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Abstract

Algorithms based on semi-partitioned scheduling have

been proposed as a viable alternative between the two ex-

treme ones based on global and partitioned scheduling.

In particular, allowing migration to occur only for few

tasks which cannot be assigned to any individual proces-

sor, while most tasks are assigned to specific processors,

considerably reduces the runtime overhead compared to

global scheduling on the one hand, and improve both the

schedulability and the system utilization factor compared

to partitioned scheduling on the other hand.

In this paper, we address the preemptive scheduling

problem of hard real-time systems composed of sporadic

constrained-deadline tasks upon identical multiprocessor

platforms. We propose a new algorithm and a schedul-

ing paradigm based on the concept of semi-partitioned

scheduling with restricted migrations in which jobs are

not allowed to migrate, but two subsequent jobs of a task

can be assigned to different processors by following a pe-

riodic strategy.

1. Introduction

In this work, we consider the preemptive scheduling

of hard real-time sporadic tasks upon identical multipro-

cessors. Even though the Earliest Deadline First (EDF)

algorithm [13] turned out to be no longer optimal in terms

of schedulability upon multiprocessor platforms [7], many

alternative algorithms based on this scheduling policy

have been developed due to its optimality upon uniproces-

sor platforms [13]. Again, the primary focus for design-

ers is at improving the worst-case system utilization factor

with guaranteeing all tasks to meet deadlines. Unfortu-

nately, most of the algorithms developed in the literature

suffer from a trade-off between the theoretical schedula-

∗PhD candidate of the LISI - ENSMA, France.
†Postdoctoral researcher of the FNRS, Belgium.
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bility and the practical overhead of the system at run-time:

achieving high system utilization factor leads to complex

computations. Up to now, solutions are still widely dis-

cussed.

In recent years, multicore architectures, which include

several processors upon a single chip, have been the pre-

ferred platform for many embedded applications. This

is because they have been considered as a solution to

the “thermal roadblock” imposed by single-core designs.

Most chip makers such as Intel, AMD and Sun have re-

leased dual-core chips, and few designs with more than

two cores have been released as well. However given such

a platform, the question of scheduling hard real-time sys-

tems becomes more complicated, and thus, has received

considerable attention [3, 8]. For such systems, most re-

sults have been derived under either global or partitioned

scheduling techniques. While both approaches might be

viable, each has serious drawbacks on this platform and

none will likely utilize the system very well while consid-

ering EDF scheduling policy.

In global scheduling [6], all tasks are stored in a single

priority-ordered queue. The global scheduler selects for

execution the highest priority tasks from this queue. Un-

fortunately, algorithms based on this technique may lead

to runtime overheads that are prohibitive. This is due to

the fact that tasks are allowed to migrate from one proces-

sor (CPU) to another in order to complete their executions

and each migration cost may not be negligible. Moreover,

Dhall et al. showed that global EDF may cause a deadline

to be missed if the total utilization factor of a task set is

slightly greater than 1 [7].

In partitioned scheduling [5], tasks are first assigned

statically to processors. Once the task assignment is done,

each processor uses independently its local scheduler. Un-

fortunately, algorithms based on this technique may lead

to task systems that are schedulable if and only if some

tasks are not partitioned. Moreover, Lopez et al. showed

that the total utilization factor of a schedulable system us-

ing this technique is at most 0.5(m+ 1), where m is the

number of processors in the system.

These two scheduling techniques are incomparable —

at least for priority driven schedules —, that is, there are



systems which are schedulable with partitioning and not

by global and conversely. It thus follows that the effec-

tiveness of a scheduling algorithm depends not only on its

runtime overhead, but also its ability to schedule feasible

task systems.

Recent work [2, 10, 11] came up with a novel and

promising technique called semi-partitioned scheduling

with the main objectives of reducing the runtime overhead

and improving both the schedulability and the system uti-

lization factor. In semi-partitioned scheduling techniques,

most tasks, called non-migrating tasks, are fixed to spe-

cific processors in order to reduce runtime overhead, while

few tasks, called migrating tasks, migrate across proces-

sors in order to improve both the schedulability and the

system utilization factor. However, the migration costs

depend on the instant each migrating task is migrated dur-

ing execution: migrating a task during the execution of

one of its jobs is more time consuming than migrating it

at the instant of its activation. As such, we can distinguish

between two levels of migration: job migration where a

job is allowed to execute on different processors [2] and

task migration where task migration is allowed, but job

migration is forbidden. Between the two techniques, the

task migration is the one which minimizes the migration

costs. To the best of our knowledge, only one solution us-

ing the latter semi-partitioned scheduling technique was

established but it is only applicable to soft real-time sys-

tems [1].

In this paper, we study the scheduling of hard real-time

systems composed of sporadic constrained-deadline tasks

upon identical multiprocessor platforms. For such plat-

forms, all the processors have the same computing capac-

ities.

