
HAL Id: hal-00546939
https://hal.science/hal-00546939

Submitted on 15 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Partitioned EDF Scheduling for Multiprocessors using a
C=D Scheme

Alan Burns, Robert Davis, P. Wang, Fengxiang Zhang

To cite this version:
Alan Burns, Robert Davis, P. Wang, Fengxiang Zhang. Partitioned EDF Scheduling for Multiproces-
sors using a C=D Scheme. 18th International Conference on Real-Time and Network Systems, Nov
2010, Toulouse, France. pp.169-178. �hal-00546939�

https://hal.science/hal-00546939
https://hal.archives-ouvertes.fr


Partitioned EDF Scheduling for Multiprocessors

using a C=D Scheme

A. Burns, R.I. Davis, P. Wang and F. Zhang

Department of Computer Science,

University of York, UK.

Abstract—An EDF-based task-splitting scheme for scheduling
multiprocessor systems is introduced in this paper. For m

processors at most m− 1 tasks are split. The first part of a split
task is constrained to have a deadline equal to its computation
time. The second part of the task then has the maximum time
available to complete its execution on a different processor. The
advantage of this scheme is that no special run-time mechanisms
are required and the overheads are kept to a minimum. Analysis
is developed that allows the parameters of the split tasks to
be derived. This analysis is integrated into the QPA algorithm
for testing the schedulability of any task set executing on a
single processor under EDF. Evaluation of the C=D scheme is
provided via a comparison with a fully partitioned scheme and
the theoretical maximum processor utilisation.

I. INTRODUCTION

Multiprocessor and multi-core platforms are currently the

focus of considerable research effort. There are a number of

open theoretical questions and many practical problems, all

of which need to be addressed if effective and efficient real-

time systems are to be hosted on these emerging platforms.

One of key issues, that does not exist with single processor

systems, is the allocation of application tasks to the available

processors. Many different schemes have been advocated and

evaluated, from the fully partitioned to the totally global. It

is unlikely that a single scheme will meet the needs of all

applications [13].

In this paper we consider a task-splitting approach in which

most tasks are statically partitioned, but a few (at most one

per processor) are allowed to migrate from one processor

to another during execution. For each execution of one of

these tasks it is initially (statically) allocated to one processor,

after a period of execution the task moves to a (predefined)

second processor where it completes its execution. When it is

next released it returns to the first processor. The motivation

for this task-splitting scheme is that it can benefit from

most of the advantages of the fully partitioned scheme, but

can gain enhanced performance from its minimally dynamic

behaviour. A number of researchers have considered task-

splitting (they are reviewed below). In this paper we use an

approach that utilises the effectiveness of EDF scheduling for

single processors whilst not requiring any particular run-time

facilities from the multi-core platform. It is low on overheads

and hence it can form the basis for a practical approach to

scheduling real-time applications with near optimal use of the

processing resources.

Fully partitioned systems have the advantage that each

processor is scheduled separately and hence standard single

processor theory is applicable. The disadvantage comes from

the necessary ‘bin packing’ problem that must efficiently

allocate tasks to processors without overloading any of the

processors – an overload would lead to a deadline being missed

at runtime. Globally scheduled systems do not suffer from

this bin packing problem, but they do have other problems

to consider. At the theoretical level it seems that no simple

dispatching scheme with low overheads can optimally sched-

ule all task sets (in particular those that include sporadic tasks

and arbitrary deadlines). At the practical level there are cache

coherence problems that add significantly to the overheads of

task migration. An approach that involves a minimum amount

of migration but allows a small number of tasks to be ‘split’,

so that the processor bins are better filled, clearly has many

attractions.

A. System Model and EDF Analysis

We use a standard system model in this paper, incorporat-

ing the preemptive scheduling of periodic and sporadic task

systems. A real-time system, A, is assumed to consist of n
tasks (τ1 .. τn) each of which gives rise to a series of jobs.

Each task τi is characterized by the following profile (Ci, Di,

Ti):

• A period or minimum inter-arrival time Ti; for peri-

odic tasks, this defines the exact temporal separation

between successive job arrivals, while for sporadic tasks

this defines the minimum temporal separation between

successive job arrivals.

• A worst-case execution time Ci, representing the maxi-

mum amount of time for which each job generated by τi

may need to execute. The worst-case utilization (Ui) of

τi is Ci/Ti. All tasks must have Ui ≤ 1. The total system

utilisation, U , is simply the sum of all these individual

task utilisations.

• A relative deadline parameter Di, with the interpretation

that each job of τi must complete its execution within

Di time units of its arrival. The absolute deadline of a

job from τi that arrives at time t is t + Di. In general,

deadlines are arbitrary: they can be less than, greater than

or equal to the period values. We use the term implicit

deadline for tasks with Di = Ti and constrained deadline

for tasks with Di ≤ Ti.



Once released, a job does not suspend itself. We also

assume in the analysis, for ease of presentation, that tasks

are independent of each other and hence there is no blocking

factor to be incorporated into the scheduling analysis. General

system overheads are ignored in this treatment. Their inclusion

would not impact on the structure of the results presented, but

would complicate the presentation of these results. In practice,

these overheads must of course not be ignored [10]. We do

however consider the extra overheads introduced by the task-

splitting scheme.

There are no restrictions on the relative release times of

tasks (other than the minimum separation of jobs from the

same task). Hence we assume all tasks start at the same instant

in time – such a time-instant is called a critical instant for

the task system [22]. In this analysis we assume tasks do not

experience release jitter. We are concerned with analysis that

is necessary, sufficient and sustainable [5].

The hardware platform consists of m identical processors.

On each processor the allocated tasks (including any that

might be split) are scheduled by EDF. Therefore with implicit

deadlines there is a potential utilisation bound of m.

