/(q − 1) is the local magnetization. The numerical

method used to calculate this response is presented in the Appendix. As for the

correlation function, the response can be averaged over the lattice and then the different

responses can be added since all states are equivalent:

R(t, s) =
1

N

q
∑

σh=1

N
∑

i=1

Rσh
(i; t, s). (34)

Finally, the Fluctuation-Dissipation Ratio (FDR) is defined as

X(t, s) =
R(t, s)

∂sC(t, s)
≃ R(t, s)

C(t, s+ 1)− C(t, s)
. (35)
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We have also considered global quantities: the magnetization-magnetization

correlation function

CM(t, s) = M(t)M(s) =
1

N2

∑

i,j

mσ(i; t)mσ(j; s), (36)

and the response to global magnetic field

RM(t, s) =
δM(t)

δH(s)
=

1

N2

∑

i,j

Ri,j(t, s), (37)

as well as the associated Fluctuation-Dissipation Ratio.

4.2. Aging at the voter point

We consider first a quench at the point a = 1/2 and b = 1 belonging to the voter

universality class. As will be shown in the following, the theoretical predictions given

in Ref. [16] are well reproduced by the numerical data. The spin-spin two-time auto-

correlation function C(t, s) is expected to behave as

C(t, s) ∼ s

(t− s) ln s
. (38)

We used a lattice size L = 192, a final time tf = 1000 and observables have been averaged

over nconf = 106 histories of the system. As shown on figure 13, the data indeed tend

toward the theoretical prediction when t and s are sufficiently large. The exponent

λ/z is thus 1. The Fluctuation-Dissipation Ratio X(t, s) is presented on figure 14. Its

asymptotic limit is compatible with the theoretical prediction X∞ = 1/2. Interestingly,

the FDR associated to the global magnetization reaches a plateau at the value X∞

almost immediately. Even though, this quantity is noisier, it can be used to estimate

X∞ at very short times at the price of a higher statistics.

4.3. Aging on the critical line

We studied the aging at several points on the critical line. Because of the cross-over

with the voter fixed point, several lattices sizes, L = 64, L = 128 and L = 256, were

considered.

The spin-spin correlation function is expected to behave asymptotically as [21, 22]

C(t, s) ∼ s−ac

(

t

s

)−λ/z

, (39)

where ac = 2β/νz. The scaling form is tested by plotting the scaling function sacC(t, s)

with respect to t/s. The collapse of the curves for different waiting times is obtained

(see figure 15) but the exponent ac leading to this collapse tends to grow along the

critical line: from the expected value 2β/νz ≃ 0.11 close to the voter point to 0.2

at a = 1. This indicates that for the largest values of s, the asymptotic regime

C(s, s) ∼ s−ac is not reached yet and corrections to this dominant behavior cannot

be neglected. Nevertheless, the resulting scaling function sacC(t, s) appears very similar

along the critical line and an algebraic decay with t is observed for all waiting times.
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Figure 13. Scaling function ln sC(t, s) versus t/s− 1 at the point a = 1/2 and b = 1

belonging to the voter universality class. The dashed line is 2/(t/s− 1).
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Figure 14. Fluctuation-Dissipation Ratio X(t, s) versus s/t at the point a = 1/2 and

b = 1 belonging to the voter universality class. In the inset, the FDR associated to the

global magnetization is plotted.
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Figure 15. Scaling function sacC(t, s) with respect to t/s for two points on the critical

line (a = 0.63158 on the left and a = 1 on the right). The different curves correspond

to different waiting times s. The lattice size is L = 256.
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Figure 16. Effective exponent −λ/z as a function of the smallest bound t/s of the

interpolation window of C(t, s). From left to right, a = 0.63158, 0.89474 and a = 1.

The different curves correspond to different waiting times s. The dashed line is the

power-law regression of the data.

This provides further evidence of a unique universality class along the critical line. The

exponent λ/z is obtained by power-law interpolation of C(t, s) with the time t. For

each value of the waiting time s, the data are interpolated within a sliding window

[t/s, tf/s]. The effective exponents are represented as a function of s/t in figure 16.