Related work. On the road to solve the above men-

tioned problem, sound results using semi-partitioned

scheduling techniques have been obtained by S. Kato in

terms of both schedulability and system utilization fac-

tor. However, these results are all based on “job-splitting”

strategies [11], and consequently, may still lead to pro-

hibitive runtime overheads for the system. Indeed, the

main idea of S. Kato consists in using a “job-splitting”

(i.e., job migration is allowed) strategy based on a spe-

cific algorithm for tasks which cannot be scheduled by

following the First Fit Decreasing (FFD) algorithm [12].

Figure 1 illustrates that the entire portion of job τk is not

partitioned but it is split into τk,1, τk,2 and τk,3 which are

partitioned upon CPUs π1, π2 and π3, respectively. The

amount of each share is such a value that fills the assign-

ing processor to capacity without timing violations.

Due to such a “job-splitting” strategy, it is necessary

to have a mechanism which ensure that each job cannot

be executed in parallel upon different processors. Such a

mechanism has been provided by the introduction of exe-

cution windows3. Using this mechanism, each share can

3An execution window for a job is a time span during which it is

allowed to execute.
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Figure 1. S. Kato’s algorithm [12].

execute only during its execution window. Hence, mul-

tiple executions of the same job upon several processors

at the same time are prohibited by guaranteeing that the

execution windows do not overlap [12].

This research. In this paper, we propose a new algo-

rithm and a scheduling paradigm based on the concept

of semi-partitioned scheduling with restricted migrations:

jobs are not allowed to migrate, but two subsequent jobs of

a task can be assigned to different processors by following

a periodic strategy. Our intuitive idea is to limit the run-

time overhead as it may still be prohibitive for the system

when using a job-splitting strategy. The algorithm starts

with a classical step where tasks are partitioned among

processors using the FFD algorithm for sake of compar-

ison of our results to those obtained by S. Kato. Then,

for the remaining tasks (i.e., those whose all the jobs can-

not be assigned to one processor by following FFD with-

out exceeding its capacity), a semi-partitioning scheduling

technique with restricted migrations is used by following

a periodic strategy detailed later on.

Paper organization. The remainder of this paper is

structured as follows. Section 2 presents the task model

and the platform that are used throughout the paper. Sec-

tion 3 provides the principles of the proposed algorithm.

Section 4 elaborates the conditions under which the sys-

tem is schedulable. Section 5 presents experimental re-

sults. Finally, Section 6 concludes the paper and proposes

future work.

2. System model

We consider the preemptive scheduling of a hard real-

time system τ
def
= {τ1,τ2, . . . ,τn} comprised of n tasks upon



m identical processors. In this case, all the processors

have the same computing capacities. The kth processor

is denoted πk. Each task τi is a sporadic constrained-

deadline task characterized by three parameters (Ci,Di,Ti)
where Ci is the Worst Case Execution Time (WCET),

Di ≤ Ti is the relative deadline and Ti is the minimum

inter-arrival time between two consecutive releases of τi.

These parameters are given with the interpretation that

task τi generates an infinite number of successive jobs τi, j

with execution requirement of at most Ci each, arriving at

time ai, j such that ai, j+1− ai, j ≥ Ti and that must com-

pletes within [ai, j,di, j) where di, j
def
= ai, j +Di, the absolute

deadline of job τi, j.

The utilization factor of task τi is defined as ui
def
= Ci/Ti

and the total utilization factor of task system τ is defined

as Usum(τ)
def
= ∑n

i=1 ui. A task system is said to fully uti-

lize the available processing capacity if its total utilization

factor equals the number of processors (m). The maxi-

mum utilization factor of any task in τ is denoted umax(τ).
A task system is preemptive if the execution of any of its

jobs may be interrupted and resumed later due to the exe-

cution of another job with a higher priority. In this paper,

we consider preemptive scheduling policies and we place

no constraints on total utilization factor.

We consider that tasks are scheduled by following the

Earliest Deadline First (EDF) scheduler with restricted

migrations. That is, on the one hand, the shorter the abso-

lute deadline of a job the higher its priority. On the other

hand, tasks can migrate from one processor to another but

when a job has started upon a given processor then it must

complete without any migration. Such a strategy is a com-

promise between task partitioning and global scheduling

strategies.

We assume that all the tasks are independent, that is,

there is no communication, no precedence constraint and

no shared resource (except for the processors) between

tasks. We assume that the jobs of a task cannot be exe-

cuted in parallel, that is, for any i and j, τi, j cannot be ex-

ecuted in parallel on more than one processor. Moreover,

this research assumes that the costs of preempting and

migrating tasks are included in the WCET, which makes

sense since we limit migrations at task arrival instants and

preemptions at task arrival or completion instants (EDF is

the local scheduler).

