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Abstract
Research into land–atmosphere coupling within the African Monsoon Multidisciplinary
Analysis has highlighted the atmospheric impact of soil moisture on space scales of 5 km
upwards and time scales of several days. Observational and modelling studies have shown
how antecedent rainfall patterns affect new storms in the Sahel. The land feedback operates
through various mechanisms, including a direct link to afternoon storm initiation from
surface-induced mesoscale circulations, and indirectly via a large-scale moisture transport
in the nocturnal monsoon. The results suggest potential for significant improvements in
weather forecasting through assimilation of satellite data. Intriguing questions remain about
the importance of vegetation memory on seasonal–interannual scales. Copyright  2011
Royal Meteorological Society
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1. Introduction

The West African Monsoon is considered to exhibit
strong sensitivities to the land surface at a range of
time and space scales. Studies using climate models
by Charney (1975), Zeng et al.(1999) and Xue and
Shukla (1993) amongst others have found feedbacks
between vegetation cover and precipitation that may
have contributed to the extreme Sahelian drought con-
ditions in the 1970s and 1980s. On the annual time
scale, there is some theoretical and observational evi-
dence that pre-monsoon land surface conditions can
affect rainfall in the wet season (Eltahir and Gong,
1996; Fontaine et al., 1999) via horizontal gradients
in moist static energy. Observational and modelling
studies have also shown how soil moisture can affect
daily (Clark et al., 2004; Taylor and Lebel, 1998) and
weekly (Koster et al., 2006) rainfall. The interest in
West Africa as a globally important land–atmosphere
‘hotspot’ meant that land–atmosphere feedbacks pro-
vided an integrating focus within the African Monsoon
Multidisciplinary Analysis (AMMA).

Prior to AMMA, there were a number of key
unknowns relating to land–atmosphere interaction.
Whilst there had been several observational campaigns
in the region to measure the components of the surface
energy balance (most notably HAPEX-Sahel), there
was a lack of long-term data to evaluate land surface
models across the monsoon region, ranging from the
moist tropics in the south to the desert in the north, and
incorporating a range of land uses. A study by Philip-
pon and Fontaine (2002) had speculated that a memory
of rainfall in the previous year in the Soudanian zone
might affect the following Sahelian wet season, yet
there was little observational insight into the length of
such land ‘memory’. Whilst observational studies had
shown a marked response of the planetary boundary
layer (PBL) to mesoscale soil moisture patterns (Tay-
lor et al., 2003), it was unclear whether the surface-
sensible heat flux gradients could drive significant
daytime circulations, as predicted by models. If strong
meso- and synoptic-scale circulations were induced by
soil moisture, were they of any great relevance for
understanding rainfall variability? For example were
new storms initiated in mesoscale convergence zones,
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or at the larger scale, via changes in the strong noc-
turnal monsoon flow?

The strategy to answer these questions within the
AMMA program involved taking new ground and
atmospheric observations and combining them with
remotely sensed data and numerical models. Key new
results are summarised in this article, which concludes
with a discussion of how the science should progress
from here.

2. Observations of surface and PBL
response to rainfall

The surface energy balance was monitored at sites
which spanned a large range of climatic and land
cover conditions found in West Africa, and the results
are summarised by Seguis et al. (2011). Considering
feedbacks on the atmosphere, Guichard et al. (2009)
showed from observations in northern Mali how the
seasonal evolution of the radiation balance couples
with the surface thermodynamics in the Sahel. Of
particular note is the marked increase in net radiation
driven by the wet season transition from hot, sandy
dunes to cooler, darker vegetated grasslands. Increased
net radiation implies enhanced surface moist static
energy, consistent with a positive soil moisture-rainfall
feedback on the seasonal time scale. The response
of the PBL to rainfall on shorter time scales was
documented using a unique dataset collected from
a wetter region in southern Burkina Faso (Kohler
et al., 2010; Schwendike et al., 2010). These studies
found strong responses in albedo, surface temperature
and Bowen ratio for 2–3 days after a rain event,
though once the seasonal vegetation cover was well
established, the amplitude of the response weakened
markedly. The PBL after the monsoon onset was
typically half the value of its pre-onset height due
to the weakening sensible heat flux. Throughout the
campaign, the diurnal development of convective
instability was dominated by changes in the PBL, and
recovered within 2 days of the passage of a mesoscale
convective system (MCS).