The asymptotic value is read at the intercept with the y-axis while the small slope

that can be observed comes from the corrections to the behavior (t/s)−λ/z. We finally

extrapolated the effective exponents and obtained λ/z ≃ 0.806(5), 0.817(4), 0.820(4)

and 0.818(3) for a = 0.63158, 0.76316, 0.89474, and 1, respectively. These values should

be compared with the values 0.828(2) [17] and 0.844(19) [23] obtained in the case of the

pure three-state Potts model.

The same exponents can be obtained from the scaling of the response function

R(t, s). In contradistinction to the correlation function, the collapse of the scaling

function s1+acR(t, s) is obtained with the expected value ac = 2β/νz all along the

critical line (see figure 17). The response function seems to be affected by weaker
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Figure 17. Scaling function s1+acR(t, s) with respect to t/s for two points on the

critical line (a = 0.63158 on the left and a = 1 on the right). The different curves

correspond to different waiting times s. The lattice size is L = 256.
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Figure 18. Fluctuation-Dissipation Ratio X(t, s) versus s/t for a = 0.63158 (left)

and a = 1 (right). The different curves correspond to different waiting times s.

corrections than the correlation function. However, the response is noisier than C(t, s)

and the effective exponents λ/z obtained from a power-law interpolation of the decay

of R(t, s) with t are compatible but much less accurate than the exponents computed

from C(t, s).

From the response function and the derivative of the correlation function, the

Fluctuation-Dissipation Ratio X(t, s) was computed. The asymptotic value X∞ is

expected to be universal. As the parameter a is increased, larger and larger fluctuations

are observed (figure 18). The asymptotic value seems to be a bit lower, at least for the

small waiting times, than the value X∞ ≃ 0.406 for the three-state Potts model [23]. It

remains nevertheless always compatible within statistical fluctuations.

4.4. Aging in the ferromagnetic phase

The system is now prepared in a random state and quenched in the ferromagnetic phase

at the point of parameters a = 0.9 and b = 0.95. The auto-correlation exponent λ/z
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Figure 19. Effective exponent λ/z obtained by a power-law interpolation of the

autocorrelation function in a shrinking window [t; tf ] and plotted with respect to

(s/t)1/4. The dashed line is the linear interpolation of the s = 320 curve.

is extracted from the decay of the autocorrelation function C(t, s) ∼ M2(s)t−λ/z. The

corrections to the dominant behavior appear to be very strong. Like on the critical line,

we have computed an effective exponent λ/z by power-law interpolation of C(t, s) within

a sliding window [t/s, tf/s]. The asymptotic value is expected to be recovered when t

goes to tf . It turns out that the effective exponent behaves linearly with (s/t)1/4 for

sufficiently small values of s/t (figure 19). This simply means that the autocorrelation

function behaves as C(t, s) ∼ t−λ/z[1+at−1/4+. . .]. The exponent λ/z is extrapolated by

a simple linear fit of the data in the linear regime. The value 0.595(15) obtained for the

three-state Potts model [24] is nicely reproduced for the largest waiting times: we get

0.605(3) for s = 80, 0.599(3) for s = 160 and 0.601(3) for s = 320. These exponents are

remarkably stable when the interpolation window is changed (at least when remaining

in the linear regime). In the ferromagnetic phase, the Fluctuation-Dissipation Ratio

X(t, s) is expected to decay as s−a to zero. The numerical data confirms this prediction

(figure 20) with the predicted value a = 1/2.

5. Conclusions

We have shown that the class of non-equilibrium three-state lattice models with Z3

symmetry that we introduced in this paper displays a phase diagram consisting of a

critical line belonging in the three-state Potts model universality class and of an ending

point in the voter class. The simulations for this model are difficult because of the

absence of cluster algorithm that would reduce the critical slowing down and because

the critical line cannot be determined by self-duality arguments. We thus obtain less
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Figure 20. Fluctuation-Dissipation Ratio X(t, s) with respect to s/t when the system

is quenched in the ferromagnetic phase.

accurate estimates of the critical exponents than for the usual equilibrium three-state

Potts model. Therefore, we essentially limited ourselves to check the compatibility with

the theoretical predictions, namely, that non-equilibrium models with the symmetry of

the Potts model belongs to the universality class of the equilibrium Potts model along

the critical line. The cross-over with the point in the voter universality class remains

weak in the Finite-Size Scaling of the averages in the stationary state but turns out

to be very strong in the dependence of the scaling function with b. In a second step,

the model was studied in the aging regime after a sudden quench either on the critical

line or in the ferromagnetic phase. The results are again compatible with either the

theoretical predictions for the voter model or the numerical estimates for the Potts

model. Surprisingly, the corrections are stronger in the ferromagnetic phase than on the

critical line.
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Appendix: Numerical estimation of the response

Several different methods for the calculation of the response function without applying

any magnetic field have been proposed. Our method is based on [25] and was adapted

to our more general transition rates. For completeness, it is presented in the following.