3. Principle of the algorithm

In this section, we provide to the reader the main steps

of our algorithm. Its design is based on the concept

of semi-partitioned scheduling with restricted migrations

and consists of two phases:

(1) The assigning phase: here, each non-migrating task

is assigned to a specific CPU by following the FFD algo-

rithm and the jobs of each migrating tasks are assigned to

CPUs by following a periodic strategy.

(2) The scheduling phase: here, each migrating task is

modeled upon each CPU as a multiframe task and thus the

schedulability analysis focuses on each CPU individually,

using the rich and extensive results from the uniprocessor

scheduling theory.

3.1. Semi-partitioning scheduling algorithm

This section describes our semi-partitioning algorithm

based on the concept of semi-partitioned scheduling. Like

traditional partitioned scheduling algorithms, the sched-

ulers have the same scheduling policy upon each CPU,

that is EDF in this case, but each of them is not completely

independent, because several CPUs may share a migrating

task. The principle of the algorithm is as follows.

• Sort the tasks in decreasing order of their utilization

factor.

• For each task considered individually:

– Select one CPU and set it as the one with the

smallest index.

– If the current task is schedulable upon the se-

lected CPU while using the FFD algorithm (i.e.

all jobs meet their deadlines), then assign the

task to this CPU.

– If the current task is neither schedulable upon

the selected CPU and nor upon the others by

using the FFD algorithm, then determine the

number of jobs that can be scheduled upon the

selected CPU w.r.t. an EDF scheduler. Assign

those jobs to the selected CPU by using the

multiframe task approach defined earlier. Then,

move to the next CPU. Repeat this process until

all the jobs of the task are assigned to a CPU.

In the end, the intuitive idea behind our algorithm is to

consider one task at each step and defines the minimum

number of CPUs required to execute all its jobs (this takes

at most m iterations, where m is the number of CPUs).

At the beginning, the algorithm performs using an FFD

algorithm. Then, whenever a task cannot be assigned to a

particular CPU, its jobs are assigned to a subset of CPUs

belonging to the platform (at most m). Thus, the algorithm

requires at most O(nm) schedulability tests.

3.2. The assigning phase

In this phase, each task τk is assigned to a particular

processor π j by following the FFD algorithm, as long as

the task does not cause the system not to be schedula-

ble upon π j. That is, Load(τπ j)
def
= sup(t≥0)

DBF(τ
π j ,t)

t
≤ 1,

where τπ j denotes the subset of tasks assigned to CPU

π j and DBF is the classical Demand Bound Function [4],

DBF(τπ j , t)
def
= ∑τk∈τ

π j

⌊
t+Tk−Dk

Tk

⌋
·Ck. Such a task is clas-

sified into a non-migrating task. Now, if Load(τπ j) > 1,

that is, all the jobs of a task cannot be assigned to the

same processor, then the task is classified into a migrating



Algorithm 1: Semi-Partitioning Algorithm

Input: m, τ = {τ1, . . . ,τn}, parameter K.

Output: True and A if τ is schedulable, False otherwise.

Function SemiPart (inm, inK, inτ,outA)

begin

for (i=1 . . . n) do

Sched← False;

/*We try to schedule the task using FFD */

for (j=1 . . . m) do

if τi schedulable on π j then

τi is assigned to π j;

Sched← True;

if (Sched == False) then
/*Task τi is a migrating task. We perform

the job assignment among the CPUs by

calling Agorithm 3 */

if Algo2(τi,K,A) == False then
/*τi is not schedulable */

return False;

return True;

task. The jobs are assigned to several processors by fol-

lowing a periodic strategy and are executed upon these by

using a semi-partitioned scheduling with restricted migra-

tions. Details on this strategy, obviously chosen for sake

of simplicity during the implementations, are provided in

the Section 3.3.

Example. In order to illustrate this strategy for a sys-

tem with a single migrating task task τi = (Ci,Di,Ti),
we assume that τi has been assigned to a set of CPUs

containing at least π1 and π2 with the periodic sequence

σ
def
= (π1,π2,π1). This means, the first job of τi will be

assigned to π1, the second one to π2, the third one to pro-

cessor π1 and from the fourth job of τi, this very same

process will repeat cyclically upon processors π1 and π2.

Figure 2 depicts this job assignment.

π1 π2
0%

100%

CPU load

τi

τ 1i

(Ci, 0, Ci)

τ 2i

(0, Ci, 0)

τ 1i

τ 2i

Multiframe tasks

Figure 2. Periodic job assignment.

From the schedulability point of view, task τi will be

duplicated upon CPUs π1 and π2 and according to the

scheduling phase, it will be seen as two multiframe tasks

(see [14] for further details on multiframe tasks). These

multiframe tasks will be denoted by τ1
i and τ2

i and will

have the following parameters: τ1
i

def
= ((Ci,0,Ci),Di,Ti)

and τ2
i

def
= ((0,Ci,0),Di,Ti). As such, we will be able to

perform the schedulability analysis upon each CPU indi-

vidually, using uniprocessor approaches, already well un-

derstood.