3. Impact of surface variability on the PBL
and moist convection

To examine the impact of the above processes on
the PBL at the mesoscale, an aircraft campaign was
designed to target regions with strong spatial variations
in surface fluxes, either from soil moisture or vegeta-
tion patterns. The example in Figure 1 (Taylor et al.,
2007) illustrates the variability of near-surface soil
moisture on scales up to 1000 km associated with the
passage of MCS. Land surface models forced by obser-
vational estimates of precipitation in the AMMA Land
Model Intercomparison Project (ALMIP, Boone et al.,
2009) captured these large-scale upper-soil mois-
ture structures (Figure 1(b)), unlike the ERA-Interim

reanalysis product (Figure 1(c)). Assimilation of high-
resolution land surface temperature data into a land
model (Figure 1(d); Harris and Taylor, manuscript in
preparation) illustrates the substantial variability on
spatial scales ∼10 km for which no reliable precip-
itation estimate exists.

The variations in soil moisture have a substantial
impact on surface fluxes, as depicted by the ensem-
ble of nine land models in ALMIP (Figure 2). Daily
fluxes of latent (sensible) heat fluxes within the Mali
wet feature are up to100 W m−2 higher (lower) than
adjacent dry regions. Along the flight track indicated in
Figure 1(d), Taylor et al. (2007) showed that the PBL
temperature was significantly correlated with the land
surface temperature on wavelengths as low as 5 km,
and furthermore, found a clear correlation between
surface-induced temperature gradients and the low-
level winds. This observational result was consistent
with theory (Baldi et al., 2008), and answered one of
the key questions prior to AMMA. Figure 3 presents
the PBL variables along the aircraft track from the
observations, accompanied by output from a numerical
model using alternative surface initialisations (Bastin
et al., manuscript in preparation). The ‘DRY’ simu-
lation was initialised using soil moisture similar to
that shown in Figure 1(c) (i.e. without the Malian wet
feature north of 15.5 ◦N), whereas the ‘WET’ simu-
lation used data from ALMIP (Figure 1(b)). The runs
demonstrate the impact of the soil moisture on the
PBL temperature gradients and winds. For example,
local minima in wind speed in WET (marked ‘X’)
are induced by local reversals in the temperature gra-
dient. However, the more realistic WET simulation
cannot capture the finer scale variations evident in the
observations, and furthermore, neither simulation can
reproduce the observed humidity.

There were also important developments in our
understanding of how mesoscale soil moisture patterns
influence subsequent storms. Analysis of satellite data
from hundreds of storms revealed an increase of 33%
in afternoon cloud cover over dry soils compared
to nearby wetter areas; a negative feedback (Taylor
and Ellis, 2006). Such a result can only be explained
in terms of variability in surface fluxes as both wet
and dry soils were subjected to the same large-
scale conditions. An observational case study from
an aircraft flight close to a rapidly developing MCS
shed new light on this result (Taylor et al., 2010).
The first cells developed along a sharp soil moisture
gradient before expanding over the dry area. This
suggested an important role for the surface-induced
circulations discussed earlier in providing a favourable
environment for convective initiation, alongside other
mechanisms such as orographic forcing and cold
pools. Further evidence showing the impact of surface-
induced circulations on storm development came from
numerical simulations (Gaertner et al., 2010; Gantner
and Kalthoff, 2010), observations from forest–crop
transitions (Garcia-Carreras et al., 2010) and satellite
cloud data around the Mali wetlands (Taylor, 2010).

Copyright  2011 Royal Meteorological Society Atmos. Sci. Let. 12: 38–44 (2011)



40 C. M. Taylor et al.

Figure 1. Upper-soil moisture (m3 m−3) on 1 August 2006 from (a) the AMSR-E satellite (0–1 cm), (b) an offline simulation
of a land surface model forced by ALMIP data (0–10 cm), (c) ERA-Interim reanalysis (0–5 cm) and (d) the offline model in
(b) assimilating land surface temperature data at 3-km resolution. Total rainfall for the period 31 July to 1 August is shown by 10
and 30 mm isohyets in (a). The sub-domain of the high-resolution simulation is marked in (a), (b) and (c), and the aircraft track
denoted by a dashed line in (d).

Copyright  2011 Royal Meteorological Society Atmos. Sci. Let. 12: 38–44 (2011)
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Figure 2. Latent (a) and sensible (b) heat fluxes (W m−2) on 1 August 2006 averaged over nine models using ALMIP forcing.

