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Abstract

We focus on the partitioned scheduling of spo-

radic real-time tasks with constrained deadlines.

The scheduling policy on each processor is static-

priority. The considered tasks are not independent

and the consistency of these shared data is ensured

by a multiprocessor synchronization protocol. Con-

sidering these assumptions, we propose a partitioned

scheduling algorithm which tends to maximize the

robustness of the tasks to the Worst Case Execution

Time (WCET) overruns faults. We describe the con-

text of the problem and we outline our solution based

on simulated annealing.

1 Introduction

Since the multiprocessor platforms have become

predominant, the multiprocessor scheduling takes up

an important place in the study of real-time schedul-

ing. The literature concerning the multiprocessor

scheduling contains many references about various

classes of scheduling.

The uniprocessor scheduling algorithms are gen-

erally classified by type of priority mechanism. We

distinguish three main classes of priority mecha-

nism: static-priority (e.g. Rate-Monotonic (RM)

[23], Deadline-Monotonic (DM) [22]), task-level dy-

namic (e.g. Earliest-Deadline-First (EDF) [23]) and

fully dynamic (e.g. Least-Laxity-First (LLF) [24]). In

this paper, we focus on a multiprocessor scheduling

with a static-priority mechanism.

In addition to the criterion of complexity of the

priority mechanism, the multiprocessor scheduling

are also classified by a second criterion: the degree of

migration allowed. We distinguish three main classes

of migration degrees: no migration (i.e. partitioned

scheduling), restricted migration and full migration

(i.e. global scheduling).

In restricted migration, the migrations are allowed

at jobs boundaries. Even if the restricted migra-

tion has been less studied than the two other ap-

proaches (partitioned and global), a restricted mi-

gration scheduling algorithm have been proposed by

Baruah and Carpenter [3]. In global scheduling, the

jobs are allowed to migrate. This approach has been

more largely studied and several algorithms has been

proposed for the three classes of priority mechanism.

The RM and EDF approach for global scheduling

has been introduced by [13]. More recently, the

global algorithms P-Fair [4] and LLREF [11] has

been proved to be optimal.

The global approach is very attractive but the cost

of the migrations on some platforms can be diffi-

cult to estimate. We give for example the topol-

ogy of one of our multi-core/multiprocessor plat-

form in Figure 1. This platform is composed by 2

Intel R© Xeon R© E5410 at 2.33GHz. Each proces-

sor is a quad-core processor but we notice that for

0 ≤ x ≤ 3, only the cores P#[x] and P#[x + 4]
share a cache of level 2. It can be interesting to think

that a migration of a job from the core P#0 to the

core P#2 may have a higher cost than a migration

from the core P#0 to the core P#4. Considering

we cannot precisely estimate the cost of a migration

between any pair of cores, we focus on a partitioned

scheduling in this paper.

The partitioned scheduling approach has also been

well studied. Since no migrations are allowed, a par-

titioned scheduling of n tasks on m processors can
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Figure 1. Topology of the multi-core/multiprocessor platform Dell PrecisionTM T7400.

be seen as m independent uniprocessor scheduling.

The main challenge in the design of a partitioned

scheduling is to find a feasible partition of a set of

tasks. Since the partitioning can be seen as a instance

of BIN-PACKING problem (which is NP-hard in the

strong sense [18]), no optimal assignment can be

found in polynomial time unless P=NP. Because the

two problems are similar, the approximation meth-

ods used to solve instances of BIN-PACKING prob-

lem can be used to find a partition of a set of tasks.

Therefore, many partitioned scheduling algorithms

are built from a well-known approximation algorithm

for the BIN-PACKING problem (e.g. FBB-FFD algo-

rithm is built from First-Fit (FF) [16] and RM-DU-

NFS algorithm is built from Next-Fit (NF) [1]).

The tasks considered in this paper are non-

independent and several tasks can share the same

resource. A multiprocessor synchronization proto-

col is needed to ensure the consistency of the shared

data. This protocol shall avoid both deadlocks and

unbounded priority inversions. The feasibility analy-

sis to allocate a task to a processor no longer depends

only on the tasks already allocated on this processor.

The tasks allocated on other processors which share

a resource with this task must be considered in the

feasibility analysis.

The originality of this work is to allocate the tasks

in order to improve the robustness to the WCET over-

runs faults. A task can commit a WCET overruns

fault when its WCET has been underestimated or

when this task suffers interference which leads to a

greater execution requirement (e.g. not enough pre-

dictable OS). But techniques exist to compute the

time ∆t during which a task can continue to be ex-

ecuted without leading to a deadline miss. Our ap-

proach to improve the robustness is to maximize this

time ∆t for the all tasks of the system.

