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Abstract

Integrated Modular Avionics (IMA) architectures
employ a high-integrity, partitioned environment that
hosts multiple avionics functions of different criticalities
on a shared computing platform. IMA provides benefits
of flexibility and scalability and allow for weight savings.
However the complexity of the integration process is in-
creased due to the sharing of resources. One of the main
problem encountered during the integration process is to
find a proper scheme for scheduling avionics functions
onto offered processing units while ensuring at the same
time execution, resource and safety demands.

In this paper, we present a MILP formulation for the
scheduling of avionics functions on the resources of an
IMA architecture. This mixed integer linear program-
ming formulation takes into account resource constraints
as well as temporal constraints related to ensuring a fea-
sible schedule for the strictly periodic avionics functions.
The objective function is to maximize the evolution margin
for the functions, so that spare resources can be allocated
to meet the resource demand growth of the hosted func-
tions.

1. Introduction

The IMA architectures allow to execute avionics
functions on a shared computing platform while respect-
ing hard segregation constraints (spatial and temporal)
between them and providing reliable communications.
The processing units, called modules, can host several
avionics applications and execute them independently.
Segregation constraints are enforced using complete
partitioning, not only on a functional basis, but also for
what concerns memory allocations, in order to avoid
interference between the independent applications and
hence failures.

The IMA architecture is replacing the previous so-
called federated architecture where resource sharing was
rather limited and the dependencies between systems were

well understood [17]. The IMA platform is generally used
in conjunction with the ARINC1 specifications, and in
particular ARINC 653 [2] that defines the support for ro-
bust partitioning in on-board systems.

1.1. Partition segregation
As mentioned above, applications provide certain

functionalities and need to be partitioned with respect
to space (spatial partitioning) and time (temporal par-
titioning). A partition is therefore a program unit of
the application designed to satisfy these partitioning
constraints. The number of partitions per application is
based on design related decisions and does not concern
the work presented in this paper. For what follows, the
notion of partition is going to be used and not that of
application.

Each partition is allocated a set of spatial resources
(such as system memory). To avoid error propagation, for
instance, memory allocations must not overlap or even
be shared between partitions. Hence, whilst configuring
modules, the system designer has to ensure that these
constraints are respected.

Each partition is also characterized by a time budget
and a period. Partitions are executed strictly periodically,
which means that the time separating two successive
executions (instances) of the same partition is strictly
equal to the partition period. Since partitions allocated
to the the same module share the overall execution time
(i.e. only one partition can be executed by the module at
a time), the system designer has to ensure the temporal
segregation of these partitions by a proper scheduling. In
other words, he has to compute offsets (i.e. start time of
the first instances) for the partitions such that there is no
overlap in time between partition executions.

Due to the strict periodicity of partition executions,
the schedule carried out on each module is by itself pe-

1Aeronautical Radio, Incorporated (ARINC), established in1929, is
a major provider of transport communications and systems engineering
solutions for eight industries: aviation, airports, defense, government,
healthcare, networks, security and transportation.



riodic [14] of a period defined by the least common mul-
tiple (LCM) of the module’s partition periods–given that
all partitions are released at once for the first time–. This
period through which the schedule repeats with the same
pattern is called the Major Frame (MAF). It provides a
sufficient time-horizon for ensuring a correct temporal
scheduling [6]. Figure 1 shows the execution of two par-
titions and the corresponding MAF.

Figure 1. Partition execution in a MAF.

1.2. Partition communication

Interaction between partitions is limited to exchanging
data through the communication backbone. Partitions
resident on the same module communicate via locally
dedicated API ports, whereas partitions resident on
different modules communicate through the AFDX
(Avionics Full Duplex Switched Ethernet) network
which is specified by the ARINC 664 specification [3].
This network offers two-way communications based on
the well known switched Ethernet. Further details on
the communication backbone can be found in [3] and [7].