Non-equilibrium symmetrical three-state models 22

Preliminaries on master equations

The dynamics is a Markovian process governed by the master equation

∂tP(σ, t) =
∑

σ′

[P(σ′, t)W (σ′ → σ)− P(σ, t)W (σ → σ′)], (40)

where σ denotes the vector whose components are the spin variables {σi} attached to the

sites of the lattice. The transition rates W (σ → σ′) do not appear in the equation when

σ = σ′ so they are free to take any value. In discrete time (Monte Carlo simulation),

this master equation is replaced by

P(σ, t + 1) = P(σ, t) +
∑

σ′

[P(σ′, t)W (σ′ → σ)− P(σ, t)W (σ → σ′)], (41)

which can be written as

P(σ, t + 1) =
∑

σ′

P(σ′, t)ω(σ′ → σ), (42)

where we have introduced the quantity

ω(σ′ → σ) = [1−
∑

σ′′

W (σ → σ′′)]δσ,σ′ +W (σ′ → σ), (43)

that can be interpreted as the conditional probability for the system to undergo a

transition from σ′ to σ if σ 6= σ′ or the probability to stay in the same state if σ = σ′.

It is easily shown that
∑

σ

ω(σ′ → σ) = 1, (44)

as required for the probability P(σ, t) to be normalized at any time t.

Response function in the general case

We are interested in the response to a magnetic field

Rij(t, s) =

(

∂mi(t)

∂hj(s)

)

hj→0

, (45)

where mi(t) is the average magnetization on site i at time t. The response to a global

magnetic field H =
∑

i hi acting on all sites is measured as

R(t, s) =
∂M(t)

∂H(s)
=
∑

i

∂mi(t)

∂H(s)
=
∑

i,j

∂mi(t)

∂hj(s)
=
∑

i,j

Rij(t, s). (46)

To measure the linear response to a magnetic field hj at time s, the transition rates are

modified between the interval of time [s; s + 1[. This is obviously done with Glauber

transition rates by introducing a Zeeman interaction in the Hamiltonian. In the present

case of non-equilibrium models, that are not defined by a Hamiltonian, the perturbation

should be introduced into the transition rate. We use here a prescription similar to that

used for the non-equilibrium models with two states [19, 20] and which has been used

in Ref. [16], namely,

Wh(σ → σ′) = W (σ → σ′) e
−
∑

j
hjmj(σ′)

. (47)
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Notice that this choice does not break the detailed balance if it was satisfied by

W (σ → σ′). Other choices of perturbation include the one introduced in Ref. [26].

The average magnetization on site i and time t is given by

mi(t) =
∑

σ

mi(σ)P(σ, t)

=
∑

σ,σ′

mi(σ)P(σ, t|σ′, s+ 1)P(σ′, s+ 1)

=
∑

σ,σ′,σ′′

mi(σ)P(σ, t|σ′, s+ 1)ω(σ′′ → σ′)P(σ′′, s). (48)

When branching the magnetic field, the transition rate ωh(σ
′ → σ) has to be replaced

by

ωh(σ
′ → σ) =

[

1−
∑

σ′′

W (σ → σ′′)e−
∑

j
hjmj(σ

′′)
]

δσ,σ′ +W (σ′ → σ)e−
∑

j
hjmj(σ), (49)

so that the average magnetization at time t is perturbed by the magnetic field

mi(t) =
∑

σ,σ′,σ′′

mi(σ)P(σ, t|σ′, s+ 1)ωh(σ
′′ → σ′)P(σ′′, s). (50)

The linear response follows:

Rij(t, s) =
∑

σ,σ′,σ′′

mi(σ)P(σ, t|σ′, s+ 1)
∂ωh

∂hj

(σ′′ → σ′)P(σ′′, s)

=
∑

σ,σ′,σ′′

mi(σ)P(σ, t|σ′, s+ 1)
[

∑

σ3

mj(σ3)W (σ′ → σ3)
]

δσ′,σ′′P(σ′′, s)

−
∑

σ,σ′,σ′′

mi(σ)P(σ, t|σ′, s+ 1)mj(σ
′)W (σ′′ → σ′)P(σ′′, s).

