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Designing decentralized controllers for distributed-air-jet
MEMS-based micromanipulators by reinforcement
learning

Laëtitia Matignon · Guillaume J. Laurent ·
Nadine Le Fort-Piat · Yves-André Chapuis

Abstract Distributed-air-jet MEMS-based systems have been proposed to manipulate

small parts with high velocities and without any friction problems. The control of such

distributed systems is very challenging and usual approaches for contact arrayed system

don’t produce satisfactory results. In this paper, we investigate reinforcement learning

control approaches in order to position and convey an object. Reinforcement learning is

a popular approach to find controllers that are tailored exactly to the system without

any prior model. We show how to apply reinforcement learning in a decentralized

perspective and in order to address the global-local trade-off. The simulation results

demonstrate that the reinforcement learning method is a promising way to design

control laws for such distributed systems.

Keywords MEMS-based actuator array · smart surface · decentralized control ·
distributed control · reinforcement learning

1 Introduction

One of potential applications of Micro-Electro-Mechanical Systems (MEMS) concerns

the moving and positioning of small parts as the actuators themselves are on a similar

scale. Toward the realization of this goal, researchers have been designing and building

actuator arrays that can be used for positioning, conveying and sorting of small parts,
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E-mail: nadine.piat@ens2m.fr

Yves-André Chapuis
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or as bulk-fabricated (cheap), ultra-thin transport mechanisms, e.g. for paper in copy

machines or printers.

A wide variety of actuation principles for arrayed systems has been proposed in re-

cent years including electromagnetic actuators [23], electrostatic actuators [25,4,16,12],

thermal-bimorph (bimaterial) actuators [2,1]. Arrayed manipulation systems can be di-

vided into two categories: contact systems and contact-free systems. Contact systems

simulate cilia and can mainly perform high load capacity and accurate positioning [4,

2,1]. Contact-free systems use air-flow levitation and have several advantages including

high velocities and the removal of friction problems [25,16,12]. In return, they require

a greater level of complexity for the control.

In the case of contact systems, the friction forces are very important compared with

the inertia of the carried object. The control strategy proposed by Böringher et al. and

called programmable vector field [6,3,5] produces satisfactory results for positioning

and conveying a part with ciliary actuator arrays.

On the contrary, there are many challenging issues concerning the control of contact-

free systems. First, the damping of the motion is very weak. Constant air-flow generates

strong instability due to fluid turbulences. Fluid effects are also very non linear. It is

very hard to model precisely interactions between tens different air-jets. The shape of

the object and the roughness of its surface have a major impact on the exerted fluid

forces. Moreover, actuators and then air-jets are not perfectly the same due to process

dispersion factors. Lastly, finding coherent control laws for hundreds of independent

air-jets is a complex problem.

In this paper, we propose to use reinforcement learning control techniques in a

decentralized perspective as a way to design control laws for contact-less distributed

manipulation systems. Reinforcement learning is a popular approach to find controllers

that are tailored exactly to the system without any prior knowledge. In recent years,

reinforcement learning has been applied with reported success to control complex real

world problems in a decentralized perspective, like multi-robot cooperative transporta-

tion tasks [33], urban traffic control [17] or a flocking system [13]. The challenge to

design decentralized control laws is to find a trade-off between global and local per-

spectives: the global problem is too complex to be solved but solving merely the local

problems can lead to poor global performances. The proposed control architecture is

based on the game theory perspective, where a team of agents are cooperating to solve

a joint task [24,7]. This framework allows to find local control laws whose joint actions

are optimal at the global level.

We focused our study on a distributed-air-jet MEMS-based micromanipulator de-

signed by Fukuta et al. [12] as part of a research project funded by the NRA (French

National Research Agency). This project federates five French research teams and a

Japanese one from five laboratories1. The device to control is an array of micro-electro-

valves able to produce controlled and directed micro-air-jets (cf. figure 1). The joint

action of air-jets can achieve some positioning and conveyance tasks of a small part.