3.3. Periodic job assignment strategy

Since each task consists of an infinite number of jobs,

a potentially infinite number of periodic job assignment

strategies can be defined for assigning migrating tasks to

the CPUs. In this section, we propose two algorithms to

achieve this: The most regular-job pattern algorithm and

the alternative-job pattern algorithm.

In this paper, since each migrating task is modeled as a

multiframe task upon each CPU it has at least one job as-

signed to, we assume that the number of frames obtained

from each migrating task is equal to a non-negative inte-

ger K which is known beforehand for sake of readability.

This assumption will be relaxed in future work.

Let A[1 · · ·n,1 · · ·m] be a matrix of integers where

A[i, j]
def
= x (with 1 ≤ i ≤ n and 1 ≤ j ≤ m) indicates that

x jobs among K consecutive jobs of task τi will be ex-

ecuted upon processor π j. In the following, we provide

the reader with details on two algorithms used to initialize

matrix A[1 · · ·n,1 · · ·m], while guaranteeing for every task

τi that ∑ j=1,...,m A[i, j] = K.

Before going any further in this paper, it is worth notic-

ing that if K = 1, then task migrations are forbidden. Thus,

our model extends the classical partitioning scheduling

model. If the A[i, j] are known beforehand, then the most

regular-job pattern algorithm is considered, otherwise we

consider the alternative-job pattern algorithm.

Most regular-job pattern algorithm

A uniform assignment of jobs of each migrating task τi

among the subset of CPUs Si upon which τi will execute

at least one job seems to be a good idea at first glance (but

we have no theoretical result proving that). For this rea-

son we introduce the principle laying behind such a strat-

egy [9]. In Si, we assume that the CPUs are ranged in a

non-decreasing index-order. If Si = /0, then the system is

clearly not schedulable.

The job assignment is performed according to the fol-

lowing two steps for task τi.

• Step 1. The matrix A is computed thanks to Algo-

rithm 1 (see Section 3.1 for details).

• Step 2. The assignment sequence σ of task τi is de-

fined through K sub-sequences as follows.

σ
def
= (σ0,σ1, . . . ,σℓ, . . . ,σK−1) (1)



where the (ℓ+1)th
sub-sequence σℓ (with ℓ =

0, . . . ,K − 1) is given in turn by the following m-

tuple:

σℓ
def
= (σ1

ℓ ,σ
2
ℓ , . . . ,σ

m
ℓ ) (2)

To define sub-sequence σℓ using the uniform assign-

ment pattern, there is at most one job per CPU each

time w.r.t. Equation 3. The ℓth job of τi will be as-

signed to π j if and only if:

σ
j
ℓ

def
=

⌈
ℓ+1

K
·A[i, j]

⌉
−

⌈
ℓ

K
·A[i, j]

⌉
= 1 (3)

The goal is to assign A[i, j] jobs among K consecutive

jobs of task τi to CPU π j by following a step-case

function. For the ℓth job, σ
j
ℓ yields 1 when the job is

assigned to π j and 0 otherwise. Figure 3 illustrates

Equation 3 for job assignment of τi to CPU π j when

K = 11 and A[i, j] = 4.

0 ℓ

assigned
instances of τi

1

2

3

4

1 2 3 4 5 6 7 8 9 10

A[i, j]

Figure 3. Job assignment sequence to π1.

Thanks to these rules, it follows, depending on the

value of parameter K, that a direct advantage of this cyclic

job assignment is its ability to considerably reduces the

number of task migrations.

Example. In order to illustrate our claim, consider a

platform comprised of 3 identical CPUs π1,π2,π3. We as-

sume that K = 11. For a migrating task τi, let us consider

that A[i,1] = 4, A[i,2] = 2 and A[i,3] = 5, meaning that 4

jobs of τi are assigned to CPU π1, 2 jobs to CPU π2 and 5

jobs to CPU π3. The computations for defining the job as-

signment sub-sequences using Equation 3 are summarized

in Table 1.

ℓ 0 1 2 3 4 5 6 7 8 9 10 total

π1 1 0 1 0 0 1 0 0 1 0 0 4

π2 1 0 0 0 0 1 0 0 0 0 0 2

π3 1 0 1 0 1 0 1 0 1 0 0 5

Table 1. Most regular-job assignment sequence

At step ℓ= 5 for instance, one job of τi will be assigned

to π1, then one job to π2, and no job will be assigned to π3.

Whenever σ
j
k = 0 (∀ j), as this is case at steps 1, 3, 7 and

10 in Table 1, then none of the jobs is assigned to none

of the CPUs. Such a sub-sequence can be ignored while

defining the cyclic assignment controller. In this example,

the complete assignment sequence, that will be used to

define the cyclic assignment controller for jobs of task τi

is derived as follows.