Exact analysis for EDF scheduled tasks on a single proces-

sor usually involves the use of Processor-Demand Analysis

(PDA) [7], [6]. This test takes the following form (the system

start-up is assumed to be at time 0):

∀t > 0 : h(t) ≤ t (1)

where h(t) is the total load/demand on the system (all jobs

that have started since time 0 and which have a deadline no

greater than t). A simple formulae for h(t) is therefore:

h(t) =

n
∑

j=1

⌊

t + Tj −Dj

Tj

⌋

0

Cj (2)

n here is the number of tasks on this single processor, and ⌊⌋
0

is the usual floor function capped below by 0 (ie. minimum

value it can furnish is 0).

The need to check all values of t is reduced by noting that

only values of t that correspond to job deadlines have to be

assessed. Also there is a bound on t. An unschedulable system

is forced to fail inequality (1) before the bound L. A number

of values for L have been proposed in the literature. A large

value is obtained from the LCM of the task periods. A tighter

value comes from the synchronous busy period [24], [25].

This is usually denoted by LB and is calculated by forming a

recurrence relationship:

sq+1 =

n
∑

i=1

⌈

sq

Ti

⌉

Ci (3)

The recurrence stops when sq+1 = sq, and then LB = sq.

Note that the recurrence cycle is guaranteed to terminate if

U ≤ 1 for an appropriate start value such as s0 =
∑n

i=1
Ci.

If U is strictly less than 1 then a simpler formulae for L is

possible [15]:

LA = Max

{

D1, ..., Dn

∑n

j=1
(Tj −Dj)Uj

1− U

}

(4)

With all available estimates for L there may well be a very

large number of deadline values that need to be checked using

inequality (1) and equation (2). This level of computation has

been a serious disincentive to the adoption of EDF scheduling

in practice. Fortunately, a new much less intensive test has

recently been formulated [27], [28]. This test, known as QPA

(Quick Processor-demand Analysis), starts from time L and

iterates backwards towards time 0 checking a small subset of

time points. These points are proved [27], [28] to be adequate

to provide a necessary and sufficient test.

A version of the QPA algorithm optimised for efficient

implementation is encoded in the following pseudo code in

which D_min is the smallest relative deadline in the system,

and Gap is the common divisor of the computation times and

deadlines. The value of Gap is such that no two significant

points in time (eg interval between two adjacent deadlines) is

less than Gap. For example, if all task parameters are given

as arbitrary integers then Gap will have the value 1.
t := L - Gap

while h(t) <= t and t >= D_min loop

t := h(t) - Gap

end loop

if t < D_min then

-- task set is schedulable

else

-- task set is not schedulable

end if;

In each iteration of the loop a new value of t is computed. If

this new value is less than the computed load at that point, the

task set is unschedulable. Otherwise the value of t is reduced

during each iteration and eventually it must become smaller

than the first deadline in the system and hence the system is

schedulable.

B. Previous Related Research

A number of papers have been published on partitioning

and, specifically, task splitting. Andersson and Tovar intro-

duced in 2006 [2] an approach to scheduling periodic task

sets with implicit deadlines, based on partitioned scheduling,

but splitting some tasks into two components that execute

at different times on different processors. They derived a

utilisation bound depending on a parameter k, used to control

the division of tasks into groups of heavy and light tasks. A

heavy task has a high utilisation. These tasks cause particular

difficulties for partitioned systems. Indeed they lead to a

utilisation bound of just 50% as only m tasks each with a

utilisation of 50+δ% can be accommodated on m processors

(for arbitrary small δ).

Andersson et al. later extended this approach to task sets

with arbitrary deadlines [1]. They showed that first-fit and

next-fit were not good allocation strategies when task splitting

is employed. Instead, they ordered tasks by decreasing relative

deadline and tried to fit all tasks on the first processor before

then choosing the remaining task with the shortest relative



deadline to be split. At run-time, the split tasks are scheduled at

the start and end of fixed duration time slots. The disadvantage

of this approach is that the capacity required for the split

tasks is inflated if these slots are long, while the number of

preemptions is increased if the time slots are short.

Bletsas and Andersson developed an alternative approach in

2009 based on the concept of notional processors[9]. With this

method, tasks are first allocated to physical processors (heavy

tasks first) until a task is encountered that cannot be assigned.

Then the workload assigned to each processor is restricted

to periodic reserves and the spare time slots between these

reserves organised to form notional processors.

A distinct series of developments lead to the introduction

of the Ehd2-SIP algorithm [17]. Ehd2-SIP is predominantly

a partitioning algorithm, with each processor scheduled ac-

cording to an algorithm based on EDF; however, Ehd2-SIP

splits at most m-1 tasks into two portions to be executed on

two separate processors. EhD2-SIP has a utilisation bound of

50%. Kato and Yamasaki presented a further semi-partitioning

algorithm called EDDP [19], also based on EDF, that splits at

most m-1 tasks across two processors. The two portions of

each split task are prevented from executing simultaneously

by EDDP, which instead defers execution of the portion of the

task on the lower numbered processor, while the portion on the

higher numbered processor executes. During the partitioning

phase, EDDP places each heavy task with utilisation greater

than 65% on its own processor. The light tasks are then

allocated to the remaining processors, with at most m-1

tasks split into two portions. They showed that EDDP has

a utilisation bound of 65% for periodic task sets with implicit

deadlines, and performs well in terms of the typical number of

context switches required which is less than that of EDF due

to the placement strategy for heavy tasks. Subsequently, Kato

and Yamasaki [18] also extended this approach to fixed task

priority scheduling, presenting an algorithm with a utilisation

bound of 50%.

Kato et al. then developed a semi-partitioning algorithm

called DM-PM (Deadline-Monotonic with Priority Migration);

applicable to sporadic task sets, and using fixed priority

scheduling [20]. DM-PM strictly dominates fully partitioned

fixed task priority approaches, as tasks are only permitted to

migrate if they wont fit on any single processor. Tasks chosen

for migration are assigned the highest priority, with portions

of their execution time assigned to processors, effectively

filling up the available capacity of each processor in turn.

