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Space Shift Keying (SSK) Modulation with Partial
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Performance Analysis over Fading Channels
Marco Di Renzo, Member, IEEE, and Harald Haas, Member, IEEE

Abstract—Space Shift Keying (SSK) modulation is a new and
recently proposed transmission technology for Multiple–Input–
Multiple–Output (MIMO) wireless systems, which has been
shown to be a promising low–complexity alternative to several
state–of–the–art MIMO schemes. So far, only optimal or heuristic
transceivers with Full Channel State Information (F–CSI) at the
receiver have been investigated, and their performance analyzed
over fading channels. In this paper, we develop and study the
performance of the optimal Maximum–Likelihood (ML) detector
with unknown phase reference at the receiver (i.e., Partial–CSI,
P–CSI, knowledge). A very accurate analytical framework for the
analysis and optimization of this novel detector over generically
correlated and non–identically distributed Nakagami–m fading
channels is proposed, and its performance compared to the
optimal receiver design with F–CSI. Numerical results will point
out that: i) the performance of SSK modulation is significantly
affected by the characteristics of fading channels, e.g., channel
correlation, fading severity, and, particularly, power imbalance
among the transmit–receive wireless links, and ii) unlike ordinary
modulation schemes, there is a substantial performance loss when
the receiver cannot exploit the phase information for optimal
receiver design. This latter result highlights the importance of
accurate and reliable channel estimation mechanisms for the
efficient operation of SSK modulation over fading channels.
Analytical frameworks and theoretical findings will also be
substantiated via Monte Carlo simulations.

Index Terms—Spatial modulation (SM), space shift keying
(SSK) modulation, multiple-input-single-output (MISO) systems,
sub-optimal detector, performance analysis, correlated fading
channels.

I. INTRODUCTION

SPACE modulation is a recently proposed wireless trans-
mission technique for Multiple–Input–Multiple–Output

(MIMO) wireless systems [1]–[4], which relies on the
location–specific properties of the wireless channel to convey
information (see, e.g., [5]). Along the history, this concept has
been termed in different ways with slightly different meanings.
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In [1], the idea of exploiting the differences in the signals
received from different antennas to distinguish the information
messages was described for the first time. The method was
called Space Shift Keying (SSK) modulation, and two different
approaches were proposed: i) a first one with reduced data
rate and receiver complexity, where the information to be
sent is encoded only on the spatial positions of the transmit–
antennas, and ii) a second one with higher date rate and
receiver complexity, where the information bits are encoded
on both spatial and signal constellation diagrams1. However,
the idea in [1] was useful for a simple 2 × 1 MIMO system
and still suffered from the main issues of conventional MIMO
schemes, i.e., Inter–Channel Interference (ICI), Inter–Antenna
Synchronization (IAS), and multiple Radio Frequency (RF)
chains at the transmitter [4]. In [2], the principle of using the
positions of the transmit–antennas as a source of information
was exploited to accomplish a form of multiplexing in the
spatial domain, and the method was called Orthogonal Spatial–
Division Multiplexing (OSDM). In [3] and [4], the idea in [1]
has been recently extended to conceive two new modulation
schemes that can be used for MIMO systems with arbitrary
transmit– and receive–antennas, and completely avoid ICI,
IAS, as well as multiple RF chains. As a matter of fact,
although the schemes in [3] and [4] are based on the second
and first approach proposed in [1], respectively, they show
a fundamental difference: in both cases, a single transmit–
antenna can radiate power at any time–instant. The MIMO
scheme in [3] has been called Spatial Modulation (SM), while
in [4] the authors have retained the name SSK modulation.
Broadly speaking, the method proposed in [4] is a special
instance of the SM scheme introduced in [3], which can trade–
off receiver complexity for data rate (see [4] for details).
Throughout this paper, we adopt the term SM to refer to the
modulation and coding method described in [3], while we use
the term SSK modulation to refer to the special case of SM
described in [4], where the information bits are encoded only
on the spatial positions of the transmit–antennas.

Recent research efforts have shown that the space modula-
tion paradigm can be a very promising candidate to the design
of low–complexity modulation schemes and transceiver archi-
tectures for MIMO systems over fading channels (see, e.g., [3],
[4], [8] and references therein). In particular, it has been shown
that SSK modulation and SM can offer better performance

1The concept of spatial constellation diagram has been introduced for the
first time in [4], and has been further elaborated in [6], [7].
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than other state–of–the–art MIMO communication systems,
e.g., V–BLAST (Vertical Bell Laboratories Layered Space–
Time) [9], Alamouti [10], and Amplitude Phase Modulation
(APM) schemes [3], [4], [8]. Furthermore, these performance
gains are obtained with a significant reduction in receiver
complexity and system design.

The underlying and fundamental principle of space modu-
lation is twofold: i) at the transmitter, a one–to–one mapping
of information bits to transmit–antennas, thus allowing the
spatial position of the antennas to convey information, and
ii) at the receiver, the exploitation, due to the location–
specific properties of wireless fading channels [5], of distinct
multipath profiles along any transmit–receive wireless link for
data detection. Moving from these basic working principles,
the following contributions are available in the literature as
far as optimal and sub–optimal receiver design is concerned.
i) In [3], a heuristic receiver for SM is proposed, and its
performance analyzed over correlated Rayleigh and Rice fad-
ing channels. The performance analysis of this detector over
correlated Nakagami–m fading channels can be found in [11].
ii) In [8], the optimal detector for SM with Full Channel
State Information (F–CSI) at the receiver is developed, and
its performance studied over uncorrelated Rayleigh fading
channels. iii) Moving from [8], the optimal detector for SSK
modulation is introduced in [4], and its performance analyzed
for uncoded and coded systems. Moreover, the authors study
the effect of imperfect channel estimates when the receiver
is still designed to have F–CSI. However, the results are
obtained by using Monte Carlo simulations and by assuming
that the estimation errors contribute to additive noise only. iv)
Moving from [1], an optimization framework to allow more
than one transmit–antenna at a time to convey information is
introduced in [6], and some performance improvements, due
to the optimal constellation design, are shown. The optimal
detector with F–CSI is always adopted. v) Motivated by the
observation that channel correlation is one of the fundamental
practical issues to be taken into account to allow the adoption
of SM over realistic propagation environments, a novel SM
scheme named Trellis Coded Spatial Modulation (TCSM)
is introduced in [7] with the aim to exploit trellis coding
to reduce, on average, the effect of fading spatial correla-
tion. vi) Finally, in [12] we have recently developed a very
accurate analytical framework to study the performance of
SSK modulation over correlated Nakagami–m fading channels
adopting a Maximum–Likelihood (ML) detector with F–CSI at
the receiver, and highlighted that the characteristics of fading
channels can remarkably affect the performance of the space
modulation principle.

By carefully reviewing all the above mentioned contri-
butions, we can recognize that all of them consider either
optimal or sub–optimal receiver architectures with F–CSI
available at the detector. Although the design and analysis of
F–CSI–assisted transceivers are of paramount importance to
get fundamental insights about receiver operations, as well
as to get lower bounds on the achievable performance of
them, there are several circumstances in which the channel
fading might be sufficiently rapid. Perfect knowledge of CSI
at the receiver can, therefore, not be assumed. This, clearly,
influences the optimal receiver design [13, Ch. 14]. This con-

sideration is theoretically and practically relevant especially
for space modulation where, unlike conventional modulation
schemes where the information is conveyed by a modulated
signal, the information is embedded into the location–specific
characteristics of the wireless channel [1], [5]. In particular, it
can be easily predicted that, in a wireless system adopting the
space modulation paradigm, neglecting part of the location–
specific channel fingerprint along any transmit–receive path
may introduce some performance losses. Motivated by these
considerations, the main aim of this paper is to quantitatively
analyze the performance degradation that is obtained when
the detector cannot exploit the channel phase information for
optimal decision–making operations.

More precisely, in this paper we develop the optimal
ML detector with unknown phase reference at the receiver,
thus yielding a Partial–CSI– (P–CSI) assisted receiver de-
sign, as opposed to F–CSI optimal detectors available in the
literature so far. In particular, we will focus our attention
on a 𝑁𝑡 × 1 MISO (Multiple–Input–Single–Output) SSK–
based system setup (𝑁𝑡 is the number of antennas at the
transmitter). The rationales for this choice are as follows: i)
SSK modulation offers a simpler receiver design than SM
and exploits the most important feature of space modulation,
i.e., data information is encoded into the spatial position of
the transmit–antennas only; ii) with respect to other MIMO
concepts, e.g., V–BLAST, SSK modulation can be used when
the number of receive–antennas is smaller than the number of
transmit–antennas: the 𝑁𝑡 × 1 MISO setup may find impor-
tant applications to low–complexity and low–cost downlink
settings and operations, where it is more economical to add
equipment to base stations rather than to remote mobile units;
and iii) this system setup allows us to keep the analytical
development at a moderate level, but still offers insightful
information about the receiver performance over realistic
propagation conditions. Due to the analytical complexity of
the problem and to space constraints, the analysis of a general
system setup encompassing SM and multiple receive–antennas
is left to future research.

More specifically, the main contributions of this paper are as
follows: i) the optimal receiver with unknown phase reference
is derived, ii) a sub–optimal, and asymptotically tight (for high
Signal–to–Noise–Ratios, SNRs), version of it is proposed,
iii) when 𝑁𝑡 = 2, an asymptotically tight approximation
for computing the Average Bit Error Probability (ABEP)
over generically correlated and non–identically distributed
Nakagami–m fading channels is introduced, and its accuracy is
validated for various system settings, and iv) this latter frame-
work is generalized to 𝑁𝑡 > 2 by exploiting two upper bounds
recently introduced in [12]. Our theoretical and numerical
analysis will highlight the following important outcomes. i)
The optimal receiver design with P–CSI results in a substantial
performance loss with respect to the optimal detector with F–
CSI. This result is in net contrast with ordinary modulation
schemes in which the performance loss of a receiver with and
without phase information is limited to a few dB. For example,
BPSK (Binary Phase Shift Keying) and DBPSK (Differential
BPSK) receivers differ less than 1 dB over Additive White
Gaussian Noise (AWGN) channels [13, Fig. 5.2.12], and
approximately 3 dB over Rayleigh fading channels [13, Fig.
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14.3.1]2. ii) The performance of both F–CSI– [12] and P–
CSI–assisted detectors strongly depends on channel fading
statistics, and, particularly, on the power imbalance among
the transmit–receive wireless links. iii) Accordingly, accurate
and reliable channel estimation mechanisms appear to be of
paramount importance for the adoption and efficient opera-
tion of the space modulation paradigm in realistic operating
environments.

The remainder of the manuscript is organized as follows.
In Section II, system and channel models are introduced. In
Section III, the optimal detector with P–CSI, along with a low–
complexity implementation of it for high SNRs, is proposed.
In Section IV, the analytical framework for performance
analysis of 2× 1 MISO systems over independent and generi-
cally correlated Nakagami–m fading channels is developed. In
Section V, the framework in Section IV is extended to multiple
(𝑁𝑡 > 2) transmit–antennas. In Section VI, numerical and
simulation results are shown to substantiate the accuracy of
the analytical framework and to compare F–CSI– and P–CSI–
assisted detectors. Finally, Section VII concludes the paper.