σ = (σ0,σ1, . . . ,σK−1)

= (π1,π2,π3,π1,π3,π3,π1,π2,π3,π1,π3)

While using this strategy, even though this algorithm

considerably reduces the number of task migrations, we

have a recursion problem since to determine the job-

pattern we need actually to know the job-pattern. Indeed,

in order to know that A[i, j] jobs of task τi are assigned to

CPU π j, we need to perform a schedulability test. How-

ever, such a test needs the pattern of the multiframe tasks

assigned to each CPU to be known beforehand. A solu-

tion to this recursion problem is to use a schedulability

test which requires only the number of jobs. That is, the

one based on a worst-case scenario, which necessarily in-

troduces a lot of pessimism.

The next job-pattern determination technique will ad-

dress this drawback and consequently schedules a larger

number of task systems.

Alternative job-pattern algorithm

This cyclic job assignment algorithm has been de-

signed in order to overcome the drawback highlighted

in the previous one (see algorithms 2–3). It considers

each CPU individually and compute the matrix A in-

crementally. Initially, A[i,1] is initialized at K. If the

obtained multiframe task is not schedulable upon π1,

then A[i,1] is decremented to K − 1. The decrement

is repeated until we get the largest number jobs of τi

which are schedulable upon π1. In the previous exam-

ple, integers between 11 and 5 have been tested with-

out success, but A[i,1] = 4 succeeded, then the multi-

frame task which will be considered upon this CPU is

τ1
i = ((Ci,0,Ci,0,0,Ci,0,0,Ci,0,0),Di,Ti) using Step 2 of

the previous method (Equation 3 in particular). In addi-

tion, instead of directly considering a multiframe task with

K frames each time, this alternative algorithm allows us to

temporarily consider multiframe tasks with a number of

frames equal to the number of remaining jobs.

In order to determine the multiframe task τ2
i that will

be executed upon CPU π2, we temporarily consider a

multiframe task τ
′2
i with (J = K − A[i,1]) frames (cor-

responding to the number of remaining jobs for τ2
i ).

This temporal multiframe task τ
′2
i is built by using the

Step 2 of the previous method (Equation 3 in particu-

lar), and then we determine its pattern by considering

τ
′2
i

def
= ((σ2

1Ci, . . . ,σ
2
JCi),Di,Ti) with σ2

ℓ ∈ {0,1},1≤ ℓ≤ J.

After this operation has been performed, the multiframe

task τ2
i is provided with K frames by using τ1

i and τ
′2
i ,

based on the following two rules: (i) If the jth frame of

τ1
i is nonzero, then the jth frame of τ2

i equals zero. (ii)

If the jth frame of τ1
i is zero and corresponds to the qth



zero-frame of τ1
i , then the jth frame of τ2

i is determined by

using the value of the qth frame of τ
′2
i .

These rules can be generalized very easily. Suppose

our aim is determining the multiframe task τk
i correspond-

ing to τi upon CPU πk. The steps to perform are as

follows. We first determine the amount of remaining

jobs J
def
= K−∑

k−1
q=1 A[i,q]. Then, we compute τ

′k
i thanks

to Equation 3, by using J rather than K. Finally, we

determine τk
i by using the pseudo-code of Algorithm 2

where τℓi ( j) denotes the jth frame of τℓi . That is, if

τℓi = ((Ci,0,Ci),Di,Ti), then τℓi (1) = Ci, τℓi (2) = 0 and

τℓi (3) =Ci.

Algorithm 2: Computation of τk
i

Input: K, k, τ = (τ1
i , . . . ,τ

(k−1)
i ), τ

′k
i

Output: Multiframe task τk
i

Function Compute (inτ
′k
i , inK, inτ)

begin

q← 1 ;

for (j = 1 . . . K) do

Free← True;

ζ← 1;

while (ζ < k and Free) do

if τ
ζ
i ( j) = 0 then ζ← ζ+1;

else Free← False;

if Free then

τk
i ( j)← τ

′k
i (q);

q← q+1;

else τk
i ( j) = 0;

return τk
i ;

Algorithm 3: Jobs assignment for migrating task τi

Input: K, task τi

Output: True and A if τi is schedulable, False otherwise

Function Algo2 (inτi, inK,outA)

begin
RemJobs← K ; /* Remaining jobs*/

for (k = 1 · · ·m) do

for ( j = RemJobs · · ·1) do

Compute τ
′k
i by using Equation 3 where K is

replaced by RemJobs ;

τk
i = Compute(τ

′k
i ,K,(τ1

i , . . . ,τ
(k−1)
i ));

if (τk
i is schedulable on πk) then

A[i,k]← j;

RemJobs← RemJobs− j ;

Exit;

if RemJobs = 0 then return True ;

return False

Example. Consider the same task τi as in the pre-

vious example. Assuming only 4 jobs can be as-

signed to π1, then the multiframe task τ1
i upon π1 is

τ1
i = ((Ci,0,Ci,0,0,Ci,0,0,Ci,0,0),Di,Ti) by using Algo-

rithm 2. If τ1
i is schedulable upon π1, then we consider π2

and we repeat the same process. If not, we try to assign

jobs to π1, now assuming only 3 jobs can be assigned this

time.