(51)

From the definition of ω(σ′′ → σ′), the transition rate can be written as

W (σ′′ → σ′) = ω(σ′′ → σ′)− [1−
∑

σ3

W (σ′ → σ3)]δσ′,σ′′ . (52)

Introducing this equality into the second line of the expression of the response, one gets

Rij(t, s) =
∑

σ,σ′,σ′′

mi(σ)P(σ, t|σ′, s+ 1)
[

mj(σ
′)

+
∑

σ3

(mj(σ3)−mj(σ
′))W (σ′ → σ3)

]

δσ′,σ′′P(σ′′, s)

−
∑

σ,σ′,σ′′

mi(σ)P(σ, t|σ′, s+ 1)mj(σ
′)ω(σ′′ → σ′)P(σ′′, s).

In the second line, the sum over σ′′ can be performed. It leaves a correlation function

of observables measured at time t and s+1. However, in the first line, a transition rate

ω between the spin configurations at time s and s+ 1 is missing to do the same thing.

We thus write

Rij(t, s) =
∑

σ,σ′,σ′′

mi(σ)P(σ, t|σ′, s+ 1)
[

mj(σ
′) +

∑

σ

(mj(σ)−mj(σ
′))W (σ′ → σ)

]

× δσ′,σ′′

ω(σ′ → σ′′)
ω(σ′ → σ′)P(σ′′, s)
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−
∑

σ,σ′,σ′′

mi(σ)P(σ, t|σ′, s+ 1)mj(σ
′)ω(σ′′ → σ′)P(σ′′, s).

Since

ω(σ′ → σ′) = 1−
∑

σ

W (σ′ → σ) +W (σ′ → σ′), (53)

the response is finally given by the general expression

Rij(t, s) = mi(t)
[

∆mMF
j (s)δσ(s),σ(s+1) −mj(s+ 1)

]

, (54)

where

∆mMF
j (s) =

mj(s) +
∑

σ′ (mj(σ
′)−mj(s))W (σ(s) → σ′)

W (σ(s) → σ(s)) + 1−∑

σ′ W (σ(s) → σ′)
. (55)

In the particular case where the transition rates are chosen such that
∑

σ′

W (σ → σ′) = 1, (56)

which is the case in this work, the response reduces to

Rij(t, s) = mi(t)
[

mMF
j (s)δσ(s),σ(s+1) −mj(s + 1)

]

, (57)

where

mMF
j (s) = mj(s) +

∑

σ′ 6=σ(s) mj(σ
′)W (σ(s) → σ′)

W (σ(s) → σ(s))
. (58)

In the case of the Ising model with Glauber transition rates, one recovers the result

of [25] up to a factor −β due to a difference in the definition of the magnetic field.

Note that is not possible to calculate the response in this way if there exists a spin

configuration σ for which W (σ → σ) = 0. The trick to circumvent this difficulty, is to

modify the model as

W ′(σ → σ′) = pδσ,σ′ + (1− p)W (σ → σ′), (59)

The dynamics is then simply slown down by a factor p.
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[13] T. Tomé et M.J. de Oliveira Phys. Rev. E 58 4242 (1998)
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[22] Godrèche C and Luck J M, J. Phys. Cond. Matter 14 1589 (2002) arXiv:cond-mat/0109212

[23] C. Chatelain, J. Stat. Mech.: Theor. Exp. P06006 (2004) arXiv:cond-mat/0404017

[24] E. Lorenz and W. Janke, Eur. Phys. Lett. 77 10003 (2007).

[25] C. Chatelain, J. Phys. A 36, 10739 (2003), arXiv:cond-mat/0303545

[26] N. Andrenacci, F. Corberi, and E. Lippiello, Phys. Rev. E 73, 046124 (2006).

arXiv:cond-mat/0603137