The rest of this paper is organized as follows. In

Section 2, we introduce the terminology and we de-

scribe the context of this research. In Section 3, we

discuss the proposed solution and we explain how to

implement it. In Section 4, we show the results ob-

tained from our implementation of the proposed so-

lution. In Section 5, we conclude by presenting our

perspective for this work.

2 Problem description

2.1 Terminology

We consider an application built from a set τ =
{τ1, τ2, . . . , τn} of n sporadic real-time tasks. A spo-

radic task is a recurring task for which only a lower

bound on the separation between release times of the

jobs is known. Each task τi is characterized by a min-

imum inter-arrival time Ti (also denoted period), a

WCET Ci and a relative deadline Di. The consid-

ered tasks are tasks with constrained deadlines (i.e.

Di ≤ Ti). The utilization of the task τi is denoted

ui and is defined as ui = Ci

Ti
. This application runs

on a platform Π = {π1, π2, . . . , πm} of m identi-

cal processors (homogeneous case). The total CPU

utilization of a processor πj is denoted usum(πj) and

the utilization of a set of tasks τi is denoted usum(τi).
We consider a static-priority scheduling on each pro-

cessor. A static-priority scheduler assigns a priority

to each task and all jobs of a task is released with the

static priority of this task. The priorities of the tasks

are taken in an increasing order (i.e. the priority of

τi+1 is higher than the priority of τi). The set of tasks

with a priority lower (resp. higher) than the priority

of τi is denoted lp(τi) (resp. hp(τi)). In this paper,

we denote Ri the response time of a task τi and Bi



the blocking factor incurred by the task τi. We also

denote Ai the value of allowance on the execution

duration of a task τi. The definition of allowance is

given is Section 2.4.

2.2 Partitioned scheduling

The partitioned scheduling involves a static al-

location of the tasks to the processors. The inter-

processor migrations are not allowed and each pro-

cessor can be scheduled independently. The problem

of finding a feasible partition for a given set of tasks

is a NP-hard problem because an instance of BIN-

PACKING problem can be reduced in polynomial-

time to an instance of task partitioning problem [18]).

Since the BIN-PACKING problem has been well

studied, various approaches have been investigated

to solve it. Several of these approaches can be used

to find a solution to the partitioned scheduling prob-

lem. One of the famous approaches is the approxi-

mation algorithms. The well-known approximation

algorithms FF, Best-Fit (BF) or NF are often used to

implement partitioned scheduling algorithms. Other

approaches such as dynamic programming has also

been investigated by Baruah and Fisher to find an

optimal solution to the partitioned scheduling prob-

lem [5]. Actually, many techniques for optimiza-

tion problems can be adapted to solve the parti-

tioned scheduling problem. For instance, Hou et al.

applied the genetic algorithm to the multiprocessor

scheduling [19], Tindell et al. [28] and Di Natale

and Stankovic [14] applied the simulated annealing

to find a feasible partition of a set of tasks. We de-

scribe in Section 3.2 how we have used the simulated

annealing to find a feasible partition for which the ro-

bustness to the WCET overruns faults is maximized.

2.3 Shared resources

On a real platform, the tasks are not often indepen-

dent. They performs accesses to the shared memory

or to the input/output devices. To ensure the consis-

tency of data during these accesses, a synchroniza-

tion protocol is needed. Moreover, such a protocol

must avoid deadlock situations. In real-time sys-

tems, the synchronization protocol must also avoid

the unbounded priority inversions to ensure that a

high-priority task is not delayed indefinitely by low-

priority tasks.

In uniprocessor scheduling, the Priority Ceiling

Protocol (PCP) has been proposed by Sha et al.

[27]. This protocol bounds the priority inversions

and avoids deadlocks. Rajkumar et al. presented an

extended version of PCP for real-time multiprocessor

system under static-priority partitioned scheduling :

Distributed-Priority Ceiling Protocol (D-PCP) [26].

D-PCP has been designed for the distributed systems

and it cannot take advantage of multiprocessor sys-

tems with shared memory, therefore Multiprocessor-

Priority Ceiling Protocol (M-PCP), which relies on

globally shared memory, has been presented by Ra-

jkumar [25].