In this example, we assume that 4 jobs have success-

fully been assigned to π1. We now assume that nei-

ther 4, nor 3 jobs of τi cannot be assigned to π2, but 2

jobs can. Computing the intermediate task τ
′2
i using J =

11− 4 = 7 leads us to τ
′2
i = ((Ci,0,0,Ci,0,0,0),Di,Ti).

By applying Algorithm 2 again, we obtain τ2
i =

((0,Ci,0,0,0,0,Ci,0,0,0,0),Di,Ti).

We repeat the same process for CPU π3. When

trying to assign the 5 remaining jobs, computing

τ
′3
i with J = 5 gives τ

′3
i = ((Ci,Ci,Ci,Ci,Ci),Di,Ti).

Again, applying Algorithm 2, we obtain τ3
i =

((0,0,0,Ci,Ci,0,0,Ci,0,Ci,Ci),Di,Ti).

4. Schedulability analysis

This section derives the schedulability conditions for

our algorithm. Because each migrating task is modeled as

a multiframe task on each CPU upon which it has a job

assigned to, the schedulability analysis is performed on

each CPU individually, using results from the uniproces-

sor scheduling theory. As tasks are scheduled upon each

CPU according to an EDF scheduler, a specific analysis

is necessary only for CPUs executing at least one mul-

tiframe task. For such a CPU, classical schedulability

analysis approaches such as “Processor Demand Analy-

sis” cannot applied, unfortunately. This is due to migrat-

ing tasks. We consider two scenarios to circumvent this

issue: the packed scenario and the scenario with pattern

and we develop a specific analysis based on an extension

of the Demand Bound Function (DBF) [3,4] to multiframe

tasks. We recall that a natural idea to cope with each mi-

grating task is to duplicate it as many time as the number

of CPUs it has a job assigned to and consider a multiframe

task upon each CPU.

4.1. Packed scenario

As each migrating task τi is modeled as a collection of

at most m multiframe tasks τ1
i , τ2

i , . . . , τm
i , where τ

j
i is to

be executed upon CPU π j (m is the number of CPUs), this

scenario considers the worst-case. This occurs when, for

each multiframe task associated to τi, all nonzero execu-

tion requirements are at the beginning of the frames and

the remaining execution requirements are set to zero. That

is τk
i is modeled as τk

i

def
= ((Ci,Ci, . . . ,Ci,0, . . . ,0),Di,Ti),

where Ci is the execution requirement of task τi. (see Ap-

pendix for the proof).

In order to define D̂BF at time t (that is, our adapted

Demand Bound Function for systems such as those con-

sidered in this paper), we need to define the contribution of

each task in the time interval [0, t). As K denote the num-

ber of execution requirements in a multiframe task τk
i as-

sociated to τi, let ℓk
i denote the number of nonzero execu-

tion requirements in τk
i . When using the packed scenario,



τk
i can be modeled as τk

i = ((Ci, . . . ,Ci︸ ︷︷ ︸
ℓk

i elements

,0, . . . ,0),Di,Ti).

The challenge is to take into account that only ℓk
i jobs

of task τk
i will contribute to the DBF in the time interval

[0,K ·Ti).

Based on Figure 4, the contribution to D̂BF at time t

for the multiframe task τk
i is determine as follows.

• First, consider the number of intervals of length K ·Ti

by time t. Letting s denote that number, we have:

s
def
=

⌊
t

K ·Ti

⌋
(4)

As such, the contribution of τk
i to the DBF is at least

s · ℓk
i ·Ci.

• Second, consider the time interval [s ·K ·Ti, t), where

several jobs may have their deadlines before time t.

Assuming that all the jobs are assigned to the consid-

ered CPU, the number of jobs (“a”) is given by:

a
def
= max

(
0,

⌊
(t mod K ·Ti)−Di

Ti

⌋
+1

)
(5)

Since at most ℓk
i jobs over K will be executed upon

that CPU, then the exact contribution of τk
i in interval

[s ·K ·Ti, t) is given by: min(ℓk
i ,a) ·Ci.

Putting all of these expressions together, the DBF of τk
i at

time t is defined as follows.