The long-term objective is to design and develop a fully integrated distributed micro-

manipulation system that we call smart surface, for conveying, fine positioning and

sorting of parts at meso-scale (�m to mm). Fully integrated means that the control

must be embedded and decentralized. However, a fully integrated approach still remains

rigid and costly in micro-scale fabrication for research works on control. Consequently,

1 FEMTO-ST (Besançon, France), InESS (Strasbourg, France), LAAS (Toulouse, France),
LIFC (Besançon, France) and LIMMS (Tokyo, Japan)
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Fig. 1 Distributed-air-jet MEMS-based micromanipulator [12].

in this paper, we experiment our control algorithms on a realistic simulation of the

distributed-air-jet micromanipulator.

This paper is organized as follow. The first part presents the distributed-air-jet

micromanipulator and a model of it. The second part aims to place our work with

regard to previous works and to the usual programmable-vector-field approach for

arrayed systems. The next parts present two control architectures and experiments

done in simulation on two different tasks.

2 Distributed-air-jet micromanipulator

2.1 Real system

Figure 1 illustrates principles of the distributed-air-jet MEMS-based micromanipulator.

It consists of an active surface based on an array of micro-nozzles. Air-flow comes

through electrostatic micro-valves in the back-side of the device. Each electrostatic

micro-actuator works as a normally closed air-valve but has two opened positions,

each generating opposite directed horizontal air-jet. When the valve is closed a slight

vertical air-jet is produced to ensure levitation. In the front-side, the active surface

is simply represented by holes where air-jets are produced. An object can be carried

by actuating air-jets independently at each point. An overhead camera is used to get

the position of the object’s center. See [12] for more details about MEMS’s design and

working.



2.2 Model

The aim of this section is to state a realistic model of the distributed-air-jet microma-

nipulator. A multi-domain simulation of this distributed-parameter system is a self-

challenging task. We make here some assumptions in order to keep only a finite set of

differential equations based on fluidic forces exerted by an air-flow on a body.

2.2.1 Fluid forces

Each nozzle is centered on a 1mm2 square. A nozzle generates :

– either a vertical air-jet �vjet = vlev�z when the micro-valve is closed (the valve state

a is 0); vertical air-jets are useful for levitation,

– or an oriented air-jet �vjet = vair�x+vlev�z (nozzle normal to �x) or �vair = vair�y+vlev�z

(nozzle normal to �y) when the micro-valve is opened (the valve state a is ±1).

By the combined action of vertical and oriented air-jets, forces and moments are

exerted on the object. Two fluid forces are defined : the levitation force FL applied in

the vertical direction �z and the thrust force FT which conveys the object on the surface

(�x, �y). A torque also applies leading to the object’s rotation around �z.

2.2.2 Hypotheses

For the conveyance model in two dimensions, we only model the thrust force FT so the

hypotheses are :

– the levitation force FL is not evaluated; the object is supposed to remain in levita-

tion,

– effects of vertical air-jets on the object’s motion are neglected,

– we model only interactions between oriented air-jets and the object’s edges. Ori-

ented air-jets reaching the back side of the object are thus neglected,

– air-jets are independent, i.e. there aren’t any interactions between air-jets.

2.2.3 Thrust force

To establish a model of the thrust force, we need some notations shown on figure 2.

The object is represented by a N -faces polygon and is conveyed in (�x, �y). Its center of

gravity is noted G, G’s coordinates are noted (x, y). All the air-nozzles are numbered

between 1 to M . When an air-nozzle is less than 5 mm away to the object and when

the air-jet is in the good direction, the produced air-flow reaches a small area of the

object’s edge, called wet area. We assume the wet area of the face is just the normal

projection of the nozzle in (O, �y, �z). This relation between a face n and a nozzle i is

described using the following variables:

– �un is the normal vector of the face n,

– si,n is the surface of the normal projection of the wet area of the face n,

– Pi,n is the central point of the wet area of the face n,

– di,n is the distance between Pi,n and the nozzle i.



Fig. 2 Geometric notations in case of a nozzle close to the object, normal to �x and orienting
an air-jet with a velocity �vair,i (top view).