At run-time, the execution of a migrating task is staggered

across a number of processors, with execution beginning on

the next processor once the portion assigned to the previous

processor completes. Thus no job of a migrating task returns

to a processor it has previously executed on. They showed

that DM-PM has a utilisation bound of 50% for task sets with

implicit deadlines. Subsequently, they extended the same basic

approach to EDF scheduling; forming the EDF-WM algorithm

(EDF with Window constrained Migration).

For fixed priority scheduling Lakshmanan et al. [21] also

developed a semi-partitioning method for sporadic task sets

with implicit or constrained deadlines. This method called

PDMS-HPTS splits only a single task on each processor; the

task with the highest priority. Note that a split task may be

chosen again for splitting if it has the highest priority on

another processor. PDMS-HPTS takes advantage of the fact

that under fixed priority preemptive scheduling, the response

time of the highest priority task on a processor is the same as

its worst-case execution time; leaving the maximum amount

of the original task deadline for the part of the task split on to

another processor to execute. They showed that for any task

allocation, PDMS-HPTS has a utilisation bound of at least

60% for task sets with implicit deadlines; however, if tasks are

allocated to processors in order of decreasing density (PDMS-

HPTS-DS), then this bound increases to 65%. Further, PDMS-

HPTS-DS has a utilisation bound of 69.3% if the maximum

utilisation of any individual task is no greater than 0.41.

Notably, this is the same as the Liu and Layland bound for

single processor systems without the restriction on individual

task utilisation. Subsequently, Guan et al. [14] developed the

SPA2 partitioning / task-splitting algorithm which has the Liu

and Layland utilisation bound, assuming only that each task

has a maximum utilisation of 1.

For a broader review of research appertaining to multipro-

cessor scheduling the reader is referred to the survey paper

by Davis and Burns [13] from which the above discussion is

distilled.

C. Contribution and Organisation

In this paper we motivate, describe and evaluate the av-

erage behaviour of an EDF-based C=D scheme in which a

maximum of m-1 tasks are split (for m processors). What

is distinctive about the developed C=D scheme is that it is

straightforward to implement (no unusual RTOS functions

required, only a standard timer; CPU time monitoring is

not necessary) and has low overheads that can easily be

accommodated into the analysis. The scheme utilises an off-

line analysis-based procedure that exploits some key proper-

ties of EDF scheduling (for single processors). It has some

resemblance to the fixed priority scheme of Lakshmanan et

al. [21] described above, in that the split task occupies its

first processor for the minimum elapsed time but maximum

execution time; it effectively executes non-preemptively on its

first processor

We leave for future work the development of a utilisation

bound. We also leave open the question as to the best ‘bin-

packing’ algorithm to use in conjunction with the scheme. We

make no attempt to deal with ‘heavy’ tasks differently from

‘light’ ones. Again this might lead to further improvements.

Rather our motivation here is to illustrate the usefulness of

a very basic and straightforward approach. For this reason

the current paper does not include a detailed comparison with

other task splitting schemes.

The remainder of the paper contains two main sections.

The first describes the C=D scheme, the other provides an

evaluation. Conclusions are presented in Section IV.



II. THE C=D PARTITIONING SCHEME

In this section we develop the partitioning scheme by first

noting some useful properties of EDF scheduling of single

processors. These properties can be exploited by employing

the QPA scheme to explore the characteristics of any particular

task set’s parameters.

A. Motivational Characteristic of EDF Systems

Consider a task set with D = T for all tasks and a total

utilisation of 1. For example a simple system of 5 identical

tasks with C = 2 and T = D = 10. This task set is

clearly deemed schedulable on a single processor by use of

the standard utilisation test (as U = 1); it is not necessary

to employ QPA. However, using an extension of QPA [29],

[30] for sensitivity analysis it is possible to ask the question:

‘For each task (separately), what is the minimum value of D
that will still deliver a schedulable system?’ As now D < T
for one task, a utilisation based test is not applicable1; hence

QPA is employed. For this task set, each task can have its

deadline reduced to the minimum value of 2 (ie. D = C) and

the system remains schedulable. The intuition here is that a

single task (τi) with Di = Ci can be accommodated if there

is sufficient slack within the other tasks (for example, if no

other task (τj) has Tj − Cj < Ci). The optimal behaviour of

EDF can accommodate one task with an extreme requirement

of D = C. These observations are also supported by Balbastre

et al [4].

A less constrained example is given in Table I. Here again

the total utilisation is 1 and all tasks have D = T . There are

seven tasks and a range of periods from 10 to 48. Sensitivity

analysis again shows that if each task is individually assessed

to see what its minimum deadline could be then all but one of

the tasks can have its deadline reduced to its computation time

without jeopardising schedulability. The one that cannot, has

the longest period (and deadline). It can actually get 5 ticks

in 5, but the 6th tick takes until time 26.

Task T D C Min D

τ1 10 10 1 1
τ2 12 12 3 3
τ3 15 15 3 3
τ4 16 16 2 2
τ5 20 20 3 3
τ6 40 40 2 2
τ7 48 48 6 26

TABLE I
EXAMPLE TASK SET

The behaviour shown by this example is typical. To consider

how typical a number of random task sets were generated

and evaluated. The UUniFast algorithm [8] was employed to

generate 10,000 task sets per experiment, each with implicit

deadlines, ie. D = T . If the utilisation of each task set is fixed

at 1, 60.23% of these task sets had at least one task that could

1Strictly, a sufficient density test could be used but this would lead to a
result of unschedulable.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0 0.2 0.4 0.6 0.8 1 1.2

p
a
ss

ra
te

Utilization

Fig. 1. Task sets with one C = D task

have its deadline reduced to its execution time (the number of

tasks in these experiments was between 20 and 100, and the

ratio of longest to shortest period was 2). For utilisation of

.95 the percentage rose to 99.10%, and for utilisation of .9 the

result was over 99.999%. Figure 1 shows the percentage of

task sets with at least one C = D task for various utilisation

levels and 10 tasks.