Figure 3. Aircraft observations (black) of PBL potential
temperature (K; top), wind component (m s−1; middle), and
specific humidity (g kg−1; bottom) along the track shown
in Figure 1(d) on 1 August 2006. The dark and light blue
lines show these variables in numerical simulations initialised
using soil moisture from European Centre for Medium Range
Weather Forecasting (ECMWF) (dark blue) and ALMIP (light
blue) simulations.

Once storms are initiated, our research suggests
that various processes may govern the strength, and
even the sign, of feedbacks between soil moisture

and individual MCS. There is evidence that mature
MCS with well-developed gust fronts can intensify
over wet soils due to increased Convective Avail-
able Potential Energy (Gantner and Kalthoff, 2010;
Taylor et al., 2010). However, this positive feed-
back may reverse depending on the phase of the
diurnal cycle, the convective inhibition and synop-
tic state, and the scale and orientation of the wet
patch relative to the large-scale flow (Gaertner et al.,
2010).

The storm-scale feedbacks discussed here are of
course embedded within synoptic disturbances. Within
AMMA, Parker (2008) built on earlier work (Taylor
et al., 2005) to develop a simple dynamical model
of coupling between African Easterly Waves (AEWs)
and soil moisture. He illustrated how soil moisture
evolution can be a dynamically active part of propa-
gating synoptic disturbances. During the AMMA air-
craft campaign, one AEW event in particular – the
short-lived case of 26–28 July 2006 – exhibited a
notable soil moisture anomaly on the synoptic scale
(Bain, 2008). Numerical modelling revealed some
significant influences of the surface on the AEW,
including a meridional shift and reduction in the
intensity of the African Easterly Jet (AEJ) when
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Table I. Key processes of land–atmosphere coupling on different time and space scales.

Scale Hours – 1 day Several days Intraseasonal Seasonal–interannual

Plot (e.g. single raingauge) Diurnal cycle of PBL
growth driven by
surface heating
(Kohler et al., 2010)

Surface-PBL response
to rain event (Kohler
et al., 2010)

Impact of vegetation
on surface
thermodynamics
(Guichard et al., 2009)

Land memory (Douville
et al., 2007; Philippon et
al., 2007)

Mesoscale (5–1000 km) Surface-induced PBL
gradients and daytime
circulations (Taylor et
al., 2007; Baldi et al.,
2008). Impact of soil
moisture on storms
(Taylor and Ellis,
2006; Gaertner et al.,
2010; Gantner and
Kalthoff, 2010; Taylor
et al., 2010)

Positive feedbacks at
convective scales
within MCS (Clark et
al., 2004; Taylor and
Lebel, 1998), negative
feedbacks associated
with initiating
convection (Taylor
and Ellis, 2006)

Impact of longer-lived
surface features
(vegetation, wetlands)
on storms
(Garcia-Carreras et
al., 2010; Taylor,
2010)

Unknown

Synoptic—continental (>500 km) Sahelian heat low
anomalies intensify
overnight (Taylor et
al., 2005). Diurnal
cycle of monsoon and
Saharan heating
(Parker et al., 2005)

Soil moisture
feedback on wave
dynamics (Parker,
2008)

Intraseasonal patterns
of surface heating
linked to rainfall
variability (Taylor,
2008; Dominguez et
al., 2010; Flaounas et
al., 2010; Lavender et
al., 2010)

Soil moisture memory
(Eltahir and Gong, 1996;
Philippon and Fontaine,
2002; Douville et al.,
2007;), interannual
vegetation feedbacks
(Charney, 1975; Zeng et
al., 1999)

the soil had dried: it appears that over a drier
soil, the deeper boundary layer convection retards
the AEJ. In turn, it is likely that this change in
the AEJ would retard the propagation of individual
MCSs.

4. Feedbacks on intraseasonal
to interannual time scales

A major topic of interest across AMMA was the
intraseasonal variability in rainfall (Janicot et al.,
2011). Rainfall fluctuations on periods ∼15 days in
the Sahel induce a coherent, large-scale response of
sensible heat flux from the land due to soil mois-
ture (Taylor, 2008) and insolation (Lavender et al.,
2010). Within a propagating AEW, or an intrasea-
sonal synoptic wave, the land induces anomalous
heat low type circulations in the northern Sahel
which favour the westward propagation of the wave’s
envelope of rainfall, as observed. The sensitivity of
this mode of variability to surface albedo (Flaounas
et al., 2010) and the land surface parameterisation
(Dominguez et al., 2010) was also tested. Whilst many
aspects of the regional simulations were rather sensi-
tive to the land, the timing of the active-break cycles
was determined by the atmospheric lateral boundary
conditions.