II. SYSTEM MODEL

Let us consider a generic 𝑁𝑡 × 1 MISO system, with 𝑁𝑡

being the number of antennas at the transmitter. According to
[4], the detection process of SSK modulation can be cast in
terms of a general 𝑁𝑡–hypothesis decision problem in AWGN
[17, Sec. 4.2, pp. 257], when conditioning upon fading channel
statistics. More specifically, SSK modulation works as follows:
i) the transmitter encodes blocks of log2 (𝑁𝑡) data bits into the
index of a single transmit–antenna, which is switched on for
data transmission while all the other antennas are kept silent,
and ii) the receiver solves a 𝑁𝑡–hypothesis detection problem
to estimate the transmit–antenna that is not idle, which results
in the estimation of the unique sequence of bits emitted by
the encoder. Throughout this paper, the unique block of bits
encoded into the index of the 𝑖–th transmit–antenna is called
“message” and is denoted by {𝑢𝑖}𝑁𝑡

𝑖=1. The 𝑁𝑡 messages
are assumed to be emitted with equal probability by the
encoder. Moreover, the related transmitted signal is denoted
by {𝑠𝑖 (⋅)}𝑁𝑡

𝑖=1. It is implicitly assumed with this notation that,
if 𝑢𝑖 is transmitted, the analog signal 𝑠𝑖 (⋅) is emitted by the
𝑖–th transmit–antenna while all the other transmit–antennas
radiate no power.

A. Notation

Let us briefly introduce the main notation used in what
follows. i) We adopt a complex–envelope signal representa-
tion. ii) 𝑗 =

√−1 is the imaginary unit. iii) (⋅)∗ denotes

2Let us emphasize that differential detection schemes require the knowledge
of neither the channel envelopes nor the channel phases, but they extract this
information from a previously transmitted signal. On the contrary, our detector
still requires the knowledge of the channel envelopes. So, with this example,
we want to simply emphasize that for conventional modulation schemes there
are methods that avoid channel estimation at the receiver, while this problem
is still completely unexplored in the recently proposed space modulation
systems. Furthermore, since the wireless channel acts as a modulation unit for
SSK and SM, the development of either differential or non–coherent schemes
seems to be a non–trivial task. Finally, we also note that differential schemes
are available for multiple–transmit antennas as well, and they always incur in
a 3 dB performance loss with respect to coherent solutions with full channel
knowledge (see, e.g. [14], [15], and [16, Sec. III–H]).

complex–conjugate. iv) (𝑥⊗ 𝑦) (𝑡) =
∫ +∞
−∞ 𝑥 (𝜉) 𝑦 (𝑡− 𝜉) 𝑑𝜉

is the convolution of signals 𝑥 (⋅) and 𝑦 (⋅). v) ∣⋅∣2, ∣⋅∣, and
∠⋅ denote square absolute value, absolute value and phase
angle of a complex vector, respectively. vi) EA {⋅} is the
expectation operator computed over the Random Variable (RV)
A. vii) Re {⋅} denotes the real part operator. viii) Pr {⋅}
denotes probability. ix) 𝜌AB denotes the correlation coefficient
of RVs A and B. x) 𝑄 (⋅, ⋅) is the Marcum Q–function [18],
[19, Eq. (3)]. xi) 𝑢̂ denotes the message estimated at the
receiver–side. xii) 𝐸𝑢 is the average energy transmitted by
each antenna that emits a non–zero signal. xiii) 𝑇𝑢 denotes
the signaling interval of each information message {𝑢𝑖}𝑁𝑡

𝑖=1.
xiv) The noise at the receiver input is denoted by 𝑛 (⋅), and is
assumed to be AWG–distributed, with both real and imaginary
parts having a double–sided power spectral density equal to
𝑁0. xv) {𝑠𝑖 (𝑡)}𝑁𝑡

𝑖=1 =
√
𝐸𝑢𝑤 (𝑡) with 𝑤 (⋅) denoting the

unit–energy (i.e.,
∫ +∞
−∞ ∣𝑤 (𝑡)∣2 𝑑𝑡 = 1) elementary baseband

waveform for each transmission. xvi) erfc (⋅) is the comple-
mentary error function [20, Eq. (7.1.2))]. xvii) Γ (⋅) is the
Gamma function [20, Eq. (6.1.1)]. xviii) 𝐼𝜈 (⋅) is the modified
Bessel function of first kind and order 𝜈 [20, Ch. 9)]. xix)

𝐺𝑚,𝑛
𝑝,𝑞

(
.∣ (𝑎𝑝)
(𝑏𝑞)

)
is the Meijer–G function defined in [21,

Ch. 8, pp. 519]. xx) 𝛿 (⋅) is the Dirac delta function. xxi)
𝐿𝜈
𝑛 (⋅) is the Generalized Laguerre polynomial in [20, Eq.

(22.2.12)]. xxii) (⋅)𝑛 is the Pochhammer symbol, which is
defined as (𝑎)𝑛 = Γ (𝑎+ 𝑛)/Γ (𝑎). xxiii)

(⋅
⋅
)

denotes the
binomial coefficient. xxiv) For ease of notation, we define
𝛾 =

√
𝐸𝑢/𝑁0.

B. Channel Model

We consider a frequency–flat slowly–varying fading chan-
nel model, with fading envelopes distributed according to a
Nakagami–m distribution [22]. Moreover, we assume generi-
cally correlated and non–identically distributed fading param-
eters in this manuscript. In particular:

∙ {ℎ𝑖 (𝑡)}𝑁𝑡

𝑖=1 = 𝛽𝑖 exp (𝑗𝜑𝑖) 𝛿 (𝑡− 𝜏𝑖) is the channel im-
pulse response of the 𝑖–th wireless link, where {𝛽𝑖}𝑁𝑡

𝑖=1,
{𝜑𝑖}𝑁𝑡

𝑖=1, and {𝜏𝑖}𝑁𝑡

𝑖=1 denote gain, phase, and delay,
respectively. Moreover, {𝛼𝑖}𝑁𝑡

𝑖=1 = 𝛽𝑖 exp (𝑗𝜑𝑖) denotes
the channel complex–gain.

∙ {𝜏𝑖}𝑁𝑡

𝑖=1 is assumed to be independent and uniformly
distributed in [0, 𝑇𝑚), but known at the receiver, i.e.,
perfect time–synchronization is considered. Similar to
[3], [4], [8], we assume 𝜏1 ∼= 𝜏2 ∼= . . . ∼= 𝜏𝑁𝑡 , which is a
realistic hypothesis when the distance between transmit-
ter and receiver is much larger than the spacing between
the transmit–antennas, and, to a first–order, the signals
transmitted by the antennas differ only in phase [23, Eq.
(7.24)]. The assumptions of perfect time–synchronization
at the receiver and almost equal propagation delays allow
us to neglect {𝜏𝑖}𝑁𝑡

𝑖=1 from our notation and subsequent
analysis.

∙ {𝜑𝑖}𝑁𝑡

𝑖=1 is assumed to be independent and uniformly
distributed in [0, 2𝜋).

∙ The channel envelopes, {𝛽𝑖}𝑁𝑡

𝑖=1, are assumed to be
distributed according to a multivariate Nakagami–m dis-
tribution. In particular, when 𝑁𝑡 = 2 various joint
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𝐷𝑖 (𝜑𝑖) = exp

[
1

𝑁0
Re

{∫
𝑇𝑢

𝑟 (𝑡) 𝑠∗𝑖 (𝑡) 𝑑𝑡
}
− 1

2𝑁0

∫
𝑇𝑢

𝑠𝑖 (𝑡) 𝑠
∗
𝑖 (𝑡) 𝑑𝑡

]
(1)

Probability Density Functions (PDFs),
{
𝑓𝛽𝑖𝛽𝑗 (⋅)

}𝑁𝑡

𝑖∕=𝑗=1
,

will be considered in Section IV, such as [24, Eq. (6.1)]
and [25, Eq. (12)]. In particular, [25, Eq. (12)] is the most
general formulation of the PDF of bivariate Nakagami–
m RVs with arbitrary correlation and fading parameters.
By using the tight upper bounds recently introduced in
[12], we will see that, to analyze the performance of the
𝑁𝑡×1 MISO system at hand, only the joint PDF of pairs
of Nakagami–m RVs is required. Further details about the
rationale and generality of considering the Nakagami–m
fading channel model (instead of other channel models)
can be found in [12] and are here omitted due to space
constraints.

∙ The fading parameters of the 𝑖–th wireless link are
denoted by {𝑚𝑖}𝑁𝑡

𝑖=1 and {Ω𝑖}𝑁𝑡

𝑖=1 = E𝛽𝑖

{
𝛽2
𝑖

}
.

III. OPTIMAL ML DETECTOR WITH P–CSI

Let {𝑢𝑙}𝑁𝑡

𝑙=1 be the actual transmitted message3. Moving
from the system and channel models in Section II, the signals
after propagation through the wireless fading channel are
{𝑠𝑙 (𝑡)}𝑁𝑡

𝑙=1 = (𝑠𝑙 ⊗ ℎ𝑙) (𝑡) = 𝛽𝑙 exp (𝑗𝜑𝑙) 𝑠𝑙 (𝑡), and the
received signal can be written as follows:

𝑟 (𝑡) = 𝑠𝑙 (𝑡) + 𝑛 (𝑡) if 𝑢𝑙 is sent (2)

which is a general 𝑁𝑡–hypothesis detection problem [17, Sec.
4.2, pp. 257], [24, Sec. 7.1].

From (2), the optimal ML detector with unknown phase
reference (P–CSI) and perfect time–synchronization at the
receiver is as follows [24, Sec. 7.4]:

𝑢 = argmax
{𝑢𝑖}𝑁𝑡

𝑖=1

{ln [𝐷𝑖]}

= argmax
{𝑢𝑖}𝑁𝑡

𝑖=1

{ln [E𝜑𝑖 {𝐷𝑖 (𝜑𝑖)}]}

= argmax
{𝑢𝑖}𝑁𝑡

𝑖=1

{
ln

[
1

2𝜋

∫ 2𝜋

0

𝐷𝑖 (𝜙𝑖) 𝑑𝜙𝑖

]} (3)

where {𝐷𝑖 (⋅)}𝑁𝑡

𝑖=1 are the decision metrics conditioned upon
the channel phases {𝜑𝑖}𝑁𝑡

𝑖=1, which are defined in (1) on top
of this page.

Let us emphasize that, with respect to the F–CSI–assisted
detector in [4], the decision metrics {𝐷𝑖 (⋅)}𝑁𝑡

𝑖=1 in (1) need
to be averaged over the distribution of the channel phases,
thus making the detector blind to them. On the contrary, in
[4] the channel phases need to be provided to the detector
via suitable channel estimation algorithms. Accordingly, the
overall complexity (by including also the complexity of the
channel estimator) of the receiver in (3) will be significantly
reduced.

3In order to avoid any confusion with the adopted notation, let us emphasize
that the subscript 𝑙 denotes the actual message that is transmitted, while the
subscript 𝑖 denotes the (generic) 𝑖–th message that is tested by the detector
to solve the 𝑁𝑡–hypothesis detection problem. More specifically, for each
signaling interval, 𝑙 is fixed, while 𝑖 can take different values at the detector.

By using the definitions in Section II-A, (2) and (1) can be
explicitly re–written as follows, respectively:

𝑟 (𝑡) =
√

𝐸𝑢𝛽𝑙 exp (𝑗𝜑𝑙)𝑤 (𝑡) + 𝑛 (𝑡) (4)

𝐷𝑖 (𝜑𝑖) = exp

[√
𝐸𝑢𝛽𝑖

𝑁0
∣𝑟∣ cos (𝜑𝑖 − ∠𝑟)− 𝐸𝑢𝛽

2
𝑖

2𝑁0

]
(5)

where we have defined 𝑟 =
∫
𝑇𝑢

𝑟 (𝑡)𝑤∗ (𝑡) 𝑑𝑡 =
∣𝑟∣ exp (𝑗∠𝑟).