In a recent work [21], a partitioning algorithm

based on BF for the assignment of the tasks has been

proposed. It is based on M-PCP for the synchroniza-

tion protocol. This algorithm is said synchronization-

aware in sense where it considers the blocking factor

induced by the synchronization protocol in the as-

signment policy. The tasks are assigned to the pro-

cessors in such a way that the scheduling penalties

associated with global task synchronization are min-

imized.

As an alternative to PCP, Baker proposed the Stack

Resource Policy (SRP) [2]. This protocol has been

extended to Multiprocessor-Stack Resource Policy

(M-SRP) by Gai et al. [17], who also presented

an comparison between M-PCP and M-SRP. Their

study shown that M-SRP outperforms M-PCP.

Block et al. introduce the Flexible Multiprocessor

Locking Protocol (FMLP) and show it outperforms

M-SRP [8]. This protocol is flexible because it can be

used for global scheduling as well as for partitioned

scheduling. Brandenburg and Anderson discussed a

detailed description of the implementation of FMLP

for a static-priority partitioned scheduling and gave a

bound on the blocking time Bi incurred by a task τi

in appendix of [10].

2.4 Robustness

The constraints in a hard real-time system are de-

fined such that no deadlines of any task are missed.

Moreover, the WCET of a task is estimated or com-

puted in order to ensure that the task never runs for

a duration longer than its WCET. If a task commits a

WCET overruns fault, the system may fail unless this

WCET overrun does not cause any deadline misses.

The duration which can be added to the WCET of a

task such that all tasks of τ meet their deadlines has

been denoted allowance by Bougueroua et al. [9].

The greater the value of allowance on the execution

duration for each task is, the more the system robust

to the WCET overruns faults is. Davis and Burns

proposed a priority assignment which maximizes the

allowance on the execution duration of all the tasks



of a system in uniprocessor [12]. The priority assign-

ment is the algorithm which assigns a static priority

to each task. In this work, we consider a multipro-

cessor system and we deal with both the priority as-

signment and the allocation of the tasks.

In our approach, we need to compute the al-

lowance on the execution duration of the tasks. We

have extracted from the literature two methods to

compute this duration. The first one is based on the

Response Time Analysis (RTA) and has been pro-

posed by Bougueroua et al. [9]. For a given value Ai

of allowance on the execution duration of a task τi, it

consists in verifying that:

• the total CPU utilization does not exceed 1

(Equation (1)),

• the response time Ri of τi does not exceed its

deadline Di (Equation (2)),

• the response times Rj of all the low-priority

tasks τj (Pj < Pi) do not exceed their deadlines

Dj (Equation (3)).

usum(πj) +
Ai

Ti

≤ 1 (1)

Rk+1
i = Ci + Ai +

∑

τh∈hp(τi)

⌈

Rk
i

Th

⌉

Ch ≤ Di (2)

∀τl ∈ lp(τi),

Rk+1
l = Cl +

∑

τh∈hp(τl)

⌈

Rk
l

Th

⌉

Ch +

⌈

Rk
l

Ti

⌉

Ai ≤ Dl

(3)

We know that the deadline of a task must not be

missed and the total CPU utilization cannot exceed

1. Then a bound Amax
i on the maximum value of al-

lowance on the execution duration for the task τi is

given by min(Di − Ci, ⌊(1 − usum(πj))Ti⌋). For a

task τi, the value of allowance on the execution du-

ration is computed by searching a value Ai which

verifies Equation (1), (2) and (3) (e.g. with a binary

search).

The second method to compute the allowance on

the execution duration is based on the Sensitivity

Analysis (SA) proposed by Bini et al. [7]. This

method is used to determine the feasibility region re-

lated to the variation of the WCET parameter. It ap-

plies on a static-priority scheduling. The value ∆Ci

is the sensitivity on the WCET of the task τi and is

given by Equation (4):

∆Ci = min
j∈lp(i)

max
t∈schedPj

t −



Cj +
∑

h∈hp(j)

⌈

t

Th

⌉

Ch





⌈t/Ti⌉
(4)

where schedPj is the set of schedulable instants de-

fined by schedPj = Pj−1(Dj) and Pj(t) is defined

by:

{

P0(t) = {t}

Pj(t) = Pj−1(
⌊

t
Tj

⌋

Tj) ∪ Pj−1(t)
(5)

The value ∆Ci is the maximum duration such that

if a task set τ = {τ1, . . . , τi, . . . , τn} is schedulable,

then the task set τ ′ = {τ1, . . . , τ
′

i , . . . , τn} is schedu-

lable with C ′

i = Ci+∆Ci. It corresponds to the defi-

nition of allowance given previously and Ai = ∆Ci.