In airborne systems, communications occur in the
framework of processing chains through which some
kind of data is treated sequentially by a certain number
of partitions. Data usually originate from a sensor or user
input, and after processing by one or more partitions, a
command is send to an actuator or screen (e.g. displaying
altitude after analyzing altimeter readings). For ease of
presentation, we shall assume that a processing chain
starts at the first partition of the chain and ends at the last
one. In addition, multicast is ignored and not included in
our work. Figure 2 shows a simple example of a chain
where partition 1 sends some kind of data to partition 2
which itself manipulates and transmits it back to partition
1. This partition finally sends a command or result to
partition 3, the final consumer in the chain.

It is the responsibility of the system designer to allo-
cate partitions to modules in such a way that the end-to-
end delay of a processing chain does not exceed a certain
predefined threshold.

Figure 2. Processing chain consisting of 3
partitions.

1.3. Problem description
Currently, given the small number of partitions,

partition mapping and scheduling is carried out by system
experts (i.e. system designer) without particular aiding
tools. Some of the simulation tools used for performance
analysis of real-time systems and the associated schedu-
lability analysis include, among others, Cheddar [19] and
MAST [11]. In the near future, the number of partitions
is expected to increase significantly, and it will become
indispensable to automate the integration process. In
particular, system designers will need specific tools to
aid decision making for what concerns partition mapping
and scheduling onto modules. Such tools will also be of
utmost utility when adding new partitions to the system,
which necessitates the computation of a new allocation
and schedule.

The work presented in this paper proposes to automate
the choices carried out by the designer for the spatial and
temporal partitioning. As shown below, few works have
discussed this automation in decision making in the con-
text of IMA architectures [9].

1.4. Related work
Frameworks and models for allocating partitions

to modules were studied in [17] and [5], based on
directives derived from safety and operational reliability
requirements. However, these works do not address
the issue of scheduling the partitions allocated to each
module.

Most studies on the scheduling problem consider loose
periodicity where task instances are not obliged to be
exactly one period apart. The authors in [8] presented
a MILP formulation for non-periodic task scheduling
on a set of processors with latency conditions. In [20],
[21] and [22], the authors present a MILP formulation
to solve a multi-processor periodic task scheduling
problem, but with no emphasis on strict periodicity and
considering task instances (on a time horizon equivalent
to the LCM of all partition periods) as we have done in [4].



Our present work is closely related to works by [13]
and [14]. Jan Korst [14] proposed a heuristic for min-
imizing the number of processors used for scheduling a
set of periodic tasks. The strict periodicity case was han-
dled and a condition for the schedulability of two periodic
tasks was proposed. In [13], a similar problem where a
multiprocessor schedule was searched to minimize the cy-
cle time while considering strict periodicity, latency and
precedence constraints. For this purpose, a heuristic was
proposed alongside an exact branch and cut algorithm.
Our approach differs from these earlier work in the de-
sired objective and the implemented techniques.

1.5. Organization
Section 2 presents a mathematical model to our prob-

lem integrating allocation, scheduling and communication
delay constraints. Section 3 proposes a method for simpli-
fying our problem using graph theory. Section 4 presents
some experimentations on the model. Section 5 finally
concludes, spotting the light on the main results, and
presents some perspective on ongoing and future work.

2. Formal definition of the problem

We consider a setΠ = {π1, . . . , πn} of partitions
that have to be mapped and scheduled on a setP =
{p1, . . . , pm} of parallel processors (modules).

Modeling a module. Each modulepj ∈ P is char-
acterized by the available memory capacityMj , and
the maximum number of partitionsKj the module can
host. Inter-module communication is characterized by
the delay matrix∆ = δj,l, ∀(pj , pl) ∈ P2, whereδj,l

represents the maximum communication delay between
modulespj andpl for j 6= l. It is assumed thatδj,j = 0.

For safety requirements, the modules are arranged into
cabinets representing groups of modules sharing commu-
nication means. Each cabinetCi, i = 1 . . . C, is pow-
ered independently, i.e. any cabinet can be powered off
(thus shutting down corresponding modules) without af-
fecting other cabinets and their contained modules. We
suppose thatP = ∪C

i=1Ci, and∀i = 1 . . . C, ∀j = 1 . . . C,
Ci ∩ Cj = ∅.

Modeling a partition. A partition πi has the following
attributes:

• Ti, the partition period,

• bi, the time budget of the partition, i.e. the duration
of partition execution,

• mi, the memory budget of the partition, i.e. required
memory capacity.