The elementary thrust force of the air-jet i on the face n is :

�fi,n =
1

2
ρCxsi,nv2

i,n�un (1)

where Cx is the drag coefficient, ρ the density of the air and vi,n the relative speed

of the air at the point Pi,n. Each elementary thrust force �fi,n is equal to 0 with a

probability of 0.05 to imitate possible micro-actuator failures. The relative speed is

given by :

�vi,n = (�vair(di,n, ai)− �vobj) · �un (2)

where �vobj the speed of the object and �vair is the speed of the air-jet. The direction

of �vair is normal to the direction of the nozzle. The magnitude of �vair results from a

finite element simulation [12] that gives air-jet velocity decreasing with the distance d

to the nozzle and according to the valve state a :

vair(d, a) =




0 if a = 0

5500 sgn(a)e−
d2

3.38 if a �= 0 and d ≥ 0

−1000 sgn(a)e−
d2

0.08 if a �= 0 and d < 0

(3)

We can notice a negative air-jet velocity if d < 0. Indeed, when a nozzle generates an

air-jet oriented along �x, a slight opposite air-jet is produced along −�x. That leads an

object moving slowly along �x to bounce of opposite air-jets.

Then, the model sums all elementary thrust forces generated by the M air-jets

on the N object edges according to the surface geometry (cf. figure 3). The resulting

thrust force FT is applied at its center of gravity G :

�FT =

M∑
i=1

N∑
n=1

δi,n
�fi,n (4)



Fig. 3 Geometry of the distributed-air-jet micromanipulator. The device has a total of 96
actuators (air-jet).

where δi,n equals 1 if the air-jet i reaches the face n and zero else. δi,n is also zero if

the air-nozzle is under the object (see hypotheses). The resulting torque is :

�MFT =

M∑
i=1

N∑
n=1

δi,n( �GP i,n ∧ �fi,n). (5)

2.2.4 Viscous force

Friction forces due to the surrounding air are spread over the surface of the object.

The resulting force is the viscous force :

�FV = −Kη�vobj (6)

where K is a geometric coefficient dependent on the shape of the object and η the

coefficient of viscosity.

2.2.5 Conveyance model

The object’s dynamic follows the equations :


mẍ = �FT · �x−Kηẋ

mÿ = �FT · �y −Kηẏ

Jθ̈ = �MFT · �z
(7)

where m is the mass of the object, J its inertia moment and θ̇ its angular speed.



Fig. 4 Part-stabilization-task description.

3 A challenging control problem

3.1 Previous work

Very first control experiments with the real system were done by some of us [12,9].

A close-loop control based on decentralized reactive units was developed. This control

system was able to move a 5.6 × 5.6mm2 plastic planar object to one direction but

neither the deviation of the object in the other direction nor the speed were controlled

during the motion. Periodical on-off pulses of air-flow were also used in order to advance

the part by leaps and bounds.

This experiment was a proof-of-concept of the ability of the micromanipulator to

convey a small part with decentralized control. However, there are still many challeng-

ing issues concerning the motion control and the increase of stability in full levitation.

3.2 Programmable vector field

Programmable vector field was introduced by Böhringer et al. [6,3,5] to control actuator

arrays and transversely vibrating plates. Programmable vector field is sensor-less and

may be employed to orient, sort, feed, assemble parts, etc. It was applied with success

to control ciliary actuator arrays [4,1].

The basic principle of programmable vector field is that actuators are assigned to

a specific direction and magnitude with regard to their position. Then when a part is

placed on the device, the vector field induces a force and a torque upon it. Over time,

the part may come to rest in a dynamic equilibrium state.

For the generation of manipulation plans with programmable vector fields, it is

essential to be able to predict the motion of a part in the field and to determine the

stable equilibrium poses a part can reach in which all forces and moments are balanced.

3.3 Part stabilization with programmable vector field

First, we focus on a stabilization task; a cylinder (2 mm in diameter, 0.25mm in height)

must be maintained at a given place of the surface. The cylinder is modeled by a 21-

faces polygon. We aim to regulate the position in only one direction. For that, we use

a restricted area of the active surface. This restricted area contains 19 columns per 2

rows of nozzles (cf. figure 4). All east-west air-jets are assigned to a constant air-jet

direction (east, middle or west). North-south air-jets stay in middle position to ensure

object’s levitation.



Fig. 5 Vector field for the part-stabilization task.
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Fig. 6 Position of the cylinder’s center according to the time using programmable vector field
(solid line), the dashed line represents the target position. Short perturbations are done at
time steps 0, 5 and 10 s.

The problem is only to address a direction to each air-jet in order to get a specific

motion of the object. The magnitude of an air-jet is not adjustable. To create a stable

equilibrium point in the middle of the surface, we used the vector field shown by figure

5. The middle of the surface is located at yg = 9.5mm.

Figure 6 shows the position of the cylinder’s center versus the time. Three short

perturbations are done at time 0, 5 and 10 s to test the robustness of the regulation.

