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Abstract—Augmented reality aims to insert virtual objects in
real scenes. In order to obtain a coherent and realistic integration,
these objects have to be relighted according to their positions and
real light conditions. They also have to deal with occlusion by
nearest parts of the real scene. To achieve this, we have to extract
photometry and geometry from the real scene. In this paper, we
adapt high dynamic range reconstruction and depth estimation
methods to deal with real-time constraint and consumer devices.
We present their limitations along with significant parameters
influencing computing time and image quality. We tune these
parameters to accelerate computation and evaluate their impact
on the resulting quality. To fit with the augmented reality context,
we propose a real-time extraction of these information from video
streams, in a single pass.

I. INTRODUCTION

Augmented reality is a set of techniques used to integrate
virtual and real elements into a coherent scene. The user
can usually move freely in a real environment augmented
with synthetic objects. Applications of this technology are
numerous, ranging from video games to personal training in
hazardous environments like nuclear power plants for example.
Traditionally, augmented reality needs specialized hardware,
like see-through glasses, often with specially equipped rooms.
In our project, the objective is to open this technology to a
broader audience. Therefore, we chose to only use widely
adopted consumer products (webcams, graphics processing
units, video-projectors...).

Augmenting reality also means synchronizing two represen-
tations: the real environment and the virtual scene we want
to insert. Depending on the targeted application, this fusion
necessitates more or less precise or complete computations.
For instance, a copy machine repair assistance needs precise
localization of virtual indications (ie. aligned with the ma-
chine’s mechanical parts). But re-lighting and shading these
elements is not critical for application viability. In the opposite,
a re-construction of a destroyed historical heritage needs to
be convincing to one’s perception. In this case, registration
may be less precise without disturbing the user, but incorrect
occlusions and lighting affect visual realism.
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In our study, we were interested in this second case.
Therefore, to achieve a realistic augmented reality, we need
to acquire several types of environment information. For now,
our work focuses on geometry and light, since both are needed
for virtual objects incrustation and basic re-lighting. A great
number of methods have been proposed to acquire these
information from single and multiple points of view, but very
few of them have been adapted to real-time processing with
consumer hardware.

In this paper, we propose to select one method for photo-
metric acquisition and one for geometry acquisition, and to test
influence of various input parameters on computation time. We
propose to use the same input data for simultaneously applying
both techniques on a unique process. The final objective is to
obtain a good compromise between computation and quality,
in order to apply these methods in an augmented reality
process.

This article is divided into three sections. The next section
presents previous works, and methods we developed to fast
acquire photometry from images sets and video streams. The
following section is similar with geometry acquisition. The
next section describes a sample of application joining both
acquisition fields. Finally, the last section concludes with
important results, perspectives and future works.

II. PHOTOMETRY ACQUISITION

A. Previous work

Since standard cameras are unable to give images containing
the whole dynamic of a scene, we use HDR (High Dynamic
Range) images [1] which allows to store real radiance values
for each pixel. These images therefore need a tone mapping
transformation to be displayed on a screen. Techniques to
recover HDR images combine multiple images from the same
viewpoint with different exposures [2] [3] or different shutter
times [4] [5].

B. HDR image construction

In our augmented reality approach, the input is a video
stream, with possible shutter time variations, so we chose De-
bevec and Malik method [4]. This technique uses images taken
from the same point of view and with different shutter times.



First, it introduces a method for camera response function
determination, and then proposes a way of combining input
images with this function. It is finally possible to determine
all radiance levels contained in the image set. images taken
with a short shutter time (ex: 1/1000) contain information
on high energy areas of the scene, while long shutter time
images give information on low energy areas. For the camera
response determination, authors manually select points on
images, then search the response function that best matches
them. An approximating function is estimated by solving an
over-determined equation system, built with radiance values
on each selected point and its corresponding shutter time.
For HDR image construction, authors apply the inverse of
response function to all input images. Final image is obtained
by computing the weighted average of transformed images.