It is assumed that partitions can execute from the
beginning of the MAF. In addition, the first temporal
execution for a partitionπi must terminate before the end
of the period. We letti denote the date at which partition
πi is executed for the first time. Due to strict periodicity,
the kth invocation of the partition is executed at time
ti + (k − 1)Ti.

Two given partitions may be in exclusion for security
reasons, i.e. they cannot be hosted by the same mod-
ule. We letE denote the set of couples(πi, πk) ∈ Π2

such that partitionsπi andπk must be executed on dif-
ferent modules. Similarly, two partitions can be in exclu-
sion on cabinet level, meaning that they cannot co-exist
in the same cabinet, and we letEc denote the set of cou-
ples(πi, πk) ∈ Π2 such that partitionsπi andπk must be
executed in different cabinets.

Modeling a processing chain. Partitions may be in-
volved in receiving and sending data along a processing
chain (path) as described in section 1.2. We letΛ =
{λ1, . . . , λo} be the set of all processing chains in the sys-
tem. Each processing chainλc is a sequence of partitions
through which data is transferred, andλc(k) represents the
kth partition to handle the data in the chain. A processing
chain is characterized by the maximum tolerated end-to-
end delayLmax

λc
after which critical (or even hazardous)

situations may be encountered.

Constraints. The following represent the constraints
imposed on partition allocation and scheduling:

(C1): Each partition must be allocated to one and
only one module.

(C2): For partitions belonging to the same module,
overlap in execution times must be avoided.

(C3): The first instance of a partition has to be exe-
cuted before the end of the corresponding period.

(C4): On each module, the sum of partitions’ mem-
ory budgets must not exceed the module’s memory
capacity.

(C5): The number of partitions on each module must
not exceed the maximum number of partitions the
module can host.

(C6): If two partitionsπi andπk are in exclusion at
the module level, i.e.(πi, πk) ∈ E , they must be
allocated to two different modules.

(C7): If two partitionsπi and πk are in exclusion
at the cabinet level, i.e.(πi, πk) ∈ Ec, they must
be allocated to modules belonging to two different
cabinets.



(C8): The partitions of each processing chainλc

must be allocated in such a way that the resulting
end-to-end delay does not exceed a certain defined
upper boundLmax

λc
.

2.1. Defining the allocation and scheduling problem
The allocation problem amounts to finding a function

that associates a module to each partition–all partition ex-
ecutions are in effect carried out on the same module–,
such that all resource and scheduling constraints are veri-
fied for all modules. An allocation can be represented as
a vector of binary variablesa = (ai,j) such that:

ai,j =

{

1 if partitionπi is assigned to modulepj ,
0 otherwise.

Only one module can be allocated to partitionπi ∈ Π
(constraint C1), hence:

∑

pj∈P

ai,j = 1 , ∀πi ∈ Π. (1)

Since partitions execute strictly periodically, a sched-
ule is entirely defined by first partition execution dates
which we represent by the vectort = (ti).

2.2. Scheduling constraints
Note that the mth instance of partition πi

is executed in the time intervalIm(ti) =
[ti + (m − 1)Ti, ti + (m − 1)Ti + bi]. According to
constraint C2, if partitionsπi and πk are allocated to
the same module, any two invocationsm andn of these
partitions must not overlap in time. This can be expressed
as follows:

∀(πi, πk) ∈ Π2, ∀m, n ∈ IN∗, ∀pj ∈ P

aij = akj = 1 ⇒ Im(ti) ∩ In(tk) = ∅.

Korst proposed in [14] (p.65) a necessary and sufficient
condition to enssure that two partitions do not overlap in
time.

Theorem 1. Execution of partitionsπi and πk on the
same module never overlaps in time if and only if

bi ≤ (tk − ti) mod gi,k ≤ gi,k − bk, (2)

wheregi,k is the GCD ofTi andTk.