In order to implement our solution, we have cho-

sen the first method based on the RTA since the Equa-

tions (2) and (3) can be simply changed in:

Rk+1
i = Ci + Bi + Ai +

∑

τh∈hp(τi)

⌈

Rk
i

Th

⌉

Ch ≤ Di

(6)

∀τl ∈ lp(τi),

Rk+1
l = Cl + Bl

+
∑

τh∈hp(τl)

⌈

Rk
l

Th

⌉

Ch +

⌈

Rk
l

Ti

⌉

Ai ≤ Dl

(7)

3 Solution description

3.1 FMLP

We decide to implement FMLP in our solution be-

cause it outperforms all the previous synchronization

protocols [8]. Furthermore, it has been adapted to the

partitioned scheduling by the authors of [10].

In FMLP, two types of resources are considered:

the short and the long resources. The resources are

classified by the designer of the application. When a

task τi tries to lock a long resource Rl, there are two

eventualities:

• if Rl is already locked then τi suspends and it

gets the highest priority when resuming,

• otherwise, τi locks Rl and runs non-

preemptively.



Now, if the task τi tries to lock a short resource Rs,

the two possibilities are:

• Rs is already locked then τi busily waits until

Rs is unlocked,

• otherwise, τi locks Rs and runs non-

preemptively.

In Figure 2, we represent an example comprised of

four tasks scheduled on two processors and synchro-

nized by the FMLP protocol. The jobs of τ1 and τ2

are scheduled on the first processor and the jobs of τ3

and τ4 are scheduled on the second one. A short re-

source (vertically hatched) is shared by τ1 and τ4 and

a long resource (horizontally hatched) is shared by

τ2 and τ3. At time 0, τ2 starts and at time 3, it locks

the long resource. At time 2, τ3 starts and suspends at

time 4 since the long resource is already locked by τ2.

At time 5, τ4 starts because τ3 is suspended, it locks

the short resource at time 7 and continues its execu-

tion non-preemptively. At time 6, τ1 is activated but

cannot be scheduled since τ2 runs non-preemptively.

At time 8, τ2 unlocks the long resource and τ1 can

start but τ3 cannot lock the long resource because τ4

is always running. τ1 is blocked at time 9 because

τ4 has locked the short resource and it busily waits

until time 10. At time 10, τ4 unlocks the short re-

source and both τ1 which was blocked by the lock

and τ3 which was deferred by the execution of τ4 can

be executed.
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Figure 2. Four jobs on two processors and

two resources synchronized by FMLP.

In order to analyze the feasibility of a set of tasks,

we need to bound the blocking time incurred by the

tasks. Each task τi is subjected to various types of

blocking:

• boost blocking denoted BBi and which is in-

curred when a lower-priority task on the same

processor is sharing a long resource,

• arrival blocking denoted ABi and which is in-

curred when a lower-priority task on the same

processor is sharing a short resource,

• short blocking denoted SBi and which is in-

curred when a task on another processor is lock-

ing a short resource,

• long blocking denoted LBi and which is in-

curred when a task on another processor is lock-

ing a long resource,

• deferral blocking denoted DBi and which is in-

curred when a higher-priority task on the same

processor defers its execution.

The blocking factor Bi of a task τi is given by the

relation Bi = BBi + ABi + SBi + LBi + DBi. A

bound for each of these factor is given in appendix of

[10]. The blocking factor Bi has been implemented

in our algorithm in order to provide a feasibility anal-

ysis which takes into account the interferences due to

priority inversions.

3.2 Simulated Annealing

Simulated annealing is a generic algorithm which

has been firstly proposed by Kirkpatrick et al. [20]

for the optimization problems. The name and inspi-

ration come from annealing in metallurgy, a tech-

nique involving heating and controlled cooling of a

material to increase the size of its crystals and to re-

duce their defects.

Tindell et al. [28] has used simulated annealing to

find a feasible allocation of the tasks in a distributed

hard real-time system. Di Natale and Stankovic [14]

have also used this technique in distributed systems

where the tasks are periodic and have arbitrary dead-

lines, precedence and exclusion constraints.

In this work, we apply the simulated annealing

technique to build an algorithm which finds a fea-

sible partition of a set of tasks where the robustness

to the WCET overruns faults is maximized.