For each pixel i of a picture with a shutter time Tj , the
radiance value Zij is computed from energy Ei obtained by
the sensor and transformed by response function f specific to
the sensor: Zij = f(EiTj). To build HDR picture, we compute
Ei to pixel i:

Ei =
f−1(Zij)

Tj
(1)

We have to compute simultaneously the response function f
and Ei to each point of the picture. To build HDR picture, we
first compute napierian logarithm g of the inverse function of
f . g is a discrete function defined on interval [0-255], so we
have to compute values from g(0) to g(255) to totally compute
g:

g(Zij) = ln(f−1(Zij)) = ln(Ei) + ln(Tj) (2)

Function g is specific to a sensor. So we search g(Zij) such
as equation (2) is verified for all points of all input pictures.
We obtain a system with P×Nt equations, P is the number
of input pictures, Nt the number of pixels on each picture:

Nt∑
i=1

P∑
j=1

[g(Zij)− ln(Ei)− ln(Tj)] = 0 (3)

To solve this over-determined system, Debevec and Malik
proposed to manually pick some pixels, and to force g to
be continuous and monotonous by fixing g′′(z) = g(z −
1) − 2g(z) + g(z + 1) = 0 with z belonging to [1-254].
Moreover, they add a ponderation function w(z) to decrease
the impact of z near extrema of radiance values. So w(z) = z
for z ∈ [0 − 127] and w(z) = 256 − z for z ∈ [128 − 255].
Finally, we have to minimize the following system, N is the
number of picked pixels, z are the radiance values of input
pictures (grayscale beetween Zmin = 0 and Zmax = 255):

θ =

N∑
i=1

P∑
j=1

{w(Zij)[g(Zij)− ln(Ei)− ln(Tj)]}2

+

Zmax−1∑
z=Zmin+1

[w(z)g′′(z)]2 (4)

Using g, we can now compute radiance picture for each pixel:

ln(Ei) =

∑P
j=1 w(Zij)[g(Zij)− ln(Tj)]∑P

j=1 w(Zij)
(5)

With our implementation (Quadcore 2.5GHz with RAM
2GB), this method constructs an HDR image (640×480) in
4 seconds, starting from a sequence of 12 pictures of a video
stream with shutter time varying from 1/1024s. to 2s. We
added an automatic point selection, based on similar energy
areas through different images. Since our study evaluates exist-
ing methods to adapt them to augmented reality, we focused
on identifying their limitations. Therefore, we searched for
parameters accelerating the computation in order to reach real-
time with minimal quality loss.

C. Reduction of computation time

In order to reduce computing time, we consider that the
camera response function is constant. Therefore, it may be
estimated once for all in a pre-computing phase. Then, we
noticed that the number of input images is directly related with
the computation time. Thus we proposed a test to evaluate the
influence of this parameter on HDR images. In a first step,
the camera response function is pre-computed on the whole
image set (12 images). Then we perform HDR construction
from 2, 4 and 6 input images. We also compute a reference
radiance map from the 12 input images (figure 1). We display
these results with a color range visualization tool in which
each color correspond to an half order of radiances. This tool
allows a quick evaluation of radiance map coherence with
the observed environment. We also proposed a second tool
which compares each HDR image with the reference one. It
returns an image in which each pixel color corresponds to
the relative percentage difference between current image and
reference image. Results, on figure 2, show that radiance maps
are coherent whatever the number of input images. It also
shows that differences are low when using more than 2 input
images.

Fig. 1. Tone mapping of HDR reference image.

The reduction of input images involves to carefully select
their shutter times. This choice has no influence on computing
time but has an important impact on HDR image quality
and acquisition time. A new test, similar to the previous one
but not displayed here for space considerations, showed that
choosing shutter times equally distributed on the available



Fig. 2. Influence of the input image number. Left: Color range visualizations.
Right: Comparisons with reference. Upper line: 6 images. Middle line: 4
images. Lower line: 2 images. Comparison scale: from black for pixels having
the same value on image and reference to red for pixels having 25% or more
difference.

range offers good results. We can also notice that this range
is not interesting in its whole for augmented reality. Indeed,
to relight virtual objects we need to know information on
environment light sources only. A light source is supposed
to have a high radiance and therefore to be observed on
short shutter time images. It is then possible to remove long
shutter time images, which are obviously very long to acquire.
This test also pointed out that the observed loss of quality in
HDR reconstruction is quite predictable: errors systematically
appeared in the area where the well-exposed image has been
removed.

III. GEOMETRY ACQUISITION

A. Previous works

There is a great number of methods allowing to retrieve
geometry from images. Geometry can be described in a global
coordinate system, using shape from silhouette methods based
on visual hull [6], or stereo-vision techniques [7]. These
techniques need several calibrated cameras, quite difficult on
unknown environments. Geometry can also be described with
a depth map giving the distances between objects and the
user’s viewpoint, using single image from a single viewpoint.
Depth map can be computed using dedicated hardware [8]
[9] or under control lighting like shape from shading [10]
[11]. A recent method [12] uses automatic learning on images
database. Others techniques compute depth from focus length
of standard devices, like depth from defocus [13] [14] or depth
from focus [15] [16].