By averaging {𝐷𝑖 (⋅)}𝑁𝑡

𝑖=1 in (5) over the distribution of
{𝜑𝑖}𝑁𝑡

𝑖=1 using analytical steps similar to [17, pp. 339, Eq.
(366), Eq. (367)], and then computing the logarithm of the
obtained result we obtain:

𝐷̄𝑖 = ln [𝐷𝑖] = ln

[
𝐼0

(√
𝐸𝑢𝛽𝑖

𝑁0
∣𝑟∣
)]

− 𝐸𝑢𝛽
2
𝑖

2𝑁0
(6)

which, along with (3), yields the optimal detector with P–CSI
at the receiver and agrees, e.g., with [24, Eq. (7.24)]. Note
that the detector will be successful in detecting the transmitted
message, i.e., 𝑢 = 𝑢𝑙, if and only if max

𝑖=1,2,...,𝑁𝑡

{
𝐷̄𝑖

}
= 𝐷̄𝑙.

The analysis of the detector in (6) is quite cumbersome
due to the Bessel function 𝐼0 (⋅) that needs to be computed.
A simpler and asymptotically (for high SNRs) equivalent
detector can be obtained by recognizing that ln [𝐼0 (∣𝑥∣)] ∼= ∣𝑥∣
when ∣𝑥∣ ≫ 1. By exploiting this asymptotic approximation,
the decision metric in (6) simplifies as follows4:

𝐷̄𝑖 =
√

𝐸𝑢𝛽𝑖 ∣𝑟∣ − 𝐸𝑢𝛽
2
𝑖

2
(7)

where irrelevant constants have also been neglected.
By carefully looking at (7), we can observe that

{
𝐷̄𝑖

}𝑁𝑡

𝑖=1
is very similar to the heuristic detector used in [3, Eq. (3)]
for estimating the antenna index5. In particular, they differ
for the bias factor 𝐸𝑢𝛽

2
𝑖

/
2, which allows (7) to cope with

the assumption of constrained channels remarked in [8]. In
other words, the detector in [3, Eq. (3)] is not completely
heuristic, but can be interpreted, apart from the bias term
discussed above, as a high SNR approximation of the optimal
detector with unknown phase reference at the receiver. This
is an understandable outcome when it is observed that the
detector in [3, Eq. (3)] is used to make the estimation process
of the antenna index independent from the estimation process
of the data transmitted by each antenna.

In the next two sections, we will develop an accurate
analytical framework for computing the ABEP of the detector
in (7). We will realize that, while the detectors in (6) and

4Note that if the receiver is equipped with multiple antennas, the optimal
ML detector will exploit them to get diversity gains. In particular, in this
latter scenario, a detector similar to [24, Sec. 7.3, pp. 166] could be obtained
by using the same analytical steps as those already used to compute (7). A
similar result has already been obtained in [4] and [8] for the optimal detector
with F–CSI at the receiver. However, in this paper we have decided not to
consider this system setup due to the complexity of computing the ABEP
for multiple receive–antennas, and have postponed its analysis to a future
contribution.

5Note, however, that in [3, Eq. (3)] the detector is still assumed to have
F–CSI, as highlighted in [8, Eq. (2)].
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PE (ℎ1, ℎ2)∣𝑢1
=

⎧⎨
⎩Pr

{∣∣√𝐸𝑢𝛽1 exp (𝑗𝜑1) + 𝑛̄
∣∣ < √

𝐸𝑢

2 (𝛽1 + 𝛽2)
}
if 𝛽1 ≥ 𝛽2

Pr
{∣∣√𝐸𝑢𝛽1 exp (𝑗𝜑1) + 𝑛̄

∣∣ > √
𝐸𝑢

2 (𝛽1 + 𝛽2)
}
if 𝛽1 < 𝛽2

(9)

PE (ℎ1, ℎ2) =

[
1

2
− 1
2
𝑄

(√
𝐸𝑢𝛽1√
𝑁0

,

√
𝐸𝑢 (𝛽1 + 𝛽2)

2
√
𝑁0

)
+
1

2
𝑄

(√
𝐸𝑢𝛽2√
𝑁0

,

√
𝐸𝑢 (𝛽1 + 𝛽2)

2
√
𝑁0

)]
⋅ Pr {𝛽1 ≥ 𝛽2}

+

[
1

2
− 1
2
𝑄

(√
𝐸𝑢𝛽2√
𝑁0

,

√
𝐸𝑢 (𝛽1 + 𝛽2)

2
√
𝑁0

)
+
1

2
𝑄

(√
𝐸𝑢𝛽1√
𝑁0

,

√
𝐸𝑢 (𝛽1 + 𝛽2)

2
√
𝑁0

)]
⋅ Pr {𝛽1 < 𝛽2}

(12)

𝑄 (𝑎, 𝑏) ≤ 𝐼0 (𝑎𝑏)

exp (𝑎𝑏)

{
exp

[
− (𝑏− 𝑎)2

2

]
+ 𝑎

√
𝜋

2
erfc

(
𝑏− 𝑎√
2

)}
∼= 1√

2𝜋𝑎𝑏
exp

[
− (𝑏− 𝑎)2

2

]
︸ ︷︷ ︸

𝑃1(𝑎,𝑏)

+
1

2

√
𝑎

𝑏
erfc

(
𝑏− 𝑎√
2

)
︸ ︷︷ ︸

𝑃2(𝑎,𝑏)

(13)

1−𝑄 (𝑎, 𝑏) ≥ 𝐼0 (𝑎𝑏)

exp (𝑎𝑏)

{
exp

(
−𝑎2

2

)
− exp

[
− (𝑏 − 𝑎)2

2

]
+ 𝑎

√
𝜋

2
erfc

(
− 𝑎√

2

)
− 𝑎

√
𝜋

2
erfc

(
𝑏− 𝑎√
2

)}

∼= 1√
2𝜋𝑎𝑏

exp

(
−𝑎2

2

)
︸ ︷︷ ︸

𝑃3(𝑎,𝑏)

− 1√
2𝜋𝑎𝑏

exp

[
− (𝑏 − 𝑎)2

2

]
︸ ︷︷ ︸

𝑃1(𝑎,𝑏)

+
1

2

√
𝑎

𝑏
erfc

(
− 𝑎√

2

)
︸ ︷︷ ︸

𝑃4(𝑎,𝑏)

− 1
2

√
𝑎

𝑏
erfc

(
𝑏− 𝑎√
2

)
︸ ︷︷ ︸

𝑃2(𝑎,𝑏)

(14)

PE (ℎ1, ℎ2) ∼= 1
2

4∑
𝑘=1

[𝜗𝑘𝑃𝑘 (𝛾1, 𝛾1,2) Pr {𝛽1 ≥ 𝛽2}] + 1
2

2∑
𝑘=1

[𝑃𝑘 (𝛾2, 𝛾1,2) Pr {𝛽1 ≥ 𝛽2}]

+
1

2

4∑
𝑘=1

[𝜗𝑘𝑃𝑘 (𝛾2, 𝛾1,2) Pr {𝛽1 < 𝛽2}] + 1
2

2∑
𝑘=1

[𝑃𝑘 (𝛾1, 𝛾1,2) Pr {𝛽1 < 𝛽2}]
(15)

⎧⎨
⎩
{
𝑃>
𝑘 (𝑝)

}2
𝑝=1

=

∫ +∞

0

∫ 𝜉1

0

𝑃𝑘

(
𝛾𝜉𝑝,

𝛾

2
(𝜉1 + 𝜉2)

)
𝑓𝛽1𝛽2 (𝜉1, 𝜉2) 𝑑𝜉1𝑑𝜉2

{
𝑃<
𝑘 (𝑝)

}2
𝑝=1

=

∫ +∞

0

∫ 𝜉2

0

𝑃𝑘

(
𝛾𝜉𝑝,

𝛾

2
(𝜉1 + 𝜉2)

)
𝑓𝛽1𝛽2 (𝜉1, 𝜉2) 𝑑𝜉1𝑑𝜉2

(17)

(7) have been obtained by using well–known techniques,
the computation of the ABEP over fading channels will
require novel analytical approaches to deal with the specific
signal structure of SSK modulation. To efficiently handle the
complexity of this problem, a tight approximation will be
proposed. Moreover, due to space constraints, in this paper
we will only consider the detector in (7). The study of the
tightness of (6) and (7) for high SNRs can be found in [26].

IV. ABEP OVER NAKAGAMI–m FADING CHANNELS:
THE 2× 1 MISO SETUP

Let us consider 𝑁𝑡 = 2. From the decision rule in (3), the
probability of error, PE (⋅, ⋅), of the detection process (i.e.,
the detection of the index of the transmit–antenna), when
conditioning upon the channel impulse responses {ℎ𝑖 (⋅)}2𝑖=1,

can be written as follows:

PE (ℎ1, ℎ2) =
1

2
PE (ℎ1, ℎ2)∣𝑢1

+
1

2
PE (ℎ1, ℎ2)∣𝑢2

=
1

2
Pr
{
𝐷̄1

∣∣
𝑢1

< 𝐷̄2

∣∣
𝑢1

}
+
1

2
Pr
{
𝐷̄2

∣∣
𝑢2

< 𝐷̄1

∣∣
𝑢2

} (8)

where
{
PE (⋅, ⋅)∣𝑢𝑖

}2
𝑖=1

and
{
𝐷̄𝑗

∣∣
𝑢𝑖

}2

𝑖,𝑗=1
denote the proba-

bilities of error and the decision metrics conditioned upon the
transmission of messages {𝑢𝑖}2𝑖=1, respectively.

A. Conditional BEP – Fixed Channel Realization

Let us start with the computation of PE (⋅, ⋅)∣𝑢1
. By plug-

ging (4) into (7), and after a few algebraic manipulations,
we obtain (9) on top of this page, where we have defined
𝑛̄ =

∫
𝑇𝑢

𝑛 (𝑡)𝑤∗ (𝑡) 𝑑𝑡.
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Moreover, we can readily recognize that 𝑅1 =∣∣√𝐸𝑢𝛽1 exp (𝑗𝜑1) + 𝑛̄
∣∣ is a Rice–distributed RV having

Cumulative Distribution Function (CDF), 𝐹𝑅1 (⋅), equal to
𝐹𝑅1 (𝜉) = 1 − 𝑄 (𝑠/𝜎, 𝑟/𝜎) [13, Eq. 2.1.142] with 𝑠 =√
𝐸𝑢𝛽1 and 𝜎 =

√
𝑁0. Accordingly, (9) reduces as follows:

PE (ℎ1, ℎ2)∣𝑢1
=

⎧⎨
⎩
1−𝑄

(√
𝐸𝑢𝛽1√
𝑁0

,
√

𝐸𝑢(𝛽1+𝛽2)

2
√

𝑁0

)
if 𝛽1 ≥ 𝛽2

𝑄
(√

𝐸𝑢𝛽1√
𝑁0

,
√
𝐸𝑢(𝛽1+𝛽2)

2
√

𝑁0

)
if 𝛽1 < 𝛽2

(10)

With similar analytical steps, which are here omitted due to
space constraints, we can obtain a similar result for PE (⋅, ⋅)∣𝑢2

as follows:

PE (ℎ1, ℎ2)∣𝑢2
=

⎧⎨
⎩
1−𝑄

(√
𝐸𝑢𝛽2√
𝑁0

,
√

𝐸𝑢(𝛽1+𝛽2)

2
√

𝑁0

)
if 𝛽2 ≥ 𝛽1

𝑄
(√

𝐸𝑢𝛽2√
𝑁0

,
√
𝐸𝑢(𝛽1+𝛽2)

2
√

𝑁0

)
if 𝛽2 < 𝛽1

(11)

As a consequence, the error probability in (8) can be written
in closed–form as shown in (12) on top of the previous page. In
the next sub–sections, we will also show that the probabilities
Pr {𝛽1 ≥ 𝛽2} and Pr {𝛽1 < 𝛽2} do not need to be actually
computed to obtain the ABEP.