We describe this algorithm, Robust Scheduler

based on Simulated Annealing (RSSA) in Algo-

rithm 1. The initialization is made as follows. At

line 1, the function random_partition() build

a partition P by allocating each of the n tasks on one

of the m processors randomly. This partition may be



unfeasible. At line 2, an initial temperature is com-

puted such as 99% of the partitions are kept even if

they do not improve the solution. By cooling the

system (decreasing the temperature), the unsatisfy-

ing solutions will be eliminated. At line 3, we initial-

ize the max_try value to an integer which depends

both of the number of tasks and of the number of pro-

cessors. The loop at line 4-21 performs max_try it-

erations of the loop at line 6-19. After each iteration,

the system is cooled by dividing the temperature by

2.

The main part of the algorithm is the loop at line 6-

19. At line 7, the function compute_energy()

computes the energy of the partition P . This func-

tion is more detailed later in Algorithm 2. At line 8,

a partition Pn which is the neighbor of the partition P
is computed. This partition Pn is obtained either by

randomly swapping two tasks of P or by randomly

moving a task of P from a processor to another. The

energy of this new partition is computed at line 9. If

the value En of the energy of Pn is less than the value

Ep of the energy of P then P is replaced by Pn. Oth-

erwise, a random number is drawn between 0 and 1.

The more the temperature temp high is, the more the

probability that the value ex (x =
Ep−En

temp
) is greater

than the random number is. If ex > random(0, 1)
then P is also replaced by Pn else Pn is discarded.

This behavior avoids that the energy converge to a

local minimum.

We now describe the function

compute_energy(). The aim of this func-

tion is to compute a value of energy for a partition

such that the more the minimum value of allowance

for the system is great, the less the value of energy

is. The value of energy is computed as follows. For

each processor πj , if the processor is empty then

the value of energy is increased by 1. This behavior

increase the probability that the tasks are well

distributed among the processor and no processors

stay empty. If the set of tasks allocated on this

processor is unschedulable then the value of energy

is also increased by 1 to eliminate the unfeasible

partitions. For each processor πj where the set of

tasks is schedulable, the sum of allowance on the

execution duration values of each task is stored in

the array allowance at index j. At the end of the

loop at line 3-10, the value of energy is increased

by the sum of all the values stored in the array

allowance. Consequently the more the value of

allowance of each task great is, the less the value of

Algorithm 1: Robust Simulated Annealing

P = random_partition(n, m);1

temp = −m
ln(0.99) ;2

max_try = n · m;3

while temp > 10−5 do4

k = 0;5

while k 6= max_try do6

Ep = compute_energy(P );7

Pn = neighbor(P );8

En = compute_energy(Pn);9

if En < Ep then10

P = Pn;11

else12

x =
Ep−En

temp
;13

if ex ≥ random(0, 1) then14

P = Pn;15

end16

end17

k = k + 1;18

end19

temp = temp
2 ;20

end21

energy is.

Algorithm 2: compute_energy(P)

energy = 0;1

allowance[m];2

foreach πj ∈ P do3

if πj is empty or πj is unschedulable then4

energy = energy + 1;5

allowance[j] = 0;6

else7

allowance[j] =
∑

τi∈τ(πj)
Ai8

end9

end10

energy = energy + 1
Pm

k=1
allowance[k]11

4 Simulation

4.1 Methodology

We implemented a scheduling simulator with sev-

eral partitioned scheduling algorithms. We imple-

mented in this simulator a partitioned scheduling al-

gorithm based on simulated annealing and a builder

of partitioned scheduling algorithms based on ap-

proximation algorithms. The input parameters of the



builder are the number of processors, the approxi-

mation algorithm (FF, NF or custom algorithms), a

uniprocessor scheduling algorithm and the feasibility

condition. We also implemented a generator which

randomly generates tasks sets with shared resources.

We consider here a multiprocessor platform com-

prised of 8 identical processors. The sets of tasks are

generated using a method similar to the one given in

[6]. We extract a set τ r of m + 1 randomly gen-

erated tasks. τ r is accepted if its utilization is less

than the total CPU utilization (usum(τ r) < m). This

feasibility condition is a necessary condition. While

usum(τ r) < m, we generate another task which is

added to τ r. This new set is accepted if the previ-

ous given condition is respected. When a set has an

utilization which does not respect the feasibility con-

dition, it is rejected and we extract a new set of tasks

with m + 1 tasks.