Although the surface memory of each individual
storm is short (a few days), the root zone soil moisture,
and critically, the vegetation state, depends on an
integration of the water balance over much longer
periods. A key question therefore is to assess how
much of that information is carried over from one
season to the next. Using Normalised Difference
Vegetation Index (NDVI) data, Philippon et al. (2007)

found evidence of an interannual land memory in the
grasslands of Sahel. They found a significant increase
during June in the correlation of NDVI with maximum
NDVI recorded the previous year. The observations
suggest a beneficial effect of high productivity in the
previous year on the first flush of vegetation when
the first rains fall some 9 months later. Although
the mechanism remains unclear, it appears unlikely
to operate directly via a memory of soil moisture
in the shallow root zone of the grasses. That point
was illustrated in a General Circulation Model (GCM)
study (Douville et al., 2007) which depicted a strong
soil moisture memory effect on the monsoon at the end
of the wet season, but no evidence of similar processes
operating on the interannual time scale.

5. Perspectives on feedbacks
and predictability

Through the research in AMMA, we have a much
clearer understanding of the dominant land–atmo-
sphere feedback processes operating at different time
and space scales (Table I). In particular, it is now clear
that transient soil moisture patterns induce dynamic
and thermodynamic responses in the PBL on length
scales of ten to several thousand kilometres. These
processes influence both the lifecycle of individual
storms at the mesoscale, and the dynamics of the
monsoon circulation, and hence the advection of
moisture into the region.

Questions remain concerning the influence of the
land on mature MCS, where feedbacks could have a
notable impact on seasonal rainfall totals. Notwith-
standing this, we are close to making practical use
of the knowledge gained in AMMA, both in terms
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of bench forecasting (e.g. the use of remote sensing
of soil moisture to better predict MCS and AEWs),
and in longer term numerical forecasting, where the
slow evolution of root zone soil moisture and vege-
tation relative to the atmosphere may provide addi-
tional predictability. Even with the knowledge of soil
moisture gained from existing satellites, where quan-
titative estimates of surface state are far from ideal
(Kergoat et al., 2011), we can see an important atmo-
spheric response from case studies and statistical stud-
ies. The availability of improved estimates of soil
moisture from the new Soil Moisture and Ocean Salin-
ity (SMOS) satellite therefore holds much potential.
Similarly, Figure 1 illustrates the potential benefits for
short-term forecasts by running land models offline,
forced by the best available (ALMIP) observations,
to initialise soil moisture. Although we have shown
that models produce realistic atmospheric responses
to surface soil moisture contrasts in specific test cases,
the representation of water vapour remains a big issue
(Figure 3(c)), and it is unclear if these models are able
to reproduce the full complexity of the feedback. An
important result in this context is the low impact of
improved soil moisture initialisation (from ALMIP)
on 48-h rainfall totals predicted by the ECMWF model
(Agusti-Panareda et al., 2010). That study implied that
other processes (e.g. cloud, aerosol, moisture diver-
gence) are primarily responsible for the dry bias in
the ECMWF model.

On longer time scales, we have limited confidence in
the ability of our models to represent the evolution of
surface properties over the seasons, and respond cor-
rectly to rainfall events. Although global climate mod-
els suggest a dominant influence of tropical oceans on
West African Monsoon (WAM) variability at interan-
nual to multidecadal timescales, they lack sufficiently
accurate descriptions of ecosystem and groundwater
dynamics (if they represent these processes at all) to
evaluate the land contribution. More difficult still is
our ability to simulate with large-scale coupled models
the surface–atmosphere feedbacks given the inherent
problems with the representation of the atmosphere
(notably precipitation) and the impact of rainfall and
radiation biases on the land surface fluxes and stores.
Within AMMA, techniques are being developed using
cloud resolving models to evaluate the representation
of feedbacks within coarse scale models.

This calls for a more systematic analysis with a
number of models of the impact of improved soil mois-
ture descriptions on atmospheric processes. Such a
coordinated experiment would better identify the con-
ditions and processes for which models diverge. This
will offer guidance for revisiting AMMA observations
and completing the database with results from more
targeted field campaigns.
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