B. Tight Approximation for PE (⋅, ⋅)
By carefully looking at (12), we can readily figure out that

computing the ABEP, i.e., ABEP = Eℎ1,ℎ2 {PE (ℎ1, ℎ2)} =
E𝛽1,𝛽2 {PE (ℎ1, ℎ2)}, and, therefore, removing the condition-
ing over the wireless channel statistics, can be quite involving.
As a matter of fact, in this specific case we are unable to use
well–consolidated tools to re–write the Marcum Q–function
in (12) in an equivalent integral form useful for averaging
over the distribution of the fading envelopes [27, Eq. (14a),
Eq. (14b)]. As a consequence, novel specific communication–
theoretic frameworks seem to be required to understand and
analyze the performance of SSK modulation over fading
channels.

In this paper, we propose to jointly use an upper and
a lower bound, which exploit the results in [19] and are
given in a suitable form to solve the problem at hand. In
particular, to approximate PE (⋅, ⋅) in (12) we suggest to use
the upper bound [19, Eq. (7)] and the lower bound [19, Eq.
(12)] for the Marcum Q–function which are shown in (13)
and (14) on top of the previous page. To further reduce the
analytical complexity, in (13) and (14) we have exploited the
approximation in [28, Eq. (8)] for the 𝐼0 (⋅) Bessel function.

Then, by plugging (13) and (14) into (12), PE (⋅, ⋅) can
be tightly approximated as shown in (15) on top of the
previous page, where we have defined 𝛾1 = 𝛽1

√
𝐸𝑢/𝑁0,

𝛾2 = 𝛽2

√
𝐸𝑢/𝑁0, 𝛾1,2 = (1/2) (𝛽1 + 𝛽2)

√
𝐸𝑢/𝑁0, and

{𝜗𝑘}4𝑘=1 = {−1,−1, 1, 1}.

C. ABEP

We observe that the final result in (15) is now expressed in a
very convenient form to be averaged over the fading envelopes
(𝛽1, 𝛽2), given that the conditional BEP, PE (⋅, ⋅), is expressed
as the summation of elementary functions. In particular, the

ABEP can be readily written as shown in what follows:

ABEP ∼= 1
2

4∑
𝑘=1

[
𝜗𝑘𝑃

>
𝑘 (1)

]
+
1

2

2∑
𝑘=1

[
𝑃>
𝑘 (2)

]

+
1

2

4∑
𝑘=1

[
𝜗𝑘𝑃

<
𝑘 (2)

]
+
1

2

2∑
𝑘=1

[
𝑃<
𝑘 (1)

] (16)

where we have defined {𝑃>
𝑘 (𝑝)}2𝑝=1 =

E𝛽1,𝛽2 {𝑃𝑘 (𝛾𝑝, 𝛾1,2) Pr {𝛽1 ≥ 𝛽2}} and {𝑃<
𝑘 (𝑝)}2𝑝=1 =

E𝛽1,𝛽2 {𝑃𝑘 (𝛾𝑝, 𝛾1,2) Pr {𝛽1 < 𝛽2}}. Furthermore, each
expectation in (16) can be computed from the definition of
E𝛽1,𝛽2 (⋅), as shown in (17) on top of the previous page.

In the next sub–sections, the integrals in (17) will be com-
puted for independent and generically correlated Nakagami–m
fading channels, according to the channel model introduced in
Section II-B.

D. Independent Fading

Let us analyze the scenario with uncorrelated fading en-
velopes, i.e., 𝜌𝛽2

1𝛽
2
2
= 0. In this case, 𝑓𝛽1,𝛽2 (𝜉1, 𝜉2) =

𝑓𝛽1 (𝜉1) 𝑓𝛽2 (𝜉2), where {𝑓𝛽𝑖 (⋅)}2𝑖=1 are the PDFs of univari-
ate Nakagami–m RVs [24, Eq. (2.20)]:

{𝑓𝛽𝑖 (𝜉𝑖)}2𝑖=1 = 𝐴𝑖𝜉
𝐶𝑖

𝑖 exp
(
−𝐵̃𝑖𝜉

2
𝑖

)
(18)

and we have defined 𝐴𝑖 = (2𝑚𝑚𝑖

𝑖 )/(Ω
𝑚𝑖

𝑖 Γ (𝑚𝑖)), 𝐵̃𝑖 =
𝑚𝑖/Ω𝑖, and 𝐶𝑖 = 2𝑚𝑖 − 1.

By plugging (18) into (17), the integrals {𝑃>
𝑘 (𝑝)}2𝑝=1 and

{𝑃<
𝑘 (𝑝)}2𝑝=1 can be computed in a single–integral closed–

form as summarized in Appendix A.

E. Correlated Fading

Let us analyze the scenario with correlated fading envelopes
when 𝑚1 = 𝑚2 = 𝑚. In this case, the channel envelopes,
{𝛽𝑖}2𝑖=1, are distributed according to a bivariate Nakagami–m
distribution with joint PDF, 𝑓𝛽1,𝛽2 (⋅, ⋅), as follows [24, Eq.
(6.1)]:

𝑓𝛽1,𝛽2 (𝜉1, 𝜉2) = 𝐴 exp
(−𝐵1𝜉

2
1

)
exp
(−𝐵2𝜉

2
2

)
× 𝜉𝑚1 𝜉𝑚2 𝐼𝑚−1 (𝐶𝜉1𝜉2)

(19)

where we have defined:⎧⎨
⎩

𝐴 =
4𝑚𝑚+1

Γ (𝑚)Ω1Ω2

(
1− 𝜌𝛽2

1𝛽
2
2

)(√
Ω1Ω2𝜌𝛽2

1𝛽
2
2

)𝑚−1

{𝐵𝑖}2𝑖=1 =
𝑚

Ω𝑖

(
1− 𝜌𝛽2

1𝛽
2
2

)
𝐶 =

2𝑚
√
𝜌𝛽2

1𝛽
2
2√

Ω1Ω2

(
1− 𝜌𝛽2

1𝛽
2
2

)
(20)

The ABEP for correlated fading can be obtained by ex-
ploiting the results already developed in Section IV-D. In
particular, by using the infinite series representation of the
𝐼𝑚−1 (⋅) Bessel function [20, Eq. (9.6.10)], (19) can be re–
written as shown in (21) on top of the next page, with Φ (⋅, ⋅; ⋅)
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𝑓𝛽1𝛽2 (𝜉1, 𝜉2) =

+∞∑
𝑞=0

⎡
⎢⎣ 4𝑚2𝑚+2𝑞

(𝑞!) Γ (𝑚) Γ (𝑚+ 𝑞)

𝜌𝑞
𝛽2
1𝛽

2
2(

1− 𝜌𝛽2
1𝛽

2
2

)𝑚+2𝑞

1

Ω𝑚+𝑞
1 Ω𝑚+𝑞

2

Φ (𝜉1, 𝜉2; 𝑞)

⎤
⎥⎦ (21)

⎧⎨
⎩

{
𝑃>
𝑘 (𝑝)

}2
𝑝=1

=

+∞∑
𝑞=0

⎡
⎢⎣ 4𝑚2𝑚+2𝑞

(𝑞!) Γ (𝑚) Γ (𝑚+ 𝑞)

𝜌𝑞
𝛽2
1𝛽

2
2(

1− 𝜌𝛽2
1𝛽

2
2

)𝑚+2𝑞

1

Ω𝑚+𝑞
1 Ω𝑚+𝑞

2

𝑃>
𝑘 (𝑝; 𝑞)

⎤
⎥⎦

{
𝑃<
𝑘 (𝑝)

}2
𝑝=1

=
+∞∑
𝑞=0

⎡
⎢⎣ 4𝑚2𝑚+2𝑞

(𝑞!) Γ (𝑚) Γ (𝑚+ 𝑞)

𝜌𝑞
𝛽2
1𝛽

2
2(

1− 𝜌𝛽2
1𝛽

2
2

)𝑚+2𝑞

1

Ω𝑚+𝑞
1 Ω𝑚+𝑞

2

𝑃<
𝑘 (𝑝; 𝑞)

⎤
⎥⎦

(24)

𝑓𝛽1𝛽2 (𝜉1, 𝜉2) = 𝑓𝛽1 (𝜉1) 𝑓𝛽2 (𝜉2)

+∞∑
𝑟=0

𝑟∑
𝑘=0

𝐹 (𝑟, 𝑘)𝐿
(𝑚1−1)
𝑟+𝑘

(
𝑚1

Ω1
𝜉21

)
𝐿
(𝑚2−1)
𝑟+𝑘

(
𝑚2

Ω2
𝜉22

)
(25)

𝑓𝛽1𝛽2 (𝜉1, 𝜉2) =
+∞∑
𝑟=0

𝑟∑
𝑘=0

𝑟+𝑘∑
𝑡1=0

𝑟+𝑘∑
𝑡2=0

[𝐺 (𝑟, 𝑘, 𝑡1, 𝑡2)Ψ (𝜉1, 𝜉2; 𝑟, 𝑘, 𝑡1, 𝑡2)] (27)

being defined as follows:

Φ (𝜉1, 𝜉2; 𝑞) = 𝜉2𝑚+2𝑞−1
1 𝜉2𝑚+2𝑞−1

2

× exp
⎡
⎣− 𝑚

Ω1

(
1− 𝜌𝛽2

1𝛽
2
2

)𝜉21
⎤
⎦

× exp
⎡
⎣− 𝑚

Ω2

(
1− 𝜌𝛽2

1𝛽
2
2

)𝜉22
⎤
⎦

(22)

We can notice that (22) is written in a very convenient form
which resembles, for an adequate choice of the parameters, to
the product of two PDFs in (18). In particular, Φ (𝜉1, 𝜉2; 𝑞) =
𝑓𝛽1 (𝜉1; 𝑞) 𝑓𝛽2 (𝜉2; 𝑞) with:⎧⎨

⎩

{
𝐴𝑖

}2

𝑖=1
= 1{

𝐵̃𝑖

}2

𝑖=1
= 𝑚

[
Ω𝑖

(
1− 𝜌𝛽2

1𝛽
2
2

)]−1

{
𝐶𝑖(𝑞)

}2

𝑖=1
= 2𝑚+ 2𝑞 − 1

(23)

Thus, the formula for the ABEP in (16) can still be used
with the definitions summarized in (24) on top of this page,
where {𝑃>

𝑘 (𝑝; 𝑞)}2𝑝=1 and {𝑃<
𝑘 (𝑝; 𝑞)}2𝑝=1 can be obtained

from (35)–(40) in Appendix A by taking into account (23).
As a final remark, we observe that, although the final

result in (24) requires an infinite series to compute the ABEP,
this series is absolutely convergent, and converges rapidly
thanks to the factorial term and the Gamma function in its
denominator, i.e., only a few terms are required to obtain a
good accuracy.

F. Correlated Fading With Arbitrary Correlation and Fading
Parameters

Let us now analyze the very general setup with arbitrary
correlation and fading parameters. A general PDF for the

bivariate Nakagami–m distribution has been recently intro-
duced in [25], where the limitations of previous models have
been overcome. In particular, it has been shown that the most
general expression for the PDF of a bivariate Nakagami–m
distribution can be written as shown in (25) on top of this
page [25, Eq. (12)], where (with 𝑚2 ≥ 𝑚1):

𝐹 (𝑟, 𝑘) =
(𝑚1/2)𝑟

𝑟!

(
𝑟

𝑘

)
(−1)𝑘 𝛿2𝑘𝛿𝑟−𝑘

× (𝑟 + 𝑘)!

(𝑚1/2)𝑟+𝑘

(𝑟 + 𝑘)!