These results imply that, in a multiprocessor system, a high

level of utilisation can be achieved by allowing C to equal D
for the first part of any split task. To try and fit more than this

value on to the first processor would require a much longer

deadline – leaving a much shorter interval for the second part

of the task, which in turn would constrain the scheduling of

the processor that is assigned the second part of the task.

B. The C=D Scheme

The task splitting scheme introduced in this paper is defined

as follows. First the tasks are ordered by some ‘bin packing’

scheme based on, for example, utility or density2.

• Each processor (p) is ‘filled’ with tasks until no further

task can be added without leading to unschedulability of

the processor.

• The next task, τs with profile (Cs, Ds, Ts) is then split

so that the first part is retained on processor p and the

task load on that processor is schedulable.

• The first part of the split task (τ1
s ) has the constraint

that its deadline is reduced to be equal to the maximum

computation time that can be accommodated. Its profile

is therefore (C1
s , D1

s = C1
s , Ts).

• The second part of the split task (τ2
s ) has the derived

profile (C2
s = Cs−C1

s , D2
s = Ds−D1

s , Ts). It is allocated

to processor p + 1.

• The scheme continues by allocating further tasks to

processor p + 1 until that processor can no longer ac-

commodate a further complete task. Another task is then

chosen to be split between processor p + 1 and p + 2.

An example split task would be one that originally had the

profile (5,30,30) – ie. 5 units of execution every 30 with a

deadline of 30. After splitting, its first part may be restricted

2Note the actual algorithm used for allocating tasks to processors is not of
paramount importance to the scheme, in the following we assume a first-fit

process, but any one of the possible best-fit approaches could also be applied.



to (2,2,30) and hence its second part would be (3,28,30). The

second part being released 2 units of time after the first part.

The implementation of this C=D scheme is straightforward

and requires no special features of the RTOS (other than sup-

port for EDF scheduling, task affinities and the identification of

deadlines). The scheduling analysis, and the means by which

the C1
s values are found, is considered in the next section. In

terms of implementation, the following aspects are pertinent.

• The split task (τs), when released for execution at time

t on processor p, will execute on p until time t + D1
s .

Computation time need not be measured by the RTOS,

the task switch occurs after a period of ‘real’ time – only

a standard timer is needed. In effect the first part of the

split task will execute non-preemptively as it has D = C
on its release.

• At time t + D1
s the task’s affinity is changed from p

to p + 1. The task will now execute (preemptively) on

processor p + 1 with a deadline of t + D1
s + D2

s which

is equivalent to t + Ds, the original task deadline.

It follows directly from this implementation scheme that

the two parts of the task can never execute concurrently. No

further run-time action is needed to ensure that this necessary

constraint is satisfied. It also follows that there are at most

m− 1 split tasks.

To briefly illustrate how easy it is to implement this scheme,

the following Ada code (in the forthcoming Ada 2012 version

of the language) represents the ‘handler’ that is executed at

the time for the task move.

procedure Handler(TM :in out Timer) is

New_Deadline : Deadline;

begin

New_Deadline := Get_Deadline(Client);

-- obtains the deadline of the

-- Client task to be moved

Set_Deadline(New_Deadline + Extra, Client);

-- extends deadline by fixed amount

Set_CPU(Q+1,Client);

-- moves task to processor Q+1

end Handler;

The periodic client task, which executed first on processor

Q, has a simple behaviour:

Set_CPU(Q,Client);

loop

Set_Handler(Next+First_Deadline,Handler’Access);

-- code of application

Next := Next + Period;

-- compute the next release time

Set_Deadline(Next+First_Deadline);

Set_CPU(Q,Client);

delay Until Next;

end loop;

The details of this example are given elsewhere [11] – where

the task switching algorithm is used to illustrate the usefulness

of some new language features for Ada.

Before giving the required analysis, and reporting on an

evaluation of this C=D scheme, two useful properties of the

scheme are worth emphasising. Again consider task τs to be

split between processors p and p+1. If it were not to be split

(ie. a fully partitioned scheme was being employed) then all

of τs would need to be allocated to processor p + 1.

Property 1: With the C=D scheme, processor p is making

a positive contribution to scheduling the task set.

This is clearly true as p has all of the ‘un-split’ load plus

some further work. Its overall utilisation is going to be closer

to 1.

Property 2: With the C=D scheme, processor p + 1 is not

making a negative contribution to scheduling the task set.

This follows from the sustainability [5] of single processor

EDF scheduling. In the fully partitioned scheme processor

p + 1 must accommodate all of τs; it guarantees Cs within

Ds. Now if Cs is guaranteed within Ds then Cs − X must

have been accommodated within Ds − X for all positive X
(X < Cs). For example, if 5 ticks are to occur within an

interval of 20 ticks then 4 ticks must be completed within

19. It follows that accommodating τ2
s cannot be harder than

accommodating τs in a schedulability sense. However as the

required computation time is reduced then the utilisation load

on processor p + 1 is also reduced, thereby increasing the

capacity of the processor to accommodate extra work.

This latter property is an important one as it implies that

any partitioning scheme can be used with this C=D scheme.

Any ‘bin packing’ algorithm that gives an effective mapping

of tasks to processors can form the starting point for the

scheme. Of course if, for some task set, a partitioning scheme

delivers 100% utilisation then task splitting cannot improve the

allocation. But if there is spare capacity then the splitting of

some task that was previously allocated to just one processor

may improve the mapping, but cannot make it worse.

More formally, it follows that the C=D task splitting

scheme dominates any partitioning scheme. Assume a system

has been developed using a specific partitioning approach. All

n tasks are therefore allocated to the m processors. Order the

processors (from 1 to m). Start with the first processor and

attempt to bring to this processor a part of any task from

the second processor. If no task on the second processor can

be split then the first processor is unchanged. But if some

initial part of any task can be ‘brought forward’ on to the first

processor then the utilisation of the first processor is increased,

the schedulability of the second processor is unaffected, but

its total utilisation is reduced. Repeat this process for the

second and subsequent processors (up to processor m − 1).