As we can see on the graph, the motion is very oscillatory and non-harmonic. Two

oscillating phases can be distinguished. Moreover, in some cases due to a short per-

turbation, the object misses the target position and stays in another stable position

(at time step 5 s). The reason is that slight counter-jets are produced in the opposite

direction of the air-jets as described by equation 3. This phenomena was observed with

the real system.

The vector field can create a stable equilibrium point. But the stable area is very

small and the motion of the object is very oscillatory. The constant programmable vec-

tor field is acting as a simple on-off regulator with a high gain, so turning the velocity

down might get rid of some of the oscillations and overshoots at the cost of slower con-

vergence. This could be done by reducing the input pressure.However, as programmable

vector field control is open-loop, it will not be able to reject perturbations.

3.4 Part conveying with programmable vector field

The second task is to convey the part to the middle of the north border of the surface

illustrated on the figure 3. For this task, the entire surface is used. The part is fed

to the surface at the initial position x0 = 7.5mm, y0 = 1.5mm and with a random



Fig. 7 Vector field for the part-conveying task.

Fig. 8 Object’s trajectories for various initial speeds of the object using programmable vector
field. The initial speed ẋ is here noted vx.

speed ẋ ∈ [−50,−10]mm/s. The vector field shown by figure 7 is used to convey

the object. The figure 8 shows the part’s trajectories for various initial speeds (ẋ =

{−10,−20,−30,−40,−50}mm/s). As illustrated on the figure, this vector field is not

able to convey the object to its target position for all initial speeds.

3.5 Discussion

These two examples show that programmable vector field is not satisfactory to control

the distributed-air-jet system. After all, it is not surprising: programmable vector field

is a sensor-less method. It can’t adapt to different speeds of the object. In this case, it

may be interesting to investigate close-loop control using dynamic vector field.

The second conclusion is that the control of the simulator is not obvious. So, we

get a strong benchmark to test various control approaches.



Fig. 9 Centralized control architecture.

4 Semi-decentralized reinforcement learning control

4.1 Control problem

In this section, we assume that the manipulation area is supervised by a global sensor

like a camera. Thanks to this sensor, the object’s position is known at intervals of time

T (sampling period). The position at time step k is noted (xk, yk).

In order to reject perturbations or to control the object trajectory, a suitable com-

bination of air-jets must be calculated at each sampling period in accordance with the

position (xk, yk) of the part. The control signal (air-jet direction) sent to the ith air-jet

is noted ai,k (that can take one of the three possible discrete values). To control the

entire surface, there are 96 control signals to process at each step! A fully centralized

control architecture is not suitable due to processing complexity and the number of

communication channels required (cf. figure 9).

Another solution is to use one controller per air-jet. The object’s position is broad-

cast to each independent controller so as to close the loop. Then, each controller sends a

command to its associated air-jet. We call this architecture semi-decentralized because

acting and decision-making are local but sensing is global (cf. figure 10).

The control problem is to design local control laws that generate a satisfactory

global behavior of the part. Under some assumptions, reinforcement learning techniques

are able to find such controllers.

4.2 Reinforcement learning

Reinforcement learning methods are inspired by dynamic programming concepts. They

have been studied extensively and successfully applied in centralized framework [29,

15]. A controller, also called agent, learns by interactions with its environment, using a



Fig. 10 Semi-decentralized control architecture.

scalar reward signal called reinforcement as performance feedback. The studies about

reinforcement learning algorithms in multi-agent systems are based on Markov game

framework.

Definition 1 A cooperative Markov game2 is defined as a tuple < m, S, A1, ..., Am,

T, R > where : m is the number of agents; S is a finite set of states; Ai is the set

of actions available to the agent i (and A = A1 × ... × Am the joint action space);

T : S × A × S → [0, 1] is a transition function that defines transition probabilities

between states; R : S ×A→ � is the reward function.

This framework is equivalent to the semi-decentralized architecture we presented

because all agents have access to the complete observable state s. Reinforcement func-

tion is determined by the task to achieve (see below). The transition function T is

unknown from agent’s perspective (learning hypothesis).