We randomly generated 10,000 sets of tasks with

constrained deadlines by applying the given method

of generation. The utilization of each task τi is nor-

mally distributed with a mean of 0 and a standard

variation of 0.25. The tasks with a negative utiliza-

tion or with an utilization greater than 1 are dis-

carded. The periods are uniformly distributed be-

tween 1 and 2000 and the WCETs are extracted from

the relation Ci = ui ·Ti. The deadlines are uniformly

distributed between Ci and Ti.

For each set of tasks, we randomly generated n
m

resources which are either short or long. The prob-

ability that a resource is short or long is 50%. The

duration of a short resource is uniformly distributed

between 1 and 10 and the duration of a long resource

is uniformly distributed between 11 and 50.

A simulation consists in applying three partition-

ing algorithms on each set of tasks. A platform con-

stituted in four processors is considered in this sim-

ulation. The first partitioned scheduling algorithm is

our RSSA algorithm based on simulated annealing.

The two last algorithms are based on approxi-

mation algorithms for the BIN-PACKING problem.

These algorithms are built in the following manner.

The tasks are sorted in a decreasing utilization or-

der. The uniprocessor scheduling algorithm on each

processor is DM. A task τi can be allocated to a pro-

cessor πj if its Worst-Case Response Time (WCRT)

and the WCRT of each task already allocated on πj

is less than or equal to its deadline. This WCRT is

computed by RTA extended by taking into account

the blocking factor of the tasks. Actually, the compu-

tation of the allowance on the execution duration of

the tasks (based on the RTA) is used as a feasibility

condition. The first algorithm is built from the FF al-

gorithm which is know to offer good results in terms

of schedulability. The FF algorithm allocates a task

on the first processor which can accept it. The sec-

ond one is built from the Worst-Fit algorithm. This

algorithm allocates a task on the processor which has

the smallest value of utilization.

4.2 Results

Our simulator produces a set of log trace for

each set of tasks. From these traces, we extracted

three main results. The first one is the perfor-

mance of the algorithms in term of schedulability.

We show in Figure 3(a) the number of feasible sys-

tems for each value of CPU utilization Ui (Ui ∈
[0.05, 0.1, 0.15, . . . , 1]) regarding to the chosen parti-

tioned scheduling algorithm. Our algorithm based on

simulated annealing success in finding a feasible par-

tition for 8384 tasks sets (i.e. 84% of the generated

tasks sets). The WF, respectively FF, found 5194, re-

spectively 5180, feasible tasks sets (i.e. 52%). We

notice that the performance in terms of schedulabil-

ity of WF and FF are similar. But it has been seen in

[15] that FF outperforms WF in terms of schedula-

bility when the tasks are independent. In Figure 3(a),

we show that the performance of WF and FF are

slightly equivalent. This result is due to the fact that

the blocking factor of the tasks becomes a constraint

at least as important as the utilization of the tasks.

The second one is the value of maximum al-

lowance on the execution duration for each value

of CPU utilization. This value of allowance is ob-

tained by taking the average value for all the sets of

tasks which have the same value of CPU utilization.

We show in Figure 3(b) that WF outperforms FF in

terms of minimum allowance. This results has al-

ready been seen in [15]. We also notice that from

CPU utilization under 40%, the minimum allowance

value is equivalent to WF. But over 40%, our RSSA

algorithm outperforms WF.

The last one is the value of minimum allowance

on the execution duration and these values are rep-

resented in Figure 3(c). We notice that RSSA also

outperforms WF for a CPU utilization over 50%. In-

deed, we show that the result shown in Figure 3(b) is

not biased by allocating a task alone on a processor

to maximize the value of maximum allowance.

We show from these results that the simulated an-

nealing approach is an interesting solution when sev-
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Figure 3. Simulations with 4 CPU.

eral criteria must be optimized. In our case, we have

intended to maximize both the schedulability and the

robustness of the system.

5 Conclusion

We have proposed a partitioned scheduling algo-

rithm (RSSA) based on the technique of simulated

annealing. We have considered a model of sporadic

tasks with shared resources. The consistency of data

is ensured by the FMLP protocol. Our algorithm al-

locates the tasks on the processors in order to max-

imize the robustness to the WCET overruns faults

of each task. We have implemented our algorithm

in a scheduling simulator and we have shown that

this solution outperforms the scheduling algorithms

based on approximation algorithms in terms of both

schedulability and robustness. In order to improve

this work, we intend to compare RSSA with other

approaches and in particular with an optimal one.
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