No anomalies are possible, the system remains schedulable

but the number of processors needed may be reduced or the

utilisation of the final processor may be reduced. Either way

the task splitting scheme performs as well or better than any

partitioning scheme.

When overheads are taken into account (for example, cost

of migration and any penalty for disturbing the cache) then if

the run-time cost of splitting the task is δ there is an overall

gain if δ < C1
s . This follows from the observation that the

resulting execution time of the second part of the task will

be C2
s = Cs − C1

s + δ which will be less than the original



computation time when the additional overhead is so bounded.

C. C=D Sensitivity Analysis

To employ the C=D scheme, an effective means of com-

puting the value of C1
s must be provided. This is developed

in this section, first a basic approach is given, then means of

making the scheme more efficient are considered.

Assuming processor p is deemed unschedulable when task

τs is added. The following steps are undertaken.

1) Choose (initially) C1
s (< Cs) so that the utilisation of

processor p is 1.

2) Set D1
s ← C1

s .

3) Compute L, the maximum ‘test’ interval (using LB if

U = 1 – see Section I-A).

4) Start from L working backward with the QPA scheme.

5) If there is a failure, recompute a reduced C1
s (and hence

D1
s) – see below.

6) If the newly computed value of C1
s is 0 then exit – no

portion of the task can be accommodated on processor

p.

7) Continue working backward towards time Dmin (the

shortest deadline of any task on that processor) then

repeat from step 3 if there has been a failure, it no failure

then the current value of C1
s is the optimum one.

Assuming there is a failure at time t, ie. h(t) > t. The value

of C1
s must be reduced. The recomputed value of C1

s follows

directly from the demand function at the point of the failure.

In the interval from 0 to t the amount of time that all the other

tasks require, Oth(t), is given by:

Oth(t) =
∑

τj∈p
τj 6=τs

⌊
t + Tj −Dj

Tj

⌋Cj

where the summation is over all the other tasks assigned to

processor p (not including τs).

In the remaining time (t minus this value) there will be

⌊
t + Ts −D1

s

Ts

⌋

releases of τs.

This implies that each release must have a maximum

computation time given by:

C1
s = (t−Oth(t)) / ⌊

t + Ts −D1
s

Ts

⌋ (5)

The D1
s term must then be replaced by the C1

s term:

C1
s ← (t−Oth(t)) / ⌊

t + Ti − C1
s

Ti

⌋ (6)

giving a formulation in which the unknown parameter, C1
s ,

is on both sides of the equation. To compute C1
s requires a

recurrence solution:

C1
s (r + 1)← (t−Oth(t)) / ⌊

t + Ti − C1
s (r)

Ti

⌋ (7)

The starting value, C1
s (1), is that computed in step 1 when

U=1. If processor p is schedulable without τs (which is

the assumption) then equation (7) will provide a solution.

Note the sequence C1
s (1), C1

s (2), ..., is monotonically non-

increasing. In exceptional circumstances (when the processor

cannot accommodate any further load) the value of C1
s will

be zero.

The fact that the repeated application of equation (7) de-

livers the optimal (ie. largest) value for C1
s is obtained from

the following observations. If C1
s (1) is a solution to equation

(7) then it must be optimal as U equals 1. Otherwise, for

each iteration of the equation, a value C1
s (r + 1) is computed

which is the maximum computation time for C1
s that is

achievable with a deadline of D1
s = C1

s (r) ≥ C1
s (r + 1). The

deadline is then reduced and the new maximum value of C1
s

computed. When C1
s (r + 1) = C1

s (r) the deadline is equal to

the computation time and computation time is at its largest

value.

The double reduction of C1
s and D1

s is the reason why

the approach requires (step 3) that if there is any recomputed

values then the algorithm must check from L again. If only

a task’s computation time is being reduced then only a single

pass of the QPA algorithm is needed. Having reduced C1
s to

remove the failure at time t then it has been proved [29], [30]

that all values greater then t will remain safe (no deadline

failures). Unfortunately when D1
s is also reduced it is possible

(though unlikely) that a new failure point (f ) may arise with

t < f < L.

It is possible to compute a new starting value of L that

would be smaller than the original value; but this optimisation

is not explored further here. Rather a simple scheme is used

that returns to the original L if there has been any failure

identified. Only when there has been no failure does the

algorithm terminate and the resulting C1
s is then the largest

possible computation for the first phase of the split task

compatible with the C=D constraint. Note that termination

is assured as each iteration must reduce the value of C1
s .

The above scheme, whilst straightforward in its form, suf-

fers from a potentially exponential growth in execution time

due to:

• A staring value of U = 1 than means that LB must be

used, and

• When U = 1, LB is equal to the LCM of the periods of

the tasks assigned to the processor, and that may be very

large.

In the evaluation section (below) task sets are generated

randomly. With U = 1 and D = T , for twenty or more tasks

the LCM (and hence LB) could indeed be prohibitively large.

To counter this an alternative scheme is possible. Rather than

start with U = 1 a value of, say, U = 0.99 is used. Now LA

(Eqn 4) can be employed and a reasonable starting value can

be computed. An inspection of equation (4) shows that for

most tasks (in our evaluations) T = D and hence there are

only two terms (from the two split tasks) in the formulation

for each processor (indeed for the first and last processor there

is only one).



If, when starting from U = 0.99, a failure is found (and

therefore C1
s and D1

s are reduced) then the scheme will deliver

the optimal value of C1
s . If no failure is found then either

a suboptimal result, but with a processor utilisation of 0.99,

could be deemed accepted or the process repeated with U =
0.999 etc. In practice a utilisation of exactly 1 would never

be used as some level of tolerance would be expected.

At a practical level it would always be necessary to bound

the minimum size of the initial phase of a split task to be

greater then the extra overheads introduced into the system by

the required task migration.

D. Illustrative Examples

For a very simple first example consider three tasks each

with C = 66 and D = T = 100. Clearly the utilisation of

this task set is almost 2 (actually 1.98). A fully partitioned

approach would require three processors (one per task). The

C=D scheme delivers a two processor system (even when a

migration overhead of 1 is assumed). Table II contains the

details of the split task.