4.3 Think globally, act locally

The objective of the group (or the global objective) is to find a joint policy π that

maximizes the expected sum of the discounted future rewards for all states s in S and

joint actions a in A,

Qπ (s, a) = Eπ

{ ∞∑
j=0

γjrj+k+1

∣∣s, a
}

(8)

Qπ (s, a) is called the joint or global action-value function. γ ∈ [0; 1[ is a discount factor.

In the multi-agent system framework, independent learners were introduced in [10]

as agents which don’t know the actions taken by the other agents. The objective of an

2 also called team game.



independent learner is then to find a local policy πi that maximizes the expected sum

of the discounted rewards in the future for its own action ai in Ai,

Qπi
i (s, ai) = Eπi

{ ∞∑
j=0

γjrj+k+1

∣∣s, ai

}
(9)

Qπi
i (s, ai) is called the local action-value function. The independent learner approach

brings the benefit that the size of the state-action space is independent of the number

of agents. This choice is pertinent for the distributed-air-jet micromanipulator in order

to avoid exponential growth of action space with the number of actuators.

It is important to notice that it is necessary for each independent learner to find its

local optimal action-value function, in order that the group achieves the global optimum

[18].

4.4 Decentralized Q-Learning

Q-learning [34] is one of the mostly used reinforcement learning algorithms in single-

agent framework because of its simplicity and robustness. That’s also why it was one

of the first to be applied to multi-agent environments [31]. Despite some difficulties as

the coordination or the loss of theoretical guarantees [19], it was successfully applied

with independent learners on some applications [27,8,32,14].

For an independent learner i, Q-Learning consists in getting a more and more ac-

curate estimation of the optimal local action-value function using a recursive updating

equation, that is:

Qi(sk−1, ai,k−1)← Qi(sk−1, ai,k−1) + αδ (10)

where δ = rk +γ max
b∈Ai

Qi(sk, b)−Qi(sk−1, ai,k−1), ai,k−1 is the individual action chosen

by the agent i at time step k − 1 and α ∈]0; 1] is the learning rate. Qi(s, ai) is the

current value of the state-action pair (s, ai) for the agent i. Qi(s, ai) values are stored

in a |S| × |Ai| array.

We propose to use Q-learning with eligibility traces to obtain a more efficient

method. The eligibility trace e(s, a) is a measurement of the age of the last visited

state-action pair (s, a). Action-value function is then globally updated according to

eligibility trace, that is:

Qi(sk−1, ai,k−1)← Qi(sk−1, ai,k−1) + αδei(sk−1, ai,k−1) (11)

Much more Q-values are then updated at each transition. This method is a decentral-

ized version for independent learners of the Watkins’s Q(λ) algorithm3 [35].

At each time step, a new action ai,k is selected according to Qi(sk, ∗) values and to

an exploration/exploitation compromise. We use the ε-greedy action selection method4.

3 λ is the decay parameter for eligibility traces.
4 The probability of taking a random action for an agent i is ε and, otherwise, the selected

action is the one with the largest Qi-value in the current state.



4.5 Part stabilization

As illustrated on the figure 4, we first aim to control columns of east-west nozzles to

regulate the position of the part in only one direction like in the previous section. All the

east-west nozzles of a column are controlled together according to the air-jet direction

required. So the system requires as much controllers as east-west-nozzles columns, i.e.

10 controllers. Possible actions of each controller are: directing the air-jet on the east

or on the west or closing the valve, i.e. 3 actions (east, west, middle). So, the cardinal

|Ai| of the action space Ai of the agent i is 3.

The state of the system sk at time step k is the object’s current and previous

positions, sk = (yk, yk−1). To apply reinforcement learning in the form presented pre-

viously, time axis and continuous state must be discretized. The sample time of our

simulation is 0.01 seconds (between step the integration method is ODE45). For ob-

ject’s position, a 41 × 41 spatial tile-coding is used. So, this yields Qi tables of size

41× 41× 3 for each 10 controllers, to compare with a Q table of size 41× 41× 310 in

a centralized perspective.

According to [20] and in order to stabilize the object at the position yg with null

speed, the chosen reward function is :

R(yk, yk−1) =




1 if (yk, yk−1) ∈ [yg − ρ, yg + ρ]2

−1 if yk < ymin or yk > ymax

0 else

(12)

where ρ sets a margin, ymin the minimal abscissa and ymax the maximal abscissa.