This theorem assists in validating a schedule, i.e. there
is no overlapping in execution times between partitions
on modules, if and only if each couple of partitions (on a
module) verify condition (2). This condition can be equiv-
alently written as the following linear constraints:

∀(πi, πk) ∈ Π2, ∀pj ∈ P ,

bi − (2 − ai,j − ak,j)Z ≤ (tk − ti) − qk,i gk,i

≤ gi,k − bk + (2 − ai,j − ak,j)Z, (3)

whereqk,i is an integer variable representing the quotient

from the modulo operation in (2) (i.e.qk,i =
⌊

tk−ti

gi,k

⌋

)

andZ is a large constant that ensures that the constraint
is not active unlessak,j = ai,j = 1. The introduction of
Z to obtain conditional constraints was inspired from [16].

To properly linearize the problem, the quotientqk,i

must verify the following constraint for every partition
couple allocated the same module,

0 < (tk − ti) − qk,i gi,k < gi,k. (4)

Clearly, given thatbi and bk are positive, verifying
constraints (3) imply the validity of (4). Hence, (4)
represent redundant constraints.

Given the fact that

tk − ti

gi,k

− 1 <

⌊

tk − ti

gi,k

⌋

≤
tk − ti

gi,k

,

A bound forqk,i can be supplied:

−Ti + bi

gi,k

− 1 < qk,i ≤
Tk − bk

gi,k

. (5)

In addition, a schedulet must satisfy the requirement
that each partitionπi executes for the first time in the in-
terval[0, Ti] (constraint C3):

0 ≤ ti ≤ Ti − bi , ∀πi ∈ Π. (6)

In the following, we letζ(a,b) denote the set of all
feasible schedulest satisfying (3) and (6), whereb = (bi)
is the vector representing partition time budgets.

2.3. Resource constraints
Memory constraints C4 can be expressed as:

∑

πi∈Π

ai,j mi ≤ Mj , ∀ pj ∈ P . (7)

Constraints C5 on the number of hosted partitions per
module are equivalent to:

∑

πi∈Π

ai,j ≤ Kj, ∀pj ∈ P . (8)

Exlusion constraints C5 prohibiting co-location of two
partitions on the same module can be written as:

ai,j ≤ 1 − ak,j , ∀pj ∈ P , ∀(πi, πk) ∈ E . (9)

Whereas cabinet-level exclusion constraints C7 are
modeled as:

ai,j ≤ 1 −
∑

p∈Cl

ak,p, ∀pj ∈ Cl, ∀l ≤ C, ∀(πi, πk) ∈ Ec.

(10)
Furthermore, it is possible to enrich the model by a new

type of constraints to facilitate problem solving. These
constraints are a result of a simple corollary of Theorem 1.



Corollary 1. Two partitionsπi etπk can be allocated the
same module only if

gi,k ≥ bi + bk (11)

is verified.

Proof. This condition can be easily deduced from condi-
tion (2) of Theorem 1.

It is consequently easy to add exclusion constraints
similar to those of C6 between partitions that do not ver-
ify Corollary 1. We letEa be the set of partition couples
(πi, πk) ∈ Π2 such thatbi + bk > gi,k, and add the fol-
lowing constraints:

ai,j ≤ 1 − ak,j , ∀pj ∈ P , ∀(πi, πk) ∈ Ea. (12)

We denote byA the set of vectorsa satisfying (1), (7)-
(12). It represents the set of all possible allocations satis-
fying the resource constraints.

2.4. Communication delay constraints
Constraint C8 indicates that∀λc ∈ Λ, the end-to-end

communication delayLλc
must be less than or equal to

Lmax
λc

. The end-to-end communication delay can be ex-
pressed as:

Lλc
=

|λc|−1
∑

i=1

Lλc(i),λc(i+1)+bλc(|λc|) ≤ Lmax
λc

, ∀λc ∈ Λ,

(13)
whereLλc(i),λc(i+1) represents the communication delay
between the consecutive partitionsλc(i) andλc(i+1) and
bλc(|λc|) is the execution time for the last partition in the
chain. (13) indicates that the end-to-end communication
delay is the sum of consecutive partition-to-partition
communication delays in the chain, i.e. each partition in
the sequence sends data to the following one.