(𝑚2/2)𝑟+𝑘

(26)

and {𝑓𝛽𝑖 (⋅)}2𝑖=1 are defined in (18), 𝛿 = 𝛿1𝛿2 − 𝛿3𝛿4, and
𝛿 = 𝛿21+𝛿22+𝛿23+𝛿24 . In particular, {𝛿ℎ}4ℎ=1 are the correlation
coefficients between the pairs of Rayleigh RVs composing the
two Nakagami–m RVs with PDF shown in (25) [25, Fig. 1 and
Eq. (2)]. Moreover, the power correlation coefficient is given
by 𝜌𝛽2

1𝛽
2
2
= 0.5𝛿

√
𝑚1/𝑚2.

By exploiting the identity [25, Eq. (9)], an equivalent form
of the PDF in (25) is shown in (27) on top of this page, where:

Ψ(𝜉1, 𝜉2; 𝑟, 𝑘, 𝑡1, 𝑡2) = 𝐴1𝐴2𝜉
2𝑚1−1+2𝑡1
1 𝜉2𝑚2−1+2𝑡2

2

× exp
[
−𝐵̃1𝜉

2
1

]
exp
[
−𝐵̃2𝜉

2
2

] (28)

𝐺 (𝑟, 𝑘, 𝑡1, 𝑡2) = 𝐵̃𝑡1
1 𝐵̃𝑡2

2 𝐹 (𝑟, 𝑘)

× (−1)𝑡1 Γ (𝑚1 + 𝑟 + 𝑘)

𝑡1! (𝑟 + 𝑘 − 𝑡1)!Γ (𝑚1 + 𝑡1)

× (−1)𝑡2 Γ (𝑚2 + 𝑟 + 𝑘)

𝑡2! (𝑟 + 𝑘 − 𝑡2)!Γ (𝑚2 + 𝑡2)

(29)

By looking at (27), we note that also in this case the
PDF, 𝑓𝛽1𝛽2 (⋅, ⋅), is written in a form convenient to exploit
the development already described for independent fading. In
particular, by using arguments similar to Section IV-E, the
ABEP in (16) can still be used with these definitions:
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⎧⎨
⎩

{
𝑃>
𝑘 (𝑝)

}2

𝑝=1
=

+∞∑
𝑟=0

𝑟∑
𝑘=0

𝑟+𝑘∑
𝑡1=0

𝑟+𝑘∑
𝑡2=0

[
𝐺 (𝑟, 𝑘, 𝑡1, 𝑡2)𝑃

>
𝑘 (𝑝; 𝑞)

]

{
𝑃<
𝑘 (𝑝)

}2

𝑝=1
=

+∞∑
𝑟=0

𝑟∑
𝑘=0

𝑟+𝑘∑
𝑡1=0

𝑟+𝑘∑
𝑡2=0

[
𝐺 (𝑟, 𝑘, 𝑡1, 𝑡2)𝑃

<
𝑘 (𝑝; 𝑞)

]

(30)
where {𝑃>

𝑘 (𝑝; 𝑞)}2𝑝=1, {𝑃<
𝑘 (𝑝; 𝑞)}2𝑝=1 can be obtained from

(35)–(40) in Appendix A with
{
𝐶𝑖 (𝑡𝑖)

}2

𝑖=1
= 2𝑚𝑖− 1+2𝑡𝑖.

We observe that, although the PDF in (25) is the most
general expression of the bivariate Nakagami–m distribution,
it is written in a convenient form suitable for further analysis,
which has lead to (30). Let us also emphasize that, even
though, as mentioned in [25], (25) includes as special cases
(18) and (19), we have decided to analyze all the cases in
order to have simpler final expressions for the spacial cases
analyzed in Section IV-D and Section IV-E. Finally, we also
observe that all the results above are useful for any values of
the fading parameters {𝑚𝑖}2𝑖=1, which are not restricted to be
integer or half–integer values [25].

G. A Simple Approximation to Reduce the Computational
Complexity

The ABEP in (16) requires the numerical computation of
the finite–limit integrals summarized in Appendix A, which, in
general, does not require any significant effort. However, we
also notice that for correlated fading the number of integrals
to be computed numerically could be non–negligible due to
the series expressions of the PDFs in (21) and (27). With the
aim to reduce the computational complexity of the framework,
we propose in this sub–section a simple approximation which
allows us to reduce the computational complexity of some
integrals in Appendix A. In particular, the computation of
integrals involving the Meijer–G function can be, sometimes,
numerically time–consuming. So, we propose a simple ap-
proximation to circumvent this problem. We will validate in
Section VI that the proposed approximation turns out to be
very accurate, especially for high SNRs and for pragmatic
values of the ABEP.

The reader can readily verify by direct inspection, and by
following the procedure described in Appendix A, that the
Meijer–G function arises from the computation of integrals
that can be cast in the parametric form as follows:

Z =

∫ +∞

0

𝑥𝜈 exp
(−𝛼𝑥2

)
erfc (𝛽𝑥) 𝑑𝑥 (31)

with 𝜈 ≥ 0, 𝛼 > 0, and 𝛽 > 0.
Instead of using the Mellin–Barnes theorem [21] to compute

the integral in (31), we suggest to exploit the approximation
in [31, Eq. (14)] for the erfc (⋅). In particular, (31) can be
re–written as follows:

Z ∼=
2∑

𝑏=1

{
𝜔𝑏

∫ +∞

0

𝑥𝜈 exp
[− (𝛼+ 𝜂𝑏𝛽

2
)
𝑥2
]
𝑑𝑥

}

=

2∑
𝑏=1

[
𝜔𝑏

2
Γ

(
𝜈 + 1

2

)(
𝛼+ 𝜂𝑏𝛽

2
) 𝜈+1

2

] (32)

where we have defined {𝜔𝑏}2𝑏=1 = {1/6, 1/2}, {𝜂𝑏}2𝑏=1 =
{1, 4/3}, and the last identity is obtained by using [29, Eq.
(3.462.1)].

By exploiting (32), the integrals in (36), (38), (40) in
Appendix A simplify as summarized in (41)–(43) in Appendix
B, respectively.

V. ABEP OVER NAKAGAMI–m FADING CHANNELS:
THE 𝑁𝑡 × 1 MISO SETUP

In Section IV, we have provided exact, even though ex-
pressed in the form of a single–integral to be computed
numerically, expressions of the ABEP when the transmitter
is equipped with two transmit–antennas. In this section, the
frameworks are generalized to account for an arbitrary number
of antennas at the transmitter. However, due to the evident
complexity of analyzing the performance of the detector in
Section III, even for the system setup with 𝑁𝑡 = 2, we do
not attempt to compute the exact performance of it when
𝑁𝑡 > 2. On the contrary, we capitalize on two asymptotically–
tight bounds that have been recently introduced in [12] for
performance analysis of F–CSI–assisted detectors. In [12], it
has been shown that these bounds yield a better accuracy than
other bounds already available in the literature (see, e.g., [4,
Eq. (4)]). In this paper, we analyze the tightness of them when
a P–CSI–assisted detector is considered. For the convenience
of the reader, these bounds are summarized in what follows.
Further details about their derivation can be found in [12] and
are not reproduced here for the sake of conciseness and to
avoid redundancy. In Section VI, the tightness of both bounds
will be validated via Monte Carlo simulations.

1) Symbol–based Union Bound: The first bound, which is
called Symbol–based Union Bound (SUB), can be obtained by
using typical methods for performance analysis of multi–level
modulation schemes with optimum detection, as follows [12,
Eq. (33)]:

ABEP ≤ ABEPSUB

=
1

(𝑁𝑡 − 1)
𝑁𝑡∑

𝑖1=1

𝑁𝑡∑
𝑖2=𝑖1+1

PEP (TX𝑖1 → TX𝑖2)
(33)

where PEP(TX𝑖1 → TX𝑖2) denotes the Pairwise Error Prob-
ability (PEP) of the transmit–antennas TX𝑖1 and TX𝑖2 with
𝑖1, 𝑖2 = 1, 2, . . . , 𝑁𝑡, i.e., the probability of detecting TX𝑖2

when, instead, TX𝑖1 is actually transmitting. In particular,
PEP (TX𝑖1 → TX𝑖2) is the ABEP of an equivalent 2 × 1
MISO system where only the transmit–antennas TX𝑖1 and
TX𝑖2 can be activated for transmission. In other words,
PEP (TX𝑖1 → TX𝑖2) in (33) is the ABEP computed in Sec-
tion IV when 𝑁𝑡 = 2, i.e., (16).

2) Codeword–based Union Bound: The second bound,
which is called Codeword–based Union Bound (CUB), can be
obtained by using typical methods for performance analysis of
Maximum Likelihood Sequence Estimation (MLSE) detectors
as shown in (34) on top of the next page [12, Eq. (34)], where
𝑁𝑏 (𝑖1, 𝑖2) is the number of information bit errors committed
by choosing TX𝑖2 instead of TX𝑖1 as transmit–antenna.
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ABEP ≤ ABEPCUB =
2

𝑁𝑡 log2 (𝑁𝑡)

𝑁𝑡∑
𝑖1=1

𝑁𝑡∑
𝑖2=𝑖1+1

𝑁 (𝑖1, 𝑖2) PEP(TX𝑖1 → TX𝑖2) (34)
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Fig. 1. Comparison between Monte Carlo simulation (markers) and analytical
model (solid lines). 2× 1 MISO system. Uncorrelated fading model in (18)
(i.e., 𝜌𝛽2

1𝛽
2
2
= 0) with balanced power (i.e., Ω1 = Ω2 = 1).

VI. NUMERICAL AND SIMULATION RESULTS

In this section, we provide some numerical results with a
threefold objective: i) to validate the accuracy of the analytical
frameworks developed in Section IV and Section V, ii) to
analyze the performance of SSK modulation for different
fading parameters, i.e., fading correlation, fading severity, and
power imbalance among the wireless links (i.e., {Ω𝑖}𝑁𝑡

𝑖=1 are
different), and iii) to compare the performance of F–CSI–
and P–CSI–assisted detectors and quantify the performance
loss caused by the simpler receiver design with unknown
phase reference. Since various fading conditions are analyzed,
the system setup used to obtain the numerical examples is
shown for each figure in its caption. Monte Carlo simulations
are obtained by using the simulation framework proposed
in [32]6 and [25] to generate bivariate Nakagami–m fading
envelopes with the PDF shown in (19) and (25), respectively.
On the other hand, when 𝑁𝑡 > 2 Monte Carlo simulations
are obtained by using the simulation framework introduced in
[33] to generate multivariate Nakagami–m fading envelopes.
Moreover, unless otherwise stated, the series in (21) is trun-
cated to the first 15 and 10 terms for 𝑁𝑡 = 4 and 𝑁𝑡 = 8,
respectively, while the series in (25) is truncated to the first
3 terms. Finally, the integrals in (35)–(40) are computed by
using straightforward numerical integration techniques.

a) Uncorrelated Fading: In Fig. 1 and Fig. 2, the
scenario with uncorrelated fading for a balanced and an
unbalanced setup is shown, respectively. By comparing the
two figures, the following observations can be made. i) The
proposed analytical model is very accurate and well overlaps
with Monte Carlo simulations for various system settings.
ii) The system performance improves for unbalanced fading

6Note that some typos in [32] have been adequately fixed and carefully
taken into account to produce Monte Carlo simulation results [12, Appendix].
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Fig. 2. Comparison between Monte Carlo simulation (markers) and analytical
model (solid lines). 2× 1 MISO system. Uncorrelated fading model in (18)
(i.e., 𝜌𝛽2

1𝛽
2
2
= 0) with unbalanced power (i.e., Ω1 = 10Ω2), and Ω2 = 1.