Independent controllers learn by Q-Learning during 300 trials (λ = 0). Each trial

starts with the object in a random initial state (y0 ∈ [3, 15]mm) and runs at the most

10 seconds. A trial ends if the object gets out from the restricted area (yk < ymin or

yk > ymax). All trials use α = 0.1, γ = 0.9, ε = 0.01 and ρ = 0.5mm.

Figure 11 shows the position of the object’s center according to the time after learn-

ing. It takes around 0.2 seconds for the independent learners to regulate the object’s

position with an oscillation range of 0.1mm. The perturbations at time steps 0, 2 and

4 s are quickly rejected.

Semi-decentralized reinforcement learning manages to stabilize the object with a

high damp factor and with a good robustness to perturbations. This result demon-

strates the potential capacity of reinforcement learning control to regulate position

and speed of a levitating part on distributed-air-jet micromanipulator.

4.6 Part conveying

We propose to test if semi-decentralized reinforcement learning control is robust to

the different initial speeds of the object. This time, 96 independent controllers learn

by Q(λ) during 1000 trials. Each trial starts with the object at the initial position

and with a random speed and runs at the most 10 seconds. A trial ends if the object

gets out from the surface. All trials use α = 0.1, γ = 0.9, λ = 0.7, ε = 0.01. The

state of the system sk at time step k is the object’s current and previous positions,

sk = (xk, yk, xk−1, yk−1). For object’s position, a 13× 13× 9× 9 spatial tile-coding is

used.



0 1 2 3 4 5 6

4

5

6

7

8

9

10

11

12

13

Time (s)

P
o

si
ti

o
n

 (
m

m
)

Fig. 11 Position of the cylinder’s center according to the time (solid line) after learning
with the Q-Learning algorithm, the dashed line represents the target position. The control
architecture is semi-decentralized. Short perturbations are done at time steps 0, 2 and 4 s.

In order to realize the part conveying, the chosen reward function is :

R(xk, yk) =




10e−
(x− xmax

2 )2

2 if y ≥ ymax

−3 if x < xmin or x > xmax or y < ymin

0 else.

(13)

where (x, y) are the object’s coordinates. The reinforcement function rewards agents

when the goal is reached, and punishes them when another border is crossed.

Because the slow learning speed is an issue when applying reinforcement learning

to real-world problems, alternative strategies have been proposed in the literature as

the incorporation of prior knowledge (or bias) [20] or the combination of a conventional

controller with the reinforcement learning scheme [28]. According to [20], we choose

to use a transient bias embedded in initial Q values. This bias advises controllers to

generate the previous vector field (figure 7) at the beginning of the learning process.

At the end of the learning process, some conveying tasks with various initial speeds

of the object (ẋ = {−10,−20,−30,−40,−50}mm/s) are realized with controllers fol-

lowing their greedy policy. The figure 12 shows the object’s trajectories.

Semi-decentralized reinforcement learning manages to convey the object near to

the target position for all tested initial speeds. Controllers adjusted the initial bias so

as to fit the speed of the object. This result confirms the capacity of semi-decentralized

reinforcement learning methods to control such distributed systems.

5 Fully-decentralized reinforcement learning control

5.1 Control architecture

In this section, for conducting the proof-of-concept of a future smart surface, integrating

sensors, actuators and processing units, we investigate a complete decentralized control

architecture using integrated local sensors. Fully-decentralized architecture avoids the



Fig. 12 Object’s trajectories for various initial speeds of the object using semi-decentralized
reinforcement learning control. The initial speed ẋ is here noted vx.

broadcast of the position of the object. Moreover, it provides better scalability and

robustness properties to the system.

We assume that sensors are located between nozzles (cf. figure 13). Each sensor

detects if the object is above it or not. Controllers must receive sufficient amount

of information to control the object’s motion. It is obvious that if the system is not

observable, the controller will have poor performances. So we propose that sensor’s

information is locally shared. The control architecture is described by figure 14. Each

decentralized controller drives an actuator and receives informations about close sen-

sors.

5.2 Controlled and non-controlled observations

To reduce at most sensors sharing, the idea is that controllers have to observe the

object only when they can act on it. In other words, when the object is reachable by

the controlled air-jet, the controller must receive enough information to be efficient.