Partition-to-partition communication delay, betweenπi

andπk for instance, represents the time needed to process
data byπi and send the result toπk, either through the
AFDX network, or locally through API ports.Lπi,πk

can
hence be written under the following form:

Lπi,πk
= bi+Tk+

∑

pj∈P

∑

pl∈P

ai,jak,lδj,l , (πi, πk) ∈ Π2

(14)
The component

∑

pj∈P

∑

pl∈P ai,jak,lδj,l adds the
inter-module transmission delay betweenpj and pl,
where partitionsπi andπk are respectively located, due
to using the AFDX network. It should be noted that,
if the two partitions are located on the same module,
then this component will be zero; given thatδj,j = 0.
The periodTk is also added to equation (14) indicating,
with messages being read at the beginning of partition
execution, (i) the worst-case for data acquisition after

reception by the destination module when the two parti-
tions are on different modules, and (ii) an upper bound on
data reception when the two partitions are on the same
module. Figure 3 represents the three delay components
appearing in equation (14).

Figure 3. Delay components for partition
couple communication.

The productai,jak,l poses a problem on the linearity of
the model (equation (14) is nonlinear). In order to utilize
the MILP formulation, a reformulation has to be done [8].
Equation (14) becomes:

Lπi,πk
= bi +Tk +

∑

pj∈P

∑

pl∈P

zi,k,j,lδj,l , (πi, πk) ∈ Π2

(15)
where the continuous variablezi,k,j,l ∈ [0, 1] replaces the
bilinear termai,jak,l and has to satisfy the following lin-
earization constraints,

zi,k,j,l ≤ ai,j , (16)

zi,k,j,l ≤ ak,l, (17)

zi,k,j,l ≥ −1 + ai,j + ak,l, (18)

∀(πi, πk) ∈ Π2, ∀(pj , pl) ∈ P2, which guarantee that
zi,k,j,l = ai,jak,l. The following constraints (19)-(20)
represent some observations,

zi,k,j,l = zk,i,l,j , (19)

zi,i,j,j = ai,j . (20)

The rather large number of linearization constraints
(16)-(18) (3n2m2 constraints) can slow down the solu-
tion process considerably. For this reason, we generate
reduction constraints [15] by multiplying the allocation
constraints (1) byak,l to obtain the following,

∑

pj∈P

zi,k,j,l = ak,l , ∀(πi, πk) ∈ Π2, ∀pl ∈ P . (21)



Proposition 2. If the constraints(1) and (21) hold, pro-
vided (19), we havezi,k,j,l = ai,jak,l and in particular
zi,k,j,l ∈ {0, 1}. Therefore constraints(1), (19), (21) im-
ply the linearization constraints(16)-(18), [15].

We denote byΘ the set of vectorsa satisfying (13),
(19), (21) andzi,k,j,l ∈ [0, 1]. This set represents all
possible allocations where the communication delay con-
straints are respected.

2.5. Formulation as a mixed integer linear program
A feasible solution to our problem is a couple(a, t),

wherea is an allocation andt is a schedule, satisfying
constraints (1), (3), (6), (7)-(10), (12), (13), (19) and (21).
In other words,

a ∈ A ∩ Θ,

t ∈ ζ(a,b).

In practice, it will often happen that several such
solutions are feasible. In such a case, it is desirable to
choose the one which ensures better evolution capacity
for partitions, e.g. to permit adding new functionalities,
without the need to reconsider all decisions (allocation
and scheduling) already taken. Figure 4, for example,
represents two possible solutions (S1) and (S2) for an
allocation/scheduling problem with two modules and four
partitions. It is obvious that the second solution (S2) of-
fers more spare time in front of every partition execution,
thus enabling us to augment partition execution times if
necessary. In the first solution, however, it is impossible
to evolve available partitions on the first module, for what
concerns time budgets.

Figure 4. Choosing a better solution.

For this reason, the problem is expressed as an opti-
mization problem. The objective is to find a solution that
maximizes the time budgets which can be allocated to par-
titions. We aim for maximizing a coefficientα by which
all initial partition time budgets (from problem input)
can be multiplied, whilst respecting all system constraints.

Figure 5 shows the impact ofα on a schedule consti-
tuted of two partitions on a given module. Hashed rect-
angles represent initial time budgets, whereas the larger
filled ones represent the maximum allocable time budgets.