because the two links are more distinguishable from each
other7. This result can be readily understood by carefully
looking at the ABEP in (15). As a matter of fact, all terms
in (13) and (14) depend on the difference between the fading
envelopes {𝛽𝑖}2𝑖=1, and the more the wireless links are un-
balanced the more the addends in (13) and (14) are smaller.
More specifically, when the wireless links are unbalanced both
addends in (13) tend to zero, while the addends in (14) tend to
cancel out in pairs, i.e., 𝑃1 (⋅, ⋅) with 𝑃3 (⋅, ⋅) and 𝑃2 (⋅, ⋅) with
𝑃4 (⋅, ⋅). This confirms that the proposed framework, besides
being accurate, is also insightful about the behavior of the
system. This trend confirms the findings already obtained in
[12] for F–CSI–assisted detectors. iii) When a balanced fading
scenario is considered, we observe an intriguing behavior of
the ABEP, which was not observed for the F–CSI–assisted
detector in [12]. In particular, in Fig. 1 we notice that the
ABEP gets worse when the fading parameter 𝑚1 increases.
In other words, the performance gets worse when the Amount
of Fading AF = 1/𝑚1 [24, Eq. (2.4)] decreases. However,
in general, it is expected that the ABEP gets better when the
fading is less severe [24]. This apparently unexpected result
can be readily understood by taking into account that, for
balanced fading, the fading severity is the only responsible
for making the wireless links more distinguishable from each

7With regard to the performance comparison between balanced and unbal-
anced setups, we emphasize here that the setups in Fig. 1 and Fig. 2 have a
different average SNR per branch. As a consequence, the better performance
achieved by the unbalanced setup with respect to the balanced setup is due, in
part, to this latter aspect. To analyze the performance of two similar systems
but with the same average SNR per branch in the balanced and unbalanced
configurations, the reader is kindly requested to consult the comments in [12,
Sec. 5]. A similar comment applies to several other curves shown in this
paper if the reader is interested in comparing system setups with the same
average SNR per branch. Finally, we emphasize here that power imbalance
might arise in several cases and for many different reasons [12].
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Fig. 3. Comparison between Monte Carlo simulation and analytical
model. 4 × 1 MISO system. Uncorrelated fading model in (18) (i.e.,{
𝜌𝛽2
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2
𝑗

}4
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= 0) with balanced (i.e., {Ω𝑖}4𝑖=1 = 1) and unbalanced

(i.e., Ω1 = 1, {Ω𝑖}4𝑖=2 = 4 (𝑖− 1)) power, and {𝑚𝑖}4𝑖=1 = 2.5.

other: the more severe the fading is (higher AF), the more the
links can be distinguished from each other. This behavior is
not so evident for F–CSI detectors, which, for the same system
setup, offered similar ABEP for various fading severities [12].
iv) On the other hand, for unbalanced fading we notice that
the system behavior is the opposite: the ABEP gets better
when the AF decreases. Moreover, the performance difference
is non–negligible (greater than 10 dB in some cases). This
behavior has already been observed for F–CSI detectors [12].
The reason is simple: when the wireless links are unbalanced,
the fading could reduce the average gap between them due
to deep fade fluctuations. As a consequence, less severe
fading conditions are unlikely to offset the average power gap
between the wireless links, thus yielding, on average, better
error performance.

In Fig. 3, we show the ABEP when 𝑁𝑡 = 4 for both
balanced and unbalanced system setups. We observe that
both bounds summarized in Section V are very accurate
and asymptotically tight also for P–CSI–assisted detectors.
Moreover, we notice that: i) the system setup with unbalanced
fading offers better performance than the balanced case, and
ii) by comparing Fig. 1 and Fig. 2 with Fig. 3 we observe
that the detector offers worse performance when the number
of antennas at the transmitter increases. This trend is similar
to that already obtained in [4] and [12] for the F–CSI–assisted
detector.

b) Correlated Fading in (25): In Figs. 4–6, the scenario
with correlated fading for a low and high fading severity,
and balanced and unbalanced fading is shown. By carefully
analyzing the figures, the following observations can be made.
i) Also in this case, the proposed analytical model is very
accurate and well overlaps with Monte Carlo simulations for
various system settings. Moreover, we notice that the approxi-
mation introduced in Section IV-G is very accurate, especially
in the high SNR region. It can be efficiently used for a simple
performance analysis by still retaining a good accuracy. ii)
Similar to the uncorrelated scenario, SSK modulation offers
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Fig. 4. Comparison between Monte Carlo simulation and analytical model.
2× 1 MISO system. Correlated fading model in (25) with 𝛿1 = 𝛿2 = 𝛿3 =
0.45 and 𝛿4 = −0.45. Balanced (i.e., Ω1 = Ω2 = 1) and unbalanced (i.e.,
Ω1 = 10Ω2) power with 𝑚1 = 𝑚2 = 2.0.
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Fig. 5. Comparison between Monte Carlo simulation and analytical model.
2× 1 MISO system. Correlated fading model in (25) with 𝛿1 = 𝛿2 = 𝛿3 =
0.45 and 𝛿4 = −0.45. Balanced (i.e., Ω1 = Ω2 = 1) and unbalanced (i.e.,
Ω1 = 10Ω2) power with 𝑚1 = 𝑚2 = 5.0.

better performance for unbalanced fading conditions, since,
in this case, the wireless links are more distinguishable from
each other. Moreover, for unbalanced fading the ABEP gets
better when {𝑚𝑖}2𝑖=1 increase, while for balanced fading it
gets worse. This trend is similar to the system setup with
uncorrelated fading. However, we can observe a huge (and
a priori unpredictable) performance difference (greater than
30 dB) between balanced and unbalanced settings in Fig. 5.
iii) When comparing the performance of uncorrelated and
uncorrelated fading for the same setting (e.g., Fig. 1, Fig. 2 and
Fig. 4 when 𝑚1 = 𝑚2 = 2.0), we notice a different behavior
of the system with respect to channel correlation as far as
balanced and unbalanced fading are concerned. In particular,
in the presence of channel correlation the ABEP gets slightly
worse when the wireless links are balanced, while it gets
better when the wireless links are unbalanced. This apparently
unexpected result has already been observed in [12] for the
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Fig. 6. Comparison between Monte Carlo simulation and analytical model.
2× 1 MISO system. Correlated fading model in (25) with 𝛿1 = 𝛿2 = 𝛿3 =
0.45 and 𝛿4 = −0.45. Scenario a: Ω1 = Ω2 = 1, 𝑚1 = 2.0, and 𝑚2 = 5.0
(the same curves are obtained if Ω1 = Ω2 = 1, 𝑚1 = 5.0, and 𝑚2 = 2.0).
Scenario b: Ω1 = 10, Ω2 = 1, 𝑚1 = 2.0, and 𝑚2 = 5.0. Scenario c:
Ω1 = 10, Ω2 = 1, 𝑚1 = 5.0, and 𝑚2 = 2.0.

F–CSI–assisted detector and can be explained by still using
the concept of AF: when the wireless links are unbalanced
and correlated the fading fluctuations are less likely to offset
the average power gap because they change jointly. On the
contrary, when the wireless links are uncorrelated but still
unbalanced, the links fade independently and the average
power gap between them can be offset more often. iv) Finally,
an interesting comment can be made by carefully observing
Fig. 6, and, in particular, the curves related to Scenario b and
Scenario c. In both system setups the first wireless link has a
greater power gain, but in Scenario b the AF of the first link is
greater than the AF of the second link. We can observe a sig-
nificant performance difference, which highlights that besides
the average power also the fading severity can remarkably alter
the system performance. This result substantiates the possible
adoption of opportunistic power allocation mechanisms for
the optimization of the performance of SSK modulation over
fading channels. In [12], it has been remarked that power
imbalance between the wireless links can be created artificially
by allowing each antenna to transmit a different average
power. The comparison between Scenario b and Scenario c
in Fig. 6 brings to our attention that we can obtain higher
performance gains by increasing the transmission power of the
wireless link having the smaller AF. Depending on the channel
fading model, the performance gain can also be significant, as
shown in Fig. 6. A recent example can also be found in [34].

c) Correlated Fading in (19): In Figs. 7–10, we analyze
the system performance when the correlated fading model in
(19) is considered. In particular, the ABEP for a number of
antennas greater than two is shown. Besides the good agree-
ment between analytical model and Monte Carlo simulation,
the better performance for unbalanced settings, as well as
the different behavior of balanced and unbalanced setups for
different fading severities (i.e., the fading parameter 𝑚), we
can also study the behavior of the system for different values
of the correlation coefficient, i.e., 𝑑0. In particular, among the
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Fig. 7. Comparison between Monte Carlo simulation and analytical model.

4×1 MISO system. Correlated fading model in (19) (i.e.,
{
𝜌𝛽2

𝑖 𝛽
2
𝑗

}4

𝑖,𝑗=1

∼=
{
𝜌𝛽𝑖𝛽𝑗

}4

𝑖,𝑗=1
= exp (−𝑑0 ∣𝑖− 𝑗∣)) with balanced (i.e., {Ω𝑖}4𝑖=1 = 1) and

unbalanced (i.e., Ω1 = 1, {Ω𝑖}4𝑖=2 = 4 (𝑖− 1)) power, and 𝑑0 = 0.91.
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Fig. 8. Comparison between Monte Carlo simulation and analytical model.

4×1 MISO system. Correlated fading model in (19) (i.e.,
{
𝜌𝛽2

𝑖 𝛽
2
𝑗

}4

𝑖,𝑗=1

∼=
{
𝜌𝛽𝑖𝛽𝑗

}4

𝑖,𝑗=1
= exp (−𝑑0 ∣𝑖− 𝑗∣)) with balanced (i.e., {Ω𝑖}4𝑖=1 = 1) and

unbalanced (i.e., Ω1 = 1, {Ω𝑖}4𝑖=2 = 4 (𝑖− 1)) power, and 𝑑0 = 0.22. The
series in (21) is truncated to the first 30 terms for the balanced system setup.