B. Depth map construction

Since we use camera with focus length variation in our
augmented reality environment, we chose a depth from focus

method. All images are taken from the same viewpoint, but
with different focus parameters. Then, we apply on each pixel
of these images an estimator of focus which returns a value
representing the blur level. The chosen estimator is based
on laplacian operator computing the variation of intensity on
edges. The higher this operator is on a given edge, the better
the camera is focussed on it. We then compute a single image
registering for each pixel the focus parameter of the best
focussed image. Finally, this image is converted into depth
map using a look up table (LUT) pre-computed during a
calibration step. This calibration is performed by shooting a
chessboard pattern positioned at a known distance using all
focus values available in our camera. Assuming that all points
contained in the chessboard plan are at the same distance
from the camera, we compute the sum of local laplacian
operator on each image. Then, we search the maximum of this
sum according to the focus value. The corresponding focus
parameter is associated with the chessboard distance in the
LUT. This process is iterated with other distances until having
a complete LUT between focus parameters and distances.

To compute depth maps, we first acquire an image set
containing images with different focus values. Then, we apply
the focus estimation on each pixel of each image and we
just retain the focus value corresponding to the best focused
image (the image where the estimator is maximum). However,
this method computes focus estimation on every pixel in
image, even pixels located in a non-textured area. In this
case, the edge information used to evaluate the focusing
is missing and the estimator returns very low values. The
retained value is then the one corresponding to the maximum
of noise. For this reason, we decided to add a threshold to
filter estimator values and remove unreliable points. Finally,
the depth map is reconstructed by replacing the focus value
with the corresponding distance in the LUT. Figure 3 shows
an example of depth map computed from 256 images in 9
seconds.

Fig. 3. Left: Example of image from the input set (640×480). Right: Depth
map coresponding to the same resolution. The color scale is linearly varying
from black (2cm and less) to white (60cm and more). Green pixels correspond
to the points that are rejected by thresholding.

The depth map we currently construct has only information
on edges that are not enough for proper occlusion handling,
so we developed methods returning dense depth maps to
correctly manage occlusions. The more convincing method
works on two passes. First pass horizontally (resp. vertically)
fills missing data betweens valued edges. All non valued
pixels between a picture boundary and an edge are filled with



highest (farthest) value. All non valued pixels between two
valued edges are filled with the highest (farthest) value of both
edges values. We don’t perform a linear interpolation to avoid
the creation of artifacts between background and foreground
objects. Second pass is a simple average of horizontal and
vertical filled picture. Figure 4 shows an example of filling
depth map.

Fig. 4. Filling of depth map. Left: sparse depth map. Right: resulting dense
depth map.

Better dense depth maps can be built by taking into ac-
count smoothness constraints between neighboring pixels and
performing a global optimization of the depth map, but these
methods are traditionally slower and thus might not seem to be
useful in our application. Notice that real-time methods exist,
using GPU and stereo devices for belief propagation for the
computation of dense depth maps in real-time [17]. The belief
propagation module could take the values which are obtained
by the Laplace operator applied to a defocused image as an
input.

C. Reduction of computation time

A first way to reduce computation time is reducing image
number. We noticed during the calibration step that, because
of hardware limitations, images which have a focus parameter
at extremities of the focus range do not contain useful infor-
mation for depth recovering. So we may reduce the input data
volume by removing these extreme images and by regularly
excluding images from the input set. To evaluate consequences
of image number reduction, we made some other tests with
3 input image subsets. The first one is built by selecting
1 image on 10 in the initial data set. The second keeps 1
image on 20 and the third 1 on 40. Computation time on
640×480 is 1.5s for 20 images, 0.8s for 10 images and 0.5s
for 5 images. Reconstructed depth maps are visually coherent
whatever the number of input images. Therefore, reducing the
volume of input images seems to be an interesting method to
save computation time in order to be used in augmented reality.
It is important to see that removing images from the input set
directly influence the accuracy of resulting depth maps because
the construction method obviously gives a number of depth
plans equal to the number of input images (respectively 20, 10
and 5 in our case). Notice that the performed selection does not
correspond to a regular discretization of depth space: the LUT
gives a non-linear correspondence between focus parameters
and distances. It is however enough to reconstruct depth maps
and evaluate their coherence.