Figure 5. Scheduling using α.

The allocation and scheduling problem is hence formu-
lated as follows,

Maxa,tα

s.t.

a ∈ A ∩ Θ,

t ∈ ζ(a, αb).

In more detail, the complete formulation is:







































































































































































Maxa,tα

s.t.
∑

pj∈P ai,j = 1, ∀πi ∈ Π,
∑

πi∈Π ai,j mi ≤ Mj, ∀pj ∈ P ,
∑

πi∈Π ai,j ≤ Kj, ∀pj ∈ P ,

ai,j ≤ 1 − ak,j , ∀pj ∈ P , ∀(πi, πk) ∈ E ,

ai,j ≤ 1 −
∑

p∈Cl
ak,p, ∀l ≤ C, ∀(πi, πk) ∈ Ec,

ai,j ≤ 1 − ak,j , ∀pj ∈ P , ∀(πi, πk) ∈ Ea,

ti ≥ 0, ∀πi ∈ Π,

ti ≤ Ti − α bi, ∀πi ∈ Π,

(tk − ti) − qk,i gi,k ≥ α bi − (2 − ai,j − ak,j)Z,

∀pj ∈ P , ∀(πi, πk) ∈ Π2,

(tk − ti) − qk,i gi,k ≤ gi,k − α bk + (2 − ai,j − ak,j)Z,

∀pj ∈ P , ∀(πi, πk) ∈ Π2,
∑|λc|−1

i=1

(

bλc(i) + Tλc(i+1) +
∑

pj∈P

∑

pl∈P zi,k,j,lδj,l

)

+bλc(|λc|) ≤ Lmax
λc

, ∀λc ∈ Λ,
∑

pj∈P zi,k,j,l = ak,l, ∀(πi, πk) ∈ Π2, ∀pl ∈ P ,

zi,k,j,l = zk,i,l,j , ∀(πi, πk) ∈ Π2, ∀(pj , pl) ∈ P ,

qk,i > −Ti+bi

gi,k
− 1, ∀(πi, πk) ∈ Π2,

qk,i ≤
Tk−bk

gi,k
, ∀(πi, πk) ∈ Π2,

ai,j ∈ {0, 1}, ∀pj ∈ P , ∀πi ∈ Π,

zi,k,j,l ∈ [0, 1], ∀(πi, πk) ∈ Π2, ∀(pj , pl) ∈ P .

We therefore search for maximizing the minimum evo-
lution potential of the partitions in the system (temporal
execution-wise). We will, hence, find partitions capable
of evolving with a potential corresponding to this mini-
mum value, and others capable with a more greater one.



3. Allocation initialization implementing
graph theory

In this section, we search for reducing the number of
problem variables, which may reduce the time required
for solving the MILP presented in Section 2.5. For
this, we propose a pretreatment phase based on graph
theory. This pretreatment must guarantee that the optimal
solution remains accessible. The method illustrated
hereafter was inspired from the work carried out by Korst
in [14] and is applied when all modules are identical,
which is the case in reality. In the case where the modules
are heterogeneous, the method no longer remains efficient.

A graph G, in which each node is associated to a
partition, is constructed. An arc connecting two nodes
is established if the two corresponding partitions are not
involved in an exclusion (e.g. condition (11) is not veri-
fied). If two nodes are not connected, it is impossible to
map the two corresponding partitions on the same module.

The connected components ofG represent partition
sets that must be mapped onto different modules. The
search for a Maximal Independent Set (MIS) inG [18],
allows obtaining a set of totally independent partitions,
that must consequently be allocated different modules.
Algorithms for finding connected components and maxi-
mal independent sets are not exposed in this paper and are
based on graph theory basics and some of the algorithms
developed in [1] and [18].

For every connected component ofG, partitions
corresponding to nodes in the MIS are placed on distinct
modules–since partitions of this set cannot be placed
on the same module–, this allows us to minimize the
number of problem allocation variables and accelerate the
resolution process.