𝑁𝑡 antennas we have a correlation coefficient in the range
[0.0625, 0.4025] and [0.5169, 0.8025] when 𝑑0 = 0.91 and
𝑑0 = 0.22, respectively. We observe that the ABEP gets worse
for larger values of the correlation coefficient for the balanced
system setup, while the ABEP gets better for the unbalanced
system setup. This trend confirms the results already obtained
for 𝑁𝑡 = 2. Moreover, we note in Fig. 7 and Fig. 8 that, for
the unbalanced setup, the performance gap for different fading
severities increases with the correlation coefficient. Further-
more, by comparing the ABEP for four and eight transmit–
antennas we notice that it gets worse when 𝑁𝑡 increases, as
expected. Furthermore, a trend similar to previous figures can
be remarked as far as the fading severity is concerned. Finally,
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8×1 MISO system. Correlated fading model in (19) (i.e.,
{
𝜌𝛽2

𝑖 𝛽
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𝑗
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𝑖,𝑗=1

∼=
{
𝜌𝛽𝑖𝛽𝑗

}8

𝑖,𝑗=1
= exp (−𝑑0 ∣𝑖− 𝑗∣)) with balanced (i.e., {Ω𝑖}8𝑖=1 = 1)

and unbalanced (i.e., Ω1 = 1, {Ω𝑖}8𝑖=2 = 3 (𝑖− 1)) power, and 𝑑0 = 0.22,
{𝑚𝑖}8𝑖=1 = 2.5.
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8×1 MISO system. Correlated fading model in (19) (i.e.,
{
𝜌𝛽2

𝑖 𝛽
2
𝑗

}8

𝑖,𝑗=1

∼=
{
𝜌𝛽𝑖𝛽𝑗

}8

𝑖,𝑗=1
= exp (−𝑑0 ∣𝑖− 𝑗∣)) with balanced (i.e., {Ω𝑖}8𝑖=1 = 1)

and unbalanced (i.e., Ω1 = 1, {Ω𝑖}8𝑖=2 = 3 (𝑖− 1)) power, and 𝑑0 = 0.22,
{𝑚𝑖}8𝑖=1 = 1. The series in (21) is truncated to the first 20 terms for the
balanced system setup.

we note that, as expected, the bounds are weak for low SNRs:
this is typical of union bound methods [13]. However, the
frameworks are very tight for ABEP < 10−1, which is the
setup where a pragmatic system is expected to operate.

d) Comparison with the F–CSI–Assisted Detector [12]:
Finally, in Fig. 11 and Fig. 12, we compare the performance
of P–CSI– and F–CSI–assisted detectors. In particular, the
results of this latter detector have been obtained by using
the analytical framework recently introduced in [12]. We can
readily figure out that neglecting the channel phase infor-
mation for a low–complexity implementation of the receiver
(i.e., keeping at a low–complexity the channel estimator)
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Fig. 11. Performance comparison (analytical model only) between P–
CSI (dotted lines with markers) and F–CSI (solid lines with markers)
receivers [12]. 𝑁𝑡 × 1 MISO system. Uncorrelated fading model in (18)

(i.e.,
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setup: Ω1 = 10, Ω2 = 1 if 𝑁𝑡 = 2, and Ω1 = 1, {Ω𝑖}4𝑖=2 = 4 (𝑖− 1) if
𝑁𝑡 = 4. {𝑚𝑖}𝑁𝑡

𝑖=1 = 2.5.
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receivers [12]. 4 × 1 MISO system. Correlated fading model in (19) (i.e.,{
𝜌𝛽2
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{𝑚𝑖}4𝑖=1 = 2.5.

may lead to a substantial performance loss with respect to
a F–CSI system design. This result is in net contrast with
ordinary modulation schemes in which the performance loss
of a receiver with and without phase information is limited to
a few dB. For example, BPSK and DBPSK receivers differ
less than 1 dB over AWGN channels [13, Fig. 5.2.12], and
approximately 3 dB over Rayleigh fading channels [13, Fig.
14.3.1]. A similar comment can be made for MIMO sys-
tems when comparing coherent and differential transmission
schemes (see, e.g., [14]–[16]). This performance drop is due
to the peculiar operations of SSK modulation with respect to
ordinary modulation schemes: since it is the location–specific
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channel fingerprint which carries information, neglecting part
of it (e.g., the channel phase in this paper) may lead to a
significant performance degradation. As a consequence, the
design and adoption of accurate channel estimation algorithms
will play a fundamental role for the successful exploitation and
deployment of SSK modulation in realistic environments. By
looking at Fig. 11, we note that moving from 2 to 4 antennas
the performance drop for the unbalanced setup is higher than
that observed for the balanced setup. Both receivers show this
trend. Finally, by looking at Fig. 12 we observe that channel
correlation can either increase or decrease the ABEP of a few
dB only: power imbalance has a more pronounced effect on
the system performance than channel correlation.

VII. CONCLUSION

In this paper, we have analyzed the performance of a
novel detector for SSK modulation which does not require the
knowledge of the channel phase. An accurate framework for
analyzing its performance over correlated Nakagami–m fading
channels with arbitrary correlation and fading parameters has
also been developed. Numerical results have validated the
accuracy of the proposed analytical derivation, and shown that
the system performance can change remarkably for different
fading conditions. In particular, quite unexpected behaviors
with respect to the fading severity have been evidenced. We
have also verified that power imbalanced among the wireless
links can significantly affect the system performance, even
more than channel correlation. Finally, we have verified that
the optimal detector with P–CSI can yield substantially worse
performance than a F–CSI detector that can exploit the a priori
knowledge of the channel phases. This is a result that is in
net contrast with similar performance comparisons available
for ordinary modulation schemes. All these trends can be
well captured by the proposed analytical model. In summary,
analysis and results obtained in this paper have highlighted
that the adoption of accurate channel estimation algorithms
will play a fundamental role for the successful exploitation of
SSK modulation in realistic environments.

Ongoing research is now concerned with a comprehensive
performance study and comparison between SSK modulation
and other MIMO schemes, in order to fully understand the
trade–off offered by SSK modulation in terms of performance,
achievable throughput, and system complexity over realistic
fading environments and for different levels of a priori channel
knowledge at the transmitter and receiver.
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APPENDIX A
COMPUTATION OF (17)

By plugging (18) into (17), {𝑃>
𝑘 (𝑝)}2𝑝=1 in (17) can be

computed as shown in (35)–(40) on top of the next page.

In particular, the following procedure is adopted to get the
results in (35)–(40). 1) Each integral is re–written by using
the change of variable 𝑥2 = 𝜉2/𝜉1. 2) The integral over the
positive real axis is computed in closed–form by exploiting
some notable integral results. In particular, i) (35), (37) and
(39) are obtained by using [29, Eq. (3.462.1)], ii) (36) and (38)
are obtained by using the identity erfc (−𝑥) = 2 − erfc (𝑥)
∀𝑥 ≥ 0, as well as [29, Eq. (3.462.1)] and the Mellin–Barnes
theorem in [21, Eq. (2.24.1.1)], and iii) (40) is computed
by using [29, Eq. (3.462.1)] and the Mellin–Barnes theorem
in [21, Eq. (2.24.1.1)]. All the integrals are conveniently
written as a single finite–range integral, which can be readily
computed with consolidated numerical integration methods.
For example, Gauss–Legendre Quadrature Rules could be
readily applied [30]. Finally, we note that, due to the symmetry
of the problem at hand, the integrals {𝑃<

𝑘 (𝑝)}2𝑝=1 in (17) can
be obtained from (35)–(40) by simply inverting the fading
parameters of the wireless links, e.g., 𝐵̃1 is replaced by 𝐵̃2,
𝐶2 by 𝐶1, etc.

APPENDIX B
APPROXIMATED EXPRESSION FOR (36), (38), AND (40)

By using the approximation in (32), the integrals (36), (38)
and (40) in Appendix A can be accurately computed as shown
in (41)–(43) on top of the next page, respectively.

REFERENCES

[1] Y. Chau and S.-H. Yu, “Space modulation on wireless fading channels,”
in Proc. IEEE Veh. Technol. Conf.–Fall, Oct. 2001, vol. 3, pp. 1668–
1671.

[2] H. Haas, E. Costa, and E. Schultz, “Increasing spectral efficiency by data
multiplexing using antennas arrays,” in Proc. IEEE Int. Symp. Personal,
Indoor, Mobile Radio Commun., Sep. 2002, vol. 2, pp. 610–613.

[3] R. Y. Mesleh, H. Haas, S. Sinanovic, C. W. Ahn, and S. Yun, “Spatial
modulation,” IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2228–2241,
July 2008.

[4] J. Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron, “Space
shift keying modulation for MIMO channels,” IEEE Trans. Wireless
Commun., vol. 8, no. 7, pp. 3692–3703, July 2009.

[5] L. Xiao, L. Greenstein, N. Mandayam, and W. Trappe, “Using the
physical layer for wireless authentication in time–variant channels,”
IEEE Trans. Wireless Commun., vol. 7, no. 7, pp. 2571–2579, July 2008.

[6] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Generalized space shift
keying modulation for MIMO channels,” in Proc. IEEE Int. Symp.
Personal, Indoor, Mobile Radio Commun., Sep. 2008, pp. 1–5.

[7] R. Y. Mesleh, M. Di Renzo, H. Haas, and P. M. Grant, “Trellis coded
spatial modulation,” IEEE Trans. Wireless Commun., vol. 9, no. 7, pp.
2349–2361, July 2010.

[8] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Spatial modulation:
optimal detection and performance analysis,” IEEE Commun. Lett., vol.
12, no. 8, pp. 545–547, Aug. 2008.

[9] P. Wolniansky, G. Foschini, G. Golden, and R. Valenzuela, “V–BLAST:
an architecture for realizing very high data rates over the rich-scattering
wireless channel,” in Proc. IEEE Int. Symposium on Signals, Systems,
and Electronics, Sep./Oct. 1998, pp. 295–300.

[10] S. M. Alamouti, “A simple transmit diversity technique for wireless
communications,” IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451–
1458, Oct. 1998.

[11] A. Alshamali and B. Quza, “Performance of spatial modulation in
correlated and uncorrelated Nakagami fading channel,” J. Commun., vol.
4, no. 3, pp. 170–174, Apr. 2009.

[12] M. Di Renzo and H. Haas, “A general framework for performance
analysis of space shift keying (SSK) modulation for MISO correlated
Nakagami-m fading channels,” IEEE Trans. Commun., vol. 58, no. 9,
Sep. 2010.

[13] J. Proakis, Digital Communications, 4th edition. McGraw-Hill, 2000.
[14] V. Tarokh and H. Jafarkhani, “A differential detection scheme for

transmit diversity,” IEEE J. Sel. Areas Commun., vol. 18, no. 7, pp.
1169–1174, July 2000.



DI RENZO and HAAS: SPACE SHIFT KEYING (SSK) MODULATION WITH PARTIAL CHANNEL STATE INFORMATION 3209

𝑃>
1 (1) =

𝐴1𝐴2

2
√
𝜋𝛾
Γ

(
𝐶1 + 𝐶2 + 1

2

) 1∫
0

𝜉𝐶2 (1 + 𝜉)
−1/2

(
𝐵̃1 +

𝛾2

8
− 𝛾2

4
𝜉 + 𝐵̃2𝜉

2 +
𝛾2

8
𝜉2
)−

(
𝐶̃1+𝐶̃2+1

2

)

𝑑𝜉 (35)

𝑃>
2 (1) =

𝐴1𝐴2√
2
Γ

(
𝐶1 + 𝐶2 + 2

2

) 1∫
0

𝜉𝐶2 (1 + 𝜉)−1/2
(
𝐵̃1 + 𝐵̃2𝜉

2
)−(

𝐶̃1+𝐶̃2+2
2

)

𝑑𝜉

− 𝐴1𝐴2

2
√
2𝜋

1∫
0

𝜉𝐶2 (1 + 𝜉)
−1/2

(
𝐵̃1 + 𝐵̃2𝜉

2
)−(

𝐶̃1+𝐶̃2+2
2

)

𝐺2,1
2,2

⎛
⎝ 𝛾2 (1− 𝜉)

2

8
(
𝐵̃1 + 𝐵̃2𝜉2

)
∣∣∣∣∣∣ −𝐶1+𝐶2

2 1
0 1

2

⎞
⎠ 𝑑𝜉

(36)

𝑃>
3 (1) =

𝐴1𝐴2

2
√
𝜋𝛾
Γ

(
𝐶1 + 𝐶2 + 1

2

) 1∫
0

𝜉𝐶2 (1 + 𝜉)−1/2

(
𝐵̃1 +

𝛾2

2
+ 𝐵̃2𝜉

2

)−
(

𝐶̃1+𝐶̃2+1
2

)

𝑑𝜉 (37)

𝑃>
4 (1) =

𝐴1𝐴2√
2
Γ

(
𝐶1 + 𝐶2 + 2

2

) 1∫
0

𝜉𝐶2 (1 + 𝜉)
−1/2

(
𝐵̃1 + 𝐵̃2𝜉

2
)−(

𝐶̃1+𝐶̃2+2

2

)

𝑑𝜉

− 𝐴1𝐴2

2
√
2𝜋

1∫
0

𝜉𝐶2 (1 + 𝜉)
−1/2

(
𝐵̃1 + 𝐵̃2𝜉

2
)−(

𝐶̃1+𝐶̃2+2
2

)