These results show that the reduction of input images
number implies a proportional reduction of computation time.
Reconstructed depth maps are visually coherent whatever the
number of input images. Therefore, reducing the volume
of input images seems to be a interesting method to save
computation time in order to be used in augmented reality.

An other way to reduce computation times consists in
reducing the size of input images and evaluating consequences
on depth maps. Indeed, as for radiance recovering, we suppose
that the depth information does not have to be very spatially
accurate for synthetic object inclusion in a real scene. We also
perform a new test of computation speed using sets of 256
resized images. We used two sets of images which size are
respectively 320×240 and 160×120. Depth map is computed
from the first set in 4.1 seconds, from the second set in
1.1 second (figure 5). Resizing images to 320×240 preserves
the global coherence but a 160×120 resizing produces errors
which are visually important. It is currently better to avoid
the use of to small images, but this may be revised in case of
implementing other focusing estimator.

Fig. 5. Reduction of image size. Left: 320×240. Right: 160×120.

As in the previous test, we observed significant computation
time reduction, which is very interesting for augmented reality.
However, we observe that resizing images to 320×240 pre-
serves the global coherence but a 160×120 resizing produces
errors which are visually important. It is currently better to
avoid the use of to small images, but this may be revised in
case of implementing other focusing estimator.

To conclude this study, we want to present an other test
combining both types of reduction (figure 6). We perform the
computation of a depth map using a selection of 5 input images
resized to 320×240, computation time is 170ms. This is an
encouraging result because we can construct 6 depth maps
per second with 5 input images for each. It corresponds to the
input data acquisition limit which is 30 FPS for an ordinary
webcam.

IV. RESULTS

To put our method to the test, we show an example appli-
cation (figures 8, 9 and 10) by inserting a virtual object into
a real scene using a single capture with an ordinary webcam.
We acquire six HDR images from the middle of the scene,
on six basis directions (front, back, left, right, up and down),
by simples hand manipulations of the webcam. These pictures
are thus converted on a HDR cubemap during a pre-procesing
step (figure 7). Than we capture a depth map and HDR images
from the point of view.



Fig. 6. Example of combining image size and number of image reductions.

Fig. 7. Cubemap built with 6 HDR pictures (top view) and reflection on a
sphere (front view).

The rendering process is then decomposed in two passes.
During the first one, we use a very simple relighting technique
by lighting a specular virtual object using the HDR cubemap
and storing the resulting image into a texture. During the
second pass, we add the previous pass with the HDR image.
We handle occlusions between real and virtual objects by
comparing virtual depth computed in the previous pass with
the value stored in the depth map. Environment acquisition
(HDR + depth) is done in a few seconds, using 9 images
for each HDR image and 9 for the depth map. It is not
real-time, but a fast out-of-core pre-computation, in which
variations of focus and shutter time during acquisition do not
affect final rendering. Scene rendering is real-time. Although
changing the point of view is not possible after acquisition
step, moving the virtual object with dynamic lighting and
occlusion computation is performed in real-time.

Fig. 8. Rendering of a virtual object (bigguy) in a real scene.

V. SUMMARY, CONCLUSION AND PERSPECTIVES

This study has pointed out that multiple methods of depth
and light acquisition exist. We have also seen that most of

Fig. 9. Rendering of a virtual object (sphere) in a real scene.

Fig. 10. Rendering of a virtual object (bunny) in a real scene.

them presented difficulties for augmented reality applications
because they require much computation or represent data in
an incompatible way. Then, we have selected some methods
that we considered well adapted and we have explained
experiments we performed on to evaluate their capacity to be
used in augmented reality. These tests have shown that HDR
acquisition and depth map acquisition would both be possible
in interactive time with consumer hardware.

This work also opens number of perspectives in environment
acquisition, like GPU and multi-core CPU programming. We
also foresee to improve the rendering in augmented reality, by
acquiring other data on environment, such as surface aspect
of objects. Thus, we would be able to consider more complex
optical phenomena to increase rendering realism. For instance,
recovered data are currently not enough to determine if there
is a mirror-like surface in the scene. So we can not compute
any reflection of synthetic object on the environment, which
produces a important lack of realism. Moreover, to relight an
object, we have to know the lighting at its insertion point.
In our future work, we will necessary have to develop and
use methods evaluating the lighting in any point of a scene



from the known information. On the other hand, working
on augmented reality present some advantages too because
it allows to access further information (user’s location in
environment, camera gaze direction, multiple and close views
of a same scene) on which we plan to develop more efficient
and robust acquisition methods.
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