Figure 6 represents the graph representation for a set
of six partitions. Each node couple is connected by an
arc if no exclusion exists between the corresponding par-
titions, according to previously defined exclusion con-
straints (Section 2.3). For example, partitions 1 and 2 are
likely to be placed on the same module, while partitions
1 and 3 surely do not co-exist on the same one. Nodes
1, 3 and 6 are found to represent a MIS, hence, by fixing
the allocations for partitions 1, 3 and 6 on three different
modules, we are able to minimize in effect the problem’s
allocation variables from six to three.

4. Experimentation

We hereafter present some experimentation on the
optimization problem presented in Section 2 along with
the pretreatment proposed in Section 3. The MILPs
where solved using the solver CPLEX [12] from the
ILOG community on an eight core system–each rated at

Figure 6. Graph representation for a set of
partitions.

3.2GHz–with 8MB cache and 32GB system RAM. The
solver was noticed to utilize one of the eight cores and
4.7GB of Ram at most.

Twenty-three problems, in which the number of
modules and partitions varied from 1 to 4 and 6 to 80
respectively, are demonstrated in Table 1. Partition
periods were taken in time intervals as shown in the same
table, whereas partition time budgets were considered
of small order as compared to the periods. Partition
periods were generated in a manner limiting the LCM
between them based on a method similar to that indicated
in [10], and hence, obtaining a not so large MAF on
each module. Communication was considered so that
40 to 60 percent of partitions were involved in some
kind of processing chain (acquisition and transmission of
data). Partition exclusions were generated such that 40
percent of partitions at maximum were involved. Memory
capacity and partition count on modules were generated
to impose some constraints on the problems. Memory
requirements for partitions, for instance, were generated
such that their sum equals the total memory capacities of
modules multiplied by a certain utilisation factor (taken
as50%).

In addition, the problem was solved by considering
time budgets (ti , ∀πi ∈ Π) as integer and continuous
variables respectively. Theoretically, solving forti
continuous should give some relaxation to the problem,
and consequently, we should expect faster computation
times (CpuTime).

Table 1 is divided into two parts, experiments 1 to
11 where periods ranged up to couple of hundreds, and
experiments 12 to 23 where periods ranged up to couple
of thousands. Values ofα demonstrate the optimization
carried out, where for example in experiments 4 and
16, partition time budgets can be increased by half
(α = 151%) without affecting the proposed allocation
and schedule.

Computation times for experiments 1 to 7 and 13 to 17
were insignificant, whereas for the rest, and depending on



Table 1. Time required for solving the mixed integer linear program
Experiment Module Partition Partition CpuTime CpuTime α α

count count period range ti : int ti : real ti : int ti : real
1 3 6 [50,150] 0.04s. 0.01s. 100% 111,1%
2 3 6 [60,300] 0.05s. 0.01s. 135.938% 136.364%
3 3 6 [40,350] 0.03s. 0.01s. 134.615% 137.931%
4 3 6 [120,400] 0.03s. 0.01s. 151.613% 151.899%
5 4 10 [30,360] 0.1s. 0.07s. 145% 145.161%
6 4 10 [90,400] 0.3s. 0.08s. 114.286% 115.385%
7 4 10 [80,400] 0.22s. 0.05s. 108% 108.108%
8 4 20 [20,360] 2hr. 1s. 115.385% 115.385%
9 4 20 [10,270] 5.57hr. 6.5s. 110% 125%
10 4 30 [10,720] 24hr.+ 24hr.+ (200%) (200%)
11 4 80 [20,450] 24hr.+ 24hr.+ - -
12 1 10 [600,2400] 14.53mn. 3.14mn. 136% 136.364%
13 3 6 [500,1500] 0.02s. 0.01s. 126.126% 126.126%
14 3 6 [600,3000] 0.2s. 0.01s. 136.25% 136.364%
15 3 6 [400,3500] 0.21s. 0.01s. 137.692% 137.931%
16 3 6 [1200,4000] 0.62s. 0.01s. 151.875% 151.899%
17 4 10 [300,3600] 0.09s. 0.07s. 145.116% 145.161%
18 4 10 [900,4000] 1.22s. 0.08s. 115.352% 115.385%
19 4 10 [800,4000] 0.38s. 0.05s. 108% 108.108%
20 4 20 [200,3600] 12.07s. 2.36s. 115.385% 115.385%
21 4 20 [100,2700] 6hr. 15.7mn. 123.333% 125%
22 4 30 [100,7200] 24hr.+ 24hr.+ (200%) (200%)
23 4 80 [200,4500] 24hr.+ 24hr.+ - -