But, when the object is not reachable, it is not necessary for the controller to receive

any information.

Given that the speed of an air-jet is null at 4 mm, we use local perceptions as

defined in figure 13. We noted ωi the observation vector of a controller i. In our case,

ωi is a five-length binary vector describing the state of close detectors in the direction

of the air-jet. We can notice that this observation vector is a very coarse observation

of the object position.

As a controller i receives only ωi, it does not observe the exact position and the

exact speed of the object. Then, the state of the system is said partially observable.

To address this partial observability problem, the idea is to split the observation space

into two subsets:

– Ωi is the set of controlled observations, i.e. when the controller can act on the

system,



ωi =
(
0 0 0 0 0

)

(a) Agent’s local view when all detectors are inactive (sensors are represented by small
circles). The object is not reachable by agent’s air-jet. This observation is said

non-controlled. The agent waits and follows a fixed policy.

ωi =
(
0 0 1 1 0

)

(b) Agent’s local view when some detectors are active. The object is reachable by agent’s
air-jet. This observation is said controlled. The agent learns to control the object’s position

and follows its current policy.

ωi =
(
1 0 0 0 0

)

(b) Agent’s local view when one of three very left detectors are active. The object is
reachable by agent’s air-jet. This observation is said controlled. The agent learns to control

the object’s position and follows its current policy.

Fig. 13 Local view and controlled observations principle.

– Ω̄i is the set of non-controlled observations, i.e. when the controller can’t act on

the system.

In our case, Ω̄i contains only the observation
(
0 0 0 0 0

)
and Ωi all the others.

In order to use reinforcement learning algorithm in this framework, we use the “op-

tions” paradigm. Options enable multi-step actions (or macro-actions) to be included

in the reinforcement learning framework in a natural and general way [30,26,11].

Non-controlled observations can be seen as an option in which the controller follows

a given constant policy without learning (for instance, if ωi,k ∈ Ω̄i the agent keeps air-

jet on the middle). If the observations are controlled, the controller learns as usual and

follows a policy based on its action value function.

To be more precise, four cases must be exposed:

– If ωi,k−1 ∈ Ωi and ωi,k ∈ Ωi, the agent stays in controlled observation space and

updates its action-value function with the transition (ωi,k−1, ai,k−1, ωi,k, rk) and



Fig. 14 Fully-decentralized control architecture with sensors sharing.

the discount factor γ using the Q-Learning equation (or another algorithm):

Qi(ωi,k−1, ai,k−1)← (1− α)Qi(ωi,k−1, ai,k−1)

+ α(rk + γ max
b∈Ai

Qi(ωi,k, b)) (14)

– If ωi,k−1 ∈ Ωi and ωi,k ∈ Ω̄i, the agent enters non-controlled observation space and

initializes temporary variables:




k̄ ← k − 1

γ̄ ← γ

r̄ ← rk

(15)

– If ωi,k−1 ∈ Ω̄i and ωi,k ∈ Ω̄i, the agent stays in non-controlled observation space,

only temporary variables are updated:

{
r̄ ← r̄ + γ̄rk

γ̄ ← γ̄ ∗ γ
(16)

– If wi,k−1 ∈ Ω̄i and wi,k ∈ Ωi, the agent gets out non-controlled observation space

and updates its action-value function with the transition (ωi,k̄, ai,k̄, ωi,k, r̄) and the

discount factor γ̄ using the Q-Learning equation (or another algorithm):

Qi(ωi,k̄, ai,k̄)← (1− α)Qi(ωi,k̄, ai,k̄)

+ α(r̄ + γ̄ max
b∈Ai

Qi(ωi,k, b)) (17)



5.3 SOaN algorithm

In two dimensions, a lot of path can convey a part to a target point. Some of them

could be equivalent in terms of value function. It means there are several joint policies

that are optimal. The consequence is that, to achieve cooperation, independent learners

must select the same optimal joint policies without any communication. Independent

learners based on Q-Learning may fail to achieve policy selection [19].

A second constraint is agents perceive local information with very low sensor res-

olution. So, agents’ observations of their world are very noisy. To conclude, we need

a reinforcement learning algorithm for independent learners that would be robust to

noise and able to do the policy selection.