Task T D C p

τ1 100 100 66 1

τ1

2
100 34 34 1

τ2

2
100 66 33 2

τ3 100 100 66 2

TABLE II
TWO PROCESSOR TASK SET

The second task (τ2) executes first for 34 ticks on processor

1 with task τ1. It has a computation time equal to deadline

equal to 34. Processor 1 is schedulable. The second part of

τ2 is released at time 34, its has a computation time of 33

(66-34+1) and a deadline of 66. Processor 2 containing all of

τ3 and this second part (τ2
2 ) is also schedulable.

For another example consider again the task set given in

Table I. This has a total utilisation of 1. In Table III the

computation times of the tasks are increased to give a total

utilisation of approximately 2.9. In this example the cost of

migrating the two split tasks is ignored.

Task T D C U

τ1 10 10 5 .5

τ2 12 12 6 .5

τ3 15 15 6 .4

τ4 16 16 6 .375

τ5 20 20 9 .45

τ6 40 40 14 .35

τ7 48 48 16 .333

TABLE III
THREE PROCESSOR EXAMPLE

A simple first fit allocation scheme is used based on smallest

utilisation first3 (so the order of tasks is τ7, τ6, τ4, τ3, τ5, τ2

and τ1). For processor 1, τ7 and τ6 can be fully allocated;

τ4 is then split – processor 1 can accommodate 5 units of

computation time (with a deadline of 5) leaving 1 to be

provided on processor 2. On processor 2, τ2
4 has a deadline of

11 (16-5). Also on to this processor can be allocated τ3 and

τ5, leaving τ2 or τ1 to be split (they have the same utilisation).

Splitting τ2 leaves the final processor with most of τ2 and all

of the final task, τ1. Table IV has the derived parameters for

this task set.

Task T D C p

τ1 10 10 5 3

τ2

2
12 11 5 3

τ1

2
12 1 1 2

τ5 20 20 9 2

τ3 15 15 6 2

τ2

4
16 11 1 2

τ1

4
16 5 5 1

τ6 40 40 14 1

τ7 48 48 16 1

TABLE IV
THREE PROCESSOR EXAMPLE

The computed utilisations of the three processors are

0.9958, 0.9958 and 0.9545 (actually the value of τ1
4 has been

rounded down slightly to 5, if the actual value is used the

utilisation of the first processor is 1). Obviously the utilisation

of the final processor in any allocation is arbitrary – it depends

on the task set’s total utilisation. But the utilisation of the first

2 processors, in this example, give an indication of the effec-

tiveness of the scheme. In the next section we will evaluate

the C=D scheme over a large set of randomly generated task

sets. The evaluation criteria for the first experiment will be the

average utilisation of the first m − 1 processors – the closer

this is to 1 the better the scheme. We leave to future work

the derivation of a utilisation lower bound for the scheme – a

preliminary result is however included in the Appendix.

III. EVALUATION

In this section, we present an initial empirical investiga-

tion, examining the effectiveness of task splitting using the

approach described in this paper. The emphasis of these

experiments is to show the average performance of the scheme

and to illustrate that it can be used with a variety of ‘bin

packing’ methods. The experiments should not be viewed as

evidence of the optimal performance of the C = D approach.

Future work will look to develop the best compatible ‘bin

packing’ method. Please note the graphs are best viewed online

in colour.

3This scheme is chosen here to illustrate the versatility of the C = D

approach – in the evaluation section below the opposite and more effective
ordering is used (decreasing utilisation/density).



A. Task set parameter generation

The task set parameters used in our experiments were

randomly generated as follows:

• Task utilisations were generated using the UUnifast-

Discard algorithm [12], giving an unbiased distribution

of utilisation values.

• Task periods were generated according to a log-uniform

distribution with a factor of 100 difference between the

minimum and maximum possible task period. This rep-

resents a spread of task periods from 10ms to 1 second,

as found in many hard real-time applications.

• Task execution times were set based on the utilisation and

period selected: Ci = Ui/Ti.

• To generate constrained deadline task sets (for the second

experiment), task deadlines were assigned according to a

uniform random distribution, in the range [Ci,Ti].

B. Algorithms investigated

We investigated the performance of four algorithms all of

which were based on First-Fit partitioning [23]:

1) “EDF Partition (DD)”: Allocates tasks to processors

using First-Fit in Decreasing Density order4, and uses

an exact EDF schedulability test (QPA)[27] to determine

the schedulability of tasks allocated to each processor.

2) “EDF Split (DD)”: Allocates tasks to processors using

First-Fit Decreasing Density order, and determine the

schedulability of tasks allocated to each processor. Once

no further tasks can be allocated to the first processor,

the remaining task with the largest density is split,

then task allocation continues for the next processor

in Decreasing Density order and so on5. The approach

adopted follows the ‘more efficient’ scheme defined

in Section II-C, the upper bound on each processor’s

utilisation is fixed at 0.9999 (rather then 1).

3) “EDF Partition (rDM)”: Similar to “EDF Partition (DD)”

however the tasks are allocated in reverse Deadline

Monotonic order; that is longest relative deadline first.

4) “EDF Split (rDM)”: Similar to ”EDF Split (DD)”;

however the tasks are allocated / split in reverse deadline

monotonic order.

Algorithms 1) and 3) are pure partitioning schemes and are

included as benchmarks for the other schemes. Algorithms 2)

and 4) present the C = D scheme for two different First-Fit

methods.

C. Experiment 1

4Decreasing Density combined with a First Fit approach has been shown
to give good average performance[16], [26], [13].

5The scheme used in the evaluation is slightly different from that described
in Section II-B – depending on the bin packing scheme to be employed, it is
possible for the second phase of a split task to be chosen as the task to be
split on its second processor. As a result, the task is split again. The basic
approach is however maintained, there are at most m-1 migrations between
processors, all but the last phase of any task has D = C, and different phases
of the same task can never execute concurrently.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

6 8 12 20 36

Number of tasks

U
ti
li
s
a
ti
o
n

EDF Partition (DD) EDF Split (DD) EDF Partition (rDM) EDF Split (rDM)

Fig. 2. Performance with U = 4 and D = T

In this experiment, we generated 1000 task sets with cardi-

nalities of 6, 8, 12, 20, and 36, and a total utilisation of 4. We

allowed each algorithm as many processors as it required to

schedule each task set. For each algorithm, and each task set,

we determined the average utilisation of the fully occupied

processors; that is the processors which were allocated tasks

with the exception of the highest indexed (partially used)

processor.

Fig 2 shows, for implicit deadline task sets, the median (50

percentile) of the average utilisation of fully occupied proces-

sors for each algorithm and value of task set cardinality. The

error bars indicate the 25 and 75 percentiles. For implicit dead-

line task sets there is a clear, potential achievable, upper bound

of 1. For large numbers of tasks this bound is approached for

both of the C = D schemes. It is also approached, though more

slowly, by the partitioned EDF schemes. With smaller numbers

of tasks there is a significant improvement demonstrated by

the EDF (DD) splitting approach. For example, with 8 tasks

of average utilisation of 0.5 each, the average utilisation of the

4 ‘full’ processors is over 0.95.

D. Experiment 2

Fig 3 shows the results of the same experiment performed

on constrained deadline task sets. Here the ‘achievable’ upper

bound is not straightforward to compute, but the effectiveness

of the C = D scheme when used with First-Fit Decreasing

Density is clear. However, the alternative packing approach

(rDM) is nowhere near as effective, implying that for con-

strained deadline task sets the optimal performance of the

scheme is dependent on the ‘bin packing’ approach – an issue

that will be taken up in further work.



0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

6 8 12 20 36

Number of tasks

U
ti
li
s
a
ti
o
n

EDF Partition (DD) EDF Split (DD) EDF Partition (rDM) EDF Split (rDM)

Fig. 3. Performance with U = 4 and D ≤ T

E. Experiment 3

In this experiment, the task set utilisation was varied from

0.025 to 0.975 times the number of processors in steps of

0.025. For each utilisation value, 1000 task sets were generated

and the schedulability of those task sets determined using the

various algorithms, assuming the fixed number of processors

studied. The graphs plot the percentage of task sets generated

that were deemed schedulable in each case, see Fig 4. Note

the lines on all of the graphs appear in the order given in the

legend. The algorithms were also compared to the LOAD*

infeasibility test of Baker and Cirinei [3]. This line indicates

the percentage of task sets that are not known to be infeasible

according to the test at each utilisation level. It represents the

currently best know upper bound on achievable schedulability.

Fig 4 shows the percentage of constrained-deadline task

sets that were deemed schedulable by each algorithm on a

4 processor system.

The results clearly indicate that DD is better than rDM,

and that the splitting schemes make a small but significant

improvement over their fully partitioned equivalent. This im-

provement should be interpreted as the minimum that the

scheme can achieve. With a better packing scheme more

task sets will be deemed schedulable. One potential means

of improving the results is the use a different criteria for

identifying the ‘task to be split’ from the next ‘task to pack’.

An exploration of these issues will be made as part of further

work.

IV. CONCLUSIONS

This paper has introduced a task splitting scheme for EDF

scheduled identical multiprocessors. The motivation for the

0%

20%

40%

60%

80%

100%

120%

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8

Utilisation

P
e
rc
e
n
ta
g
e
o
f
ta
s
k
s
e
ts
s
c
h
e
d
u
la
b
le

LOAD* infeasible

EDF Split (DD)

EDF Partition (DD)

EDF Partition (rDM)

EDF Split (rDM)

Fig. 4. Performance with 4 processors, 12 tasks and D ≤ T

scheme is ease of implementation and low overheads. For

m processors at most m-1 tasks are split. Each processor

runs a standard EDF policy, with the split tasks changing

their affinities after a fixed period of time after their releases.

The first part of any split task is constrained to have its

deadline equal to its computation time. It therefore runs (in

effect) non-preemptively on its initial processor. This provides

the maximum time possible, on the subsequent processor, for

the task to complete the remainder of its computation time.

Analysis is provided by which the optimal parameters of the

split task can be obtained.

Evaluation over a wide range of randomly generated task

sets is provided and these results indicate that the scheme does

indeed have promising performance. Nevertheless a number of

issues for further study are immediately apparent.

• An evaluation is needed for task sets with arbitrary

deadlines.

• An evaluation is needed of the run-time performance of

the scheme when compared with other EDF-based task-

splitting approaches.

• Other approaches to task allocation need to be considered,

including other first fit methods such as largest D-C
first, and largest T /C first – also various possible best

fit algorithms.

• The development of utilisation-based bounds for this

C=D scheme.

• The incorporation of possible pre-allocation schemes for

heavy (high utilisation) tasks – this has proved to be a

useful approach with other partitioning schemes.

The overall conclusion of this study, confirming the views

expressed in a number of papers on similar approaches, is that

minimal task splitting seems to be a practically useful means



of scheduling multiprocessor systems. Most of the advantages

of the purely partitioned approach are maintained, but higher

levels of processor utilisation can be delivered. At the same

time few of the disadvantages of the purely global approach

are encountered.

ACKNOWLEDGEMENTS

The work reported in this paper is supported, in part, by the

EPSRC project TEMPO (EP/G055548/1).

REFERENCES

[1] B. Andersson, K. Bletsas, and S.K. Baruah. Scheduling arbitrary-
deadline sporadic task systems on multiprocessors. In IEEE Real-Time

Systems Symposium, pages 385–394, 2008.
[2] B. Andersson and E. Tovar. Multiprocessor scheduling with few

preemptions. In RTCSA, pages 322–334, 2006.
[3] T.P. Baker and M. Cirinei. A necessary and sometimes sufficient

condition for the feasibility of sets of sporadic hard-deadline tasks. In
Work-In-Progress (WIP), RTSS, 2006.

[4] P. Balbastre, I. Ripoll, and A. Crespo. Pptimal deadline assignment
for periodic real-time tasks in dynamic priority systems. In Euromicro

Conference on Real-Time Systems (ECRTS), 2006.
[5] S.K. Baruah and A. Burns. Sustainable schedulability analysis. In IEEE

Real-Time Systems Symposium (RTSS), pages 159–168, 2006.
[6] S.K. Baruah, R.R. Howell, and L.E. Rosier. Feasibility problems for

recurring tasks on one processor. Theorectical Computer Science, 118:3–
20, 1993.

[7] S.K. Baruah, A.K. Mok, and L.E. Rosier. Preemptive scheduling of hard
real-time sporadic tasks on one processor. In IEEE Real-Time Systems

Symposium (RTSS), pages 182–190, 1990.
[8] E. Bini and G.C. Buttazzo. Measuring the performance of schedulability

tests. Real-Time Syst., 30(1-2):129–154, 2005.
[9] K. Bletsas and B. Andersson. Notional processors: An approach

for multiprocessor scheduling. In IEEE Real-Time and Embedded

Technology and Applications Symposium, pages 3–12, 2009.
[10] A. Burns and A. J. Wellings. Real-Time Systems and Programming

Languages. Addison Wesley Longman, 4th edition, 2009.
[11] A. Burns and A.J. Wellings. Dispatching domains for multiprocessor

platforms and their representation in ada. In J. Real and T. Vardanega,
editors, Proceedings of Reliable Software Technologies - Ada-Europe

2010, volume LNCS 6106, pages 41–53. Springer, 2010.
[12] R.I. Davis and A. Burns. Priority assignment for global fixed priority

pre-emptive scheduling in multiprocessor real-time systems. In Proceed-

ings of RTSS, pages 398–409, 2009.
[13] R.I. Davis and A. Burns. A survey of hard real-time scheduling

algorithms for multiprocessor systems. Accepted for publication in ACM

Computing Surveys, 2010.
[14] N. Guan, M. Stigge, W. Yi, and Ge Yu. Fixed priority mulitprocessor

scheduling with liu and layland utilization bound. In Proceedings of

the IEEE Real-Time Technology and Applications Symposium (RTAS).
IEEE, April 2010.

[15] H. Hoang, G.C. Buttazzo, M. Jonsson, and S. Karlsson. Computing the
minimum EDF feasible deadline in periodic systems. In RTCSA, pages
125–134, 2006.

[16] D.S. Johnson. Near-Optimal Bin- Packing Algorithms. PhD thesis,
Department of Mathematics, MIT, 1974.

[17] S. Kato and N. Yamasaki. Real-time scheduling with task splitting on
multiprocessors. In RTCSA, pages 441–450, 2007.

[18] S. Kato and N. Yamasaki. Portioned EDF-based scheduling on multi-
processors. In EMSOFT, pages 139–148, 2008.

[19] S. Kato and N. Yamasaki. Portioned static-priority scheduling on
multiprocessors. In IPDPS, pages 1–12, 2008.

[20] S. Kato and N. Yamasaki. Semi-partitioned fixed-priority scheduling
on multiprocessors. In IEEE Real-Time and Embedded Technology and

Applications Symposium, pages 23–32, 2009.
[21] K. Lakshmanan, R. Rajkumar, and J. Lehoczky. Partitioned fixed-

priority preemptive scheduling for multi-core processors. In ECRTS

’09: Proceedings of the 2009 21st Euromicro Conference on Real-Time

Systems, pages 239–248, 2009.
[22] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogram-

ming in a hard real-time environment. JACM, 20(1):46–61, 1973.

[23] J.M. Lopez, M. Garcia, J.L. Diaz, and D.F. Garcia. Worst-case utilization
bound for EDF scheduling on real-time multiprocessor systems. In
Proceedings of ECRTS, pages 25–33, 2000.

[24] I. Ripoll and A.K. Mok. Improvement in feasibilty testing for real-time
tasks. Journal of Real-Time Systems, 11(1):19–39, 1996.

[25] M. Spuri. Analysis of deadline schedule real-time systems. Technical
Report 2772, INRIA, France, 1996.

[26] A.C. Yao. New algorithms for bin packing. Journal of the ACM, 27(2),
1980.

[27] F. Zhang and A. Burns. Schedulability analysis for real-time systems
with EDF scheduling. Technical Report YCS 426, University of York,
2008.

[28] F. Zhang and A. Burns. Schedulability analysis for real-time systems
with EDF scheduling. IEEE Transaction on Computers, 58(9):1250–
1258, 2008.

[29] F. Zhang, A. Burns, and S. Baruah. Sensitivity analysis for real-time
systems. Technical Report YCS 438, University of York, Computer
Science Dept., 2009.

[30] F. Zhang, A. Burns, and S. Baruah. Sensitivity analysis for EDF
scheduled arbitrary deadline real-time systems. In RTCSA (to appear),
2010.

APPENDIX - TOWARDS A UTILISATION BOUND

As indicated above, the derivation of a utilisation bound

for the C = D scheme for implicit deadline tasks forms part

of further work. However, in this section we give a two-task

example that indicates that the bound can be no higher than

0.833. Here we are concerned with a single processor in which

one task has its deadline set to its computation time and all

the other tasks have deadline equal to period. Consider the

simple task set defined by the parameters given in Table V.

Task T D C

τ1 2 2 1
τ2 3 3 1

TABLE V
TASK SET WITH LOW UTILISATION

This task set can have D1 reduced to 1 and remain schedu-

lable. But if either tasks’ computation time is increased by an

infinitesimal small amount then it loses this property. Hence

this task set is at the boundary of retaining the one-task C =

D property. The utilisation of the task set is 1/2 + 1/3 = 5/6

= 0.833.

In all the experiments reported in Section II-A no failing

example with utilisation less than 0.833 was found. The bound

for the task splitting scheme is, of course, also dependent on

the ‘bin packing’ approach.