𝐺2,1
2,2

⎛
⎝ 𝛾2

2
(
𝐵̃1 + 𝐵̃2𝜉2

)
∣∣∣∣∣∣ −𝐶1+𝐶2

2 1
0 1

2

⎞
⎠ 𝑑𝜉

(38)

𝑃>
1 (2) =

𝐴1𝐴2

2
√
𝜋𝛾
Γ

(
𝐶1 + 𝐶2 + 1

2

) 1∫
0

𝜉𝐶2−1/2 (1 + 𝜉)−1/2

(
𝐵̃1 +

𝛾2

8
− 𝛾2

4
𝜉 + 𝐵̃2𝜉

2 +
𝛾2

8
𝜉2
)−

(
𝐶̃1+𝐶̃2+1

2

)

𝑑𝜉 (39)

𝑃>
2 (2) =

𝐴1𝐴2

2
√
2𝜋

1∫
0

𝜉𝐶2+1/2 (1 + 𝜉)
−1/2

(
𝐵̃1 + 𝐵̃2𝜉

2
)−(

𝐶̃1+𝐶̃2+2

2

)

𝐺2,1
2,2

⎛
⎝ 𝛾2 (1− 𝜉)2

8
(
𝐵̃1 + 𝐵̃2𝜉2

)
∣∣∣∣∣∣ − 𝐶̃1+𝐶̃2

2 1
0 1

2

⎞
⎠ 𝑑𝜉 (40)

𝑃>
2 (1)

∼= 𝐴1𝐴2√
2
Γ

(
𝐶1 + 𝐶2 + 2

2

) 1∫
0

𝜉𝐶2 (1 + 𝜉)
−1/2

(
𝐵̃1 + 𝐵̃2𝜉

2
)−(

𝐶̃1+𝐶̃2+2
2

)

𝑑𝜉

− 𝐴1𝐴2

2
√
2
Γ

(
𝐶1 + 𝐶2 + 2

2

)
2∑

𝑏=1

⎡
⎢⎣𝜔𝑏

1∫
0

𝜉𝐶2 (1 + 𝜉)
−1/2

(
𝐵̃1 + 𝜂𝑏

𝛾2 (1− 𝜉)
2

8
+ 𝐵̃2𝜉

2

)−
(

𝐶̃1+𝐶̃2+2
2

)

𝑑𝜉

⎤
⎥⎦

(41)

𝑃>
4 (1)

∼= 𝐴1𝐴2√
2
Γ

(
𝐶1 + 𝐶2 + 2

2

) 1∫
0

𝜉𝐶2 (1 + 𝜉)
−1/2

(
𝐵̃1 + 𝐵̃2𝜉

2
)−(

𝐶̃1+𝐶̃2+2
2

)

𝑑𝜉

− 𝐴1𝐴2

2
√
2
Γ

(
𝐶1 + 𝐶2 + 2

2

)
2∑

𝑏=1

⎡
⎣𝜔𝑏

1∫
0

𝜉𝐶2 (1 + 𝜉)−1/2

(
𝐵̃1 + 𝜂𝑏

𝛾2

2
+ 𝐵̃2𝜉

2

)−
(

𝐶̃1+𝐶̃2+2
2

)

𝑑𝜉

⎤
⎦

(42)

𝑃>
2 (2)

∼= 𝐴1𝐴2

2
√
2
Γ

(
𝐶1 + 𝐶2 + 2

2

)
2∑

𝑏=1

⎡
⎢⎣𝜔𝑏

1∫
0

𝜉𝐶̃2 (1 + 𝜉)−1/2

(
𝐵̃1 + 𝜂𝑏

𝛾2 (1− 𝜉)
2

8
+ 𝐵̃2𝜉

2

)−
(

𝐶̃1+𝐶̃2+2

2

)

𝑑𝜉

⎤
⎥⎦ (43)



3210 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 11, NOVEMBER 2010

[15] H. Jafarkhani and V. Tarokh, “Multiple transmit antenna differential
detection from generalized orthogonal designs,” IEEE Trans. Inf. Theory,
vol. 47, no. 6, pp. 2626–2631, Sep. 2001.

[16] J. Mietzner, R. Schober, L. Lampe, W. H. Gerstacker, and P. A.
Hoeher, “Multiple-antenna techniques for wireless communications–a
comprehensive literature survey,” IEEE Commun. Surveys Tutorials, vol.
11, no. 2, pp. 87–105, 2009.

[17] H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part I.
John Wiley & Sons, Inc. 2001.

[18] J. I. Marcum, “A statistical theory of target detection by pulsed radar,”
IRE Trans. Inf. Theory, vol. 6, no. 2, pp. 59–267, Apr. 1960.

[19] G. E. Corazza and G. Ferrari, “New bounds for the Marcum Q–
function,” IEEE Trans. Inf. Theory, vol. 48, no. 11, pp. 3003–3008,
Nov. 2002.

[20] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables, 9th edition. New
York: Dover, 1972.

[21] A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integrals and
Series. Vol. 3: More Special Functions, 2003.

[22] M. Nakagami, “The m-distribution: a general formula of intensity distri-
bution of rapid fading,” Statistical Methods in Radio Wave Propagation,
W. G. Hoffman, editor. Oxford, U.K.: Permagon Press, pp. 3–36, 1960.

[23] D. Tse and P. Viswanath, Fundamentals of Wireless Communication.
Cambridge University Press, 2005.

[24] M. K. Simon and M.-S. Alouini, Digital Communication over Fading
Channels: A Unified Approach to Performance Analysis, 1st edition.
John Wiley & Sons, Inc., 2000.

[25] R. A. Amaral de Souza and M. D. Yacoub, “Bivariate Nakagami-m
distribution with arbitrary correlation and fading parameters,” IEEE
Trans. Wireless Commun., vol. 7, no. 12, pp. 5227–5232, Dec. 2008.

[26] M. Di Renzo and H. Haas, “Spatial modulation with partial-CSI at the
receiver: optimal detector and performance evaluation,” in Proc. IEEE
Sarnoff Symposium, Apr. 2010, pp. 1–6.

[27] M. K. Simon and M.-S. Alouini, “A unified approach to the performance
analysis of digital communications over generalized fading channels,”
Proc. IEEE, vol. 86, no. 9, pp. 1860–1877, Sep. 1998.

[28] G. Ferrari and G. E. Corazza, “Tight bounds and accurate approxima-
tions for DQPSK transmission bit error rate,” IEEE Electron. Lett., vol.
40, no. 20, pp. 1284–1285, Sep. 2004.

[29] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and
Products, 5th edition. Academic Press, Jan. 1994.

[30] G. H. Golub and J. H. Welsch, “Calculation of Gauss quadrature rules,”
Math. Comput., vol. 23, no. 106, pp. 221–230, Apr. 1969.

[31] M. Chiani, D. Dardari, and M. K. Simon, “New exponential bounds
and approximations for the computation of error probability in fading
channels,” IEEE Trans. Wireless Commun., vol. 2, no. 4, pp. 840–845,
July 2003.

[32] J. Reig, M. A. Martinez-Amoraga, and L. Rubio, “Generation of
bivariate Nakagami-m fading envelopes with arbitrary not necessary
identical fading parameters,” Wireless Commun. Mobile Computing, vol.
7, no. 4, pp. 531–537, May 2007.

[33] Q. T. Zhang, “A decomposition technique for efficient generation of
correlated Nakagami fading channels,” IEEE J. Sel. Areas Commun.,
vol. 18, no. 11, pp. 2385–2392, Nov. 2000.

[34] M. Di Renzo and H. Haas, “Improving the performance of space shift
keying (SSK) modulation via opportunistic power allocation,” IEEE
Commun. Lett., vol. 14, no. 6, pp. 500–502, June 2010.

Marco Di Renzo (S’05-AM’07-M’09) was born in
L’Aquila, Italy, in 1978. He received the Laurea
(cum laude) and the Ph.D. degrees in electrical and
information engineering from the Department of
Electrical and Information Engineering, University
of L’Aquila, Italy, in April 2003 and January 2007,
respectively.

From August 2002 to January 2008, he was
with the Center of Excellence for Research DEWS,
University of L’Aquila, Italy. From February 2008
to April 2009, he was a Research Associate with the

Telecommunications Technological Center of Catalonia (CTTC), Barcelona,
Spain. From May 2009 to December 2009, he was a Research Fellow with the
Institute for Digital Communications (IDCOM), The University of Edinburgh,
Edinburgh, Scotland, United Kingdom (UK).

Since January 2010, he has been a Researcher (“Chargé de Recherche”)
with the French National Center for Scientific Research (CNRS), and a
research staff member of the Laboratory of Signals and Systems (LSS), a
joint research laboratory of the CNRS, the École Supérieure d’Électricité
(SUPÉLEC), and the University of Paris–Sud XI, Paris, France. His main
research interests are in the area of wireless communication theory, signal
processing, and information theory.

In December 2004, he co–founded WEST Aquila s.r.l. (Wireless Embedded
Systems Technologies L’Aquila), an R&D Spin–Off of the Department of
Electrical and Information Engineering, and the Center of Excellence for
Research DEWS, where he currently holds the position of Senior Research
Engineer in wireless communications. In 2006, he was a Visiting Scholar
with the Mobile and Portable Radio Research Group (MPRG), in the Bradley
Department of Electrical and Computer Engineering, Virginia Polytechnic
Institute and State University, USA.

Dr. Di Renzo was awarded a special mention for his outstanding five–
year (1997–2003) academic career from the University of L’Aquila, Italy; a
three–year Ph.D. fellowship (ranked 1st) from the Department of Electrical
and Information Engineering, University of L’Aquila, Italy, and THALES
Communications s.p.a, Land and Joint Systems Division of Advanced Studies,
Chieti, Italy; and a personal “Torres Quevedo” Grant (PTQ–08–01–06437)
from the “Ministry of Science and Innovation” in Spain for his research on
ultra wide band wireless systems and cooperative localization for wireless
sensor networks.

Dr. Di Renzo is a Member of the IEEE and IEEE Communications
Society, and serves as a reviewer for transaction journals and international
conferences. He served as Publicity Chair of the 2010 International Confer-
ence on Mobile Lightweight Wireless Systems (Mobilight). He also serves
as Technical Program Committee (TPC) member and Session Chairman of
several international conferences in communications.

Harald Haas (S’98-AM’00-M’03) received the
Ph.D. degree from the University of Edinburgh in
2001. His main research interests are in the areas
of wireless system design/analysis and digital sig-
nal processing, with a particular focus on interfer-
ence aware MAC protocols, multiuser access, link
adaptation, scheduling, dynamic resource allocation,
multiple antenna systems, and optical wireless com-
munication.

He joined the International University Bremen
(Germany), now Jacobs University Bremen, in

September 2002, where he was Professor of Electrical Engineering. In June
2007, he joined the University of Edinburgh (Scotland/UK), where he is
currently Professor of Mobile Communications in the Institute for Digital
Communications (IDCOM).

Haas received a best paper award at the International Symposium on
Personal, Indoor and Mobile Radio Communications (PIMRC) in Osaka/Japan
in 1999, and holds more than 15 patents in the area of wireless communica-
tions. Haas contributed a chapter to the Handbook of Information Security
entitled “Air Interface Requirements for Mobile Data Services” by John
Wiley & Sons, Inc. He co–authored a book entitled Next Generation Mobile
Access Technologies: Implementing TDD with Cambridge University Press.
His work on optical wireless communication was selected for publication in
100 Produkte der Zukunft (100 Products of the Future) authored by Nobel
Laureate T. W. Hänsch. Since 2007, Haas is a Regular High Level Visiting
Scientist supported by the Chinese “111 program” at Beijing University of
Posts and Telecommunications.