D̂BF(τk
i , t)

def
= s · ℓk

i ·Ci +min
(
ℓk

i ,a
)
·Ci (6)

Schedulability Test 1. Let τ = {τ1,τ2, . . . ,τn} be a set

of n constrained-deadline sporadic tasks to be sched-

uled upon an identical multiprocessor platform. For each

selected CPU π, if N ⊆ τ denotes the subset of non-

migrating tasks upon π, then a sufficient condition for the

system to be schedulable upon π is given by

∑
τ j∈N

DBF(τ j, t)+ ∑
τk

i ∈π\N

D̂BF(τk
i , t)≤ t ∀t (7)

In Equation 7, τ j is a non-migrating task, DBF is the clas-

sical Demand Bound Function and τk
i is a multiframe task

assigned to π.

4.2. Scenario with pattern

This scenario, in contrast to the packed one which con-

siders the worst-case, takes the pattern of job assignment

provided by our algorithm into account. Indeed, imple-

mentations showed that the schedulability analysis based

on the packed scenario may be too pessimistic, unfortu-

nately.

The schedulability test developed in this section is sim-

ilar to the one developed previously for packed scenarios

in that it is also based on the DBF. However the pattern of

job assignment to CPUs is taken into account. Therefore,

the only noticeable difference comes from the second term

of Equation 6 which is replaced by:

K−1
max
c=0

(
c+nbi(t)−1

∑
j=c

Ci, j mod K

)
(8)

In Expression 8, nbi(t)
def
=
⌊
(t mod K·Ti)−Di

Ti

⌋
+1 and denotes

the number of jobs of τk
i in the time interval [s ·K ·Ti, t).

This is, we compute the processor demand by considering

that the “critical instant” coincide with the first job of the

pattern, then the second and so on, until the Kth job. After

that, we consider the maximum processor demand in order

to capture the worst-case. Hence we obtain:

̂̂
DBF(τk

i , t)
def
= s · ℓk

i ·Ci +
K−1
max
c=0

(
c+nbi(t)−1

∑
j=c

Ci, j mod K

)
(9)

Schedulability Test 2. Let τ = {τ1,τ2, . . . ,τn} be a set

of n constrained-deadline sporadic tasks to be scheduled

upon an identical multiprocessor platform. For each se-

lected CPU π, the sufficient condition for the system to be

schedulable upon π is as the previous one except that in

Expression 7 the value of D̂BF is now replaced by
̂̂

DBF.

Note that Lemma 1 in the Appendix provides a proof

of the “dominance” of Schedulability Test 2 over Schedu-

lability Test 1. That is, all systems that are schedulable

using the Test 1 are also schedulable using Test 2.

5. Experimental results

In this section, we report on the results of experiments

conducted using the theoretical results presented in Sec-

tions 3 and 4. These experiments help us to evaluate the

performances our algorithms relative to both the FFD and

the S. Kato algorithms. Moreover, they help us to point

out the influence of some parameters such as the value

of parameter K and the number of CPUs in the platform.

We performed a statistical analysis based on the following

characteristics: (i) the number of CPUs is chosen in the

set M
def
= {2,4,8,16,32,64} for practical purpose. Indeed

multicore platforms often have a number of cores which

is a power of 2, (ii) the system utilization factor for each

CPU varies between 0.70 and 1 using a step of 0.05, as the

results are identical when the CPU utilization is less than

0.7.

During the simulations, 10.000 runs have been per-

formed for each configuration of the pair (number of

CPUs in the platform, system utilization factor). In the

figures displayed below, a “success ratio” of 2% of an al-

gorithm A over an algorithm B means that A leads to a

schedulability ratio of y%, where B leads to a schedula-

bility ratio (y−2)%.

For comparison reasons, the same protocol as the one

described in [12] by S. Kato for generating task systems

has been considered. That is:
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Figure 4. Illustration of the multiframe task τ1
i = ((Ci,0,Ci),Ti,Ti).

1. the utilization factor of each task is randomly gen-

erated in the range [0,1] with the constraint that the

sum of utilization factors of all tasks must be equal

to the utilization factor of the whole system,

2. the period Ti of task τi is randomly chosen in the

range [100,3000],

3. the relative deadline Di of task τi is set equal to its

period,

4. the WCET Ci of task τi is computed from its period

Ti and its utilization factor ui as Ci
def
= ui ·Ti.

It is worth noticing that we have no control of the num-

ber of tasks composing the system. This number depends

on the utilization factors of the tasks.

Figure 5 depicts the curve of the success ratio rela-

tive to parameter K for “packed scenarios”. As we can

see, the lower the value of K, the higher the success ratio.

This result may be surprising and counter-intuitive at first

glance as we would expect the contrary, that is, increas-

ing K would improve the success ratio. A reason to this

is provided by the pessimism introduced when packing all

the nonzero frames at the beginning of each multiframe

task. Indeed in this case, the processor demand is over-

estimated at time t = 0 for each CPU upon which there is

a multiframe task. To illustrate our claim, when K = 2,

each migrating task is assigned to at most 2 CPUs, thus

increasing the pessimism for these CPUs. Consequently,

the larger the value of K, the larger the number of CPUs

for which the processor demand will be over-estimated.