the complexity of the problem, became more important.
The difference in computation times between experiments
12 and 17, with the latter being presumably harder, is a
clear indication that the complexity of a problem arises
not only from the number of components (modules and
partitions) but also from any of the component attributes
(such as partition periods). Experiments 10, 11, 22 and
23 were stopped after 24 hours of execution. Experiments
10 and 22 found feasible solutions but could not prove
optimality in the indicated time. Experiments 11 and 23
were very complex that no solution was even found for
the same amount of time. This brings us to the point
that real complex systems and even future ones, where
number of modules and partitions may be of importance,
may pose a problem for the MILP formulation.

It should be also noted that, though not presented in
Table 1, the proposed pretreatment phase had a great
impact on reducing the computation times as can be
clearly seen in Table 2, representing a set of five separate
problems.

What seems to be interesting however, is that solving
for continuous values of time budgets improves compu-
tation times (e.g. from about 5 and a half hours to 6.5
seconds in experiment 9) while obtainingα values that are
close to those from solving the original problem (without
relaxation of time budgets), especially for greater order
of periods. This enables us to propose a heuristic that

Table 2. The impact of pretreatment phase
Exper. Module Partition CpuTime CpuTime

count count (no pretreat.) (pretreat.)
a 3 6 0.31s. 0.01s.
b 4 8 0.78s. 0.25s.
c 4 8 3.87s. 0.77s.
d 8 16 1.9hr. 29s.
e 8 16 5days 11mn.

is based on solving the problem forti, ∀πi ∈ Π, con-
tinuous, then by guarding the computed allocations, we
resolve sub-MILP problems based on finding an optimal
scheduling on each module. We admit that this two phase
heuristic may be inefficient in some cases where solving
with relaxation, as was shown in Table 1, may require a
colossal amount of time for computation. Nevertheless it
seemed interesting to investigate this method and test it
on a simple set of experiments as shown in Table 3.

We can notice that the application of this two phase
method gave very close optimal results, which means that
this heuristic may give near optimal results in more ac-
ceptable computation times.

5. Conclusion

In this paper, we have proposed a MILP formulation
model for the mapping and scheduling problem of avion-



Table 3. Two phase heuristic
Exper. CpuTime CpuTime α α

original two phase original two phase
7 0.22s. 0.05s. 108 % 108 %
8 2hr. 10.37s. 115.385 % 114.286 %
9 5.57hr. 26.68mn. 110 % 100 %
15 0.21s. 0.01s. 137.692 % 136.667 %
16 0.62s. 0.01s. 151.875 % 151.875 %
18 1.22s. 0.8s. 115.352 % 115.352 %
21 6hr. 16mn. 123.333 % 123.333 %

ics applications. The particularity of this work resides in
the strict periodicity of partition executions and the di-
versity of system constraints. The experimentations have
shown the efficiency of the proposed approach, including
a pretreatment phase where some initialization can be
made. Computation times, however, for quite complex
architectures with a significant number of components,
can become somewhat sluggish.

In the future, it would be normal to find several hun-
dreds of partitions running on several dozens of modules.
The exact method presented in this paper will be used to
assess the performance of an adapted heuristic that should
be capable of handling more complex systems efficiently.
Our interest now is to develop such a heuristic, referring
to local search algorithms.
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et l’ordonnacement de systèmes de production complexes.
PhD thesis, LAAS-CNRS, reportno 97248, 1997.

[17] L. Sagaspe and P. Bieber. Constraint-based design and al-
location of shared avionics resources. In26th AIAA-IEEE
Digital Avionics Systems Conference, Dallas, 2007.

[18] A. Sharieh, W. AlRawagepfeh, M. Mahafzah, and
A. Al Dahamsheh. An Algorithm for Finding Maximum
Independent Set in a Graph.European Journal of Scien-
tific Research, 23(4):586–596, 2008.

[19] F. Singhoff, J. Legrand, L. Nana, and L. Marcé. Cheddar:
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