The SOaN algorithm that some of us developed in previous works [22,19] satisfies

these requirements. Thanks to the computation of a farsighted frequency and to a

heuristic evaluation of the action values, this algorithm sways from optimistic to neutral

evaluation according to a detection of the noise in the environment. This algorithm

overcomes all mis-coordination factors, notably policy selection, even in weakly noisy

Markov games. The robustness of the SOaN algorithm have been demonstrated in

practice in many cooperative Markov games with numerous agents.

5.4 Part conveying

We apply both controlled observation framework and SOaN algorithm to control the

simulated air-jet micromanipulator.

An episode starts with the object at the center of the surface with a slight speed

to west (-1 mm/s). An episode stops if the object’s center crosses a border. A task is

successful if the object’s center crosses the north border in the middle plus or minus

2.5mm. The reinforcement function is the same than equation 13.

In table 1, we compare several approaches on the same tasks. It is clear that SOaN

algorithm overcomes Q-Learning and hysteretic Q-Learning, another algorithm for in-

dependent learners [21]. The standard deviation is very low and the small part of

unsuccessful tasks is simply due to learning as we can see on figure 15. This figure

shows the trajectories of the object in hundreds of learning episodes. For the first 100

episodes (cf. figure 15a), trajectories are disappointing most of the time. Indeed, it is

the beginning of the learning and no bias is induced in the initialization, so agents

have to learn from scratch. That’s why the trajectories seem hazardous. For the next

200 episodes (cf. figures 15b and c), the agents automatically adjust their behavior to

the environment. Most of the trajectories turn towards north but they are not pre-

cise. A few trajectories fail because of exploration actions taken by a few agents. Some

risked and corrected trajectories can be observed on figure 15c. Finally, for the last 100

episodes (cf. figure 15d), all trajectories are a successful. Agents manage to coordinate

themselves and risked trajectories are quickly corrected. The “S” shape we can see at

the end of learning process is induced by the initial speed of object.

The final trajectories are less precise than in the semi-decentralized framework.

Indeed, the task is harder since the local observations received by controller are very

coarse. However, it shows a real interest to use reinforcement learning to design con-

trollers in a fully decentralized perspective.



Algorithm
Mean of number of
successful episodes

Standard deviation of
number of successful

episodes

Q-learning 63% 24%

Hysteretic Q-learning 19% 31%

SOaN 81% 6%

Table 1 Percentage of episodes where the conveyance task was successful for 400 episodes
(means on five independent runs).

(a) episode 1 to 100 (b) episode 101 to 200

(c) episode 201 to 300 (d) episode 301 to 400

Fig. 15 Object’s trajectories during learning from scratch with the simulated air-jet micro-
manipulator and with the SOaN algorithm. The control architecture is fully-decentralized.

6 Conclusions and future works

We first showed that sensor-less programmable vector field does not provide satisfactory

results for the simulated distributed-air-jet system. However, it may be interesting to

investigate close-loop control using dynamic vector field.

Then, two decentralized reinforcement learning control approaches were investi-

gated. These approaches were compared with programmable vector field on the same

stabilization and conveying tasks. The results demonstrate the capacity of reinforce-

ment learning to control the position or the trajectory of a levitating part on the



simulated distributed-air-jet micromanipulator. Reinforcement learning is a promising

way to design control laws for such distributed systems.

If these results are a proof-of-concept of using decentralized reinforcement learning

for this kind of system, they also show new successful applications of Q-learning variant

algorithms for independent learners.

We made here some strong assumptions in the model used for simulation. Although

the behavior of the model is realistic compared to real experiments, some assumptions

as the independence of air-jets may be simplistic. Well, the purpose of this paper is

precisely to propose a control approach by learning that does not need to state any

model to find a controller. One major interest of this approach is to adapt itself to any

systems. So, there is likelihood that decentralized reinforcement learning control will

achieve the control of a real contact-free distributed micromanipulator. It remains to

confirm these results on a real system.
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A Numerical data of dynamical model

Parameter Caption Value Unit
m object’s mass 6.6e-3 g
l object’s thickness 0.25 mm

Cx drag coefficient 1.11
ρ air density 1.3 kg/m3

J object’s moment of inertia 0.05 g/mm2

η air viscosity 1.81e-5 kg/m.s
K viscosity coefficient 2.75
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