Figure 6 depicts the curve of the success ratio relative

to parameter K for the “scenario with pattern”. Here, in

contrast to the results obtained for “packed scenarios”, the

curves behave as we would intuitively expect them. That

is, increasing the value of K leads to a higher success ratio.

This is due to the fact that a higher value of K allows the

jobs of a migrating task to be assigned to a larger set of

CPUs, thus reducing the global computation requirement

upon each CPU.

Now, it is worth noticing that both the packed scenario

and the scenario with pattern lead to the same algorithm

when K = 2. In fact, while considering a scenario with

pattern, the multiframe execution requirements which are

allowed for a migrating task τi are (Ci,0) and (0,Ci).

Hence, from the schedulability analysis view point, the

one that will be considered is (Ci,0), which corresponds

to the packed scenario.

Figure 7 compares the performances of the algorithms

which provided the best results using our approach dur-

ing the simulations, that is, the one using packed scenar-

ios when K = 2 and the one using scenarios with pattern

when K = 20, and those of both the FFD and the S. Kato

algorithms.

We can see that our algorithms always outperform the

FFD algorithm and are a bit behind the one proposed by

S. Kato in terms of success ratio. However, the results

provided by our algorithms strongly challenge those pro-

duced by the S. Kato one for large number of CPUs. Note

that our algorithms in contrast to the S. Kato one do not al-

low job migrations, thus limiting runtime overheads which

may be prohibitive for the system. Hence, we believe that

our approach is a promising path to go for more competi-

tive algorithms and for practical use.

6. Conclusion and Future work

In this paper, the scheduling problem of hard real-time

systems comprised of constrained-deadline sporadic tasks

upon identical multiprocessor platforms is studied. A

new algorithm and a scheduling paradigm based on the

concept of semi-partitioned scheduling with restricted

migrations has been presented together with its schedu-

lability analysis. The effectiveness of our algorithm has

been validated by several sets of simulations, showing

that it strongly challenges the performances of the one

proposed by S. Kato. Future work will address two issues.

The first issue is relaxing the constraint on parameter K

as we think that is possible to define a value K for each

task such that the number of frames are kept as small as

possible. The second issue is solving the optimization

problem taking into account the number of migrations.
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Figure 6. Success ratio relative to parameter K for scenarios with pattern
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A. Appendix

Let τi be a multiframe task with a pattern σ
def
=

(σ1, . . . ,σK), that is, τi = ((σ1Ci, . . . ,σKCi),Di,Ti) with

σ j ∈ {0,1},1 ≤ j ≤ K. Let ℓi denotes the number of

nonzero execution requirements. Let τ
(p)
i be the packed

version of τi that is: σ j = 1 if j ≤ ℓi and σ j = 0, other-

wise.

Lemma 1

̂̂
DBF(τi, t)≤

̂̂
DBF(τ

(p)
i , t) (10)

Proof By definition:

̂̂
DBF(τi, t) = s · ℓi ·Ci +

K−1
max
c=0

(
c+nbi(t)−1

∑
j=c

Ci, j mod K

)

In this Equation, the max term can be rewritten as:

K−1
max
c=0

(
c+nbi(t)−1

∑
j=c

Ci, j mod K

)
=

K−1
max
c=0

(
Ci

c+nbi(t)−1

∑
j=c

σi, j mod K

)
(11)

Note that since σ j ∈ {0,1} and we perform the sum of

nbi(t) terms.

c+nbi(t)−1

∑
j=c

σ j mod K ≤min(ℓi,max(0,nbi(t))) (12)

Because we have at most ℓi nonzero execution require-

ments, so, we take the minimum between ℓi and nbi(t).
As such,

K−1
max
c=0

(
c+nbi(t)−1

∑
j=c

Ci, j mod K

)
≤

K−1
max
c=0

(Ci min(ℓi,max(0,nbi(t)))) (13)

leading to

K−1
max
c=0

(
c+nbi(t)−1

∑
j=c

Ci, j mod K

)
≤Ci min(ℓi,max(0,nbi(t))) (14)

Finally,
̂̂

DBF(τi, t)≤ s · ℓi ·Ci +Ci min(ℓi,max(0,nbi(t))).

That is,
̂̂

DBF(τi, t)≤
̂̂

DBF(τ
(p)
i , t). The lemma follows. �

Theorem 1 Let τi be a multiframe task. The worst-case

pattern for τi is the packed pattern.

Proof A pattern A is said worse than a pattern B if and

only if A schedulable implies B also schedulable. If the

packed pattern is schedulable and thanks to the previous

lemma, then
̂̂

DBF(τi, t) ≤
̂̂

DBF(τ
p
i , t) ≤ t,∀t, that is, the

pattern Σ is schedulable, and thus, the packed pattern is

worse than Σ. Since Σ represent any pattern, the packed

pattern is the worst-case pattern. The theorem follows. �


