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Abstract

In this paper we present an integration of early run-

time monitors in real-time systems to improve their fault

tolerance properties. Early Error Detection is a mecha-

nism that provides a theoretically optimal run-time error

detection service, based on a formal specification of an

application, e.g., given by a timed automata. We show

how our approach can improve classical fault tolerance

strategies by investigating two use-cases, namely for a de-

sign pattern that provides several degraded modes of op-

eration, and in on-board avionics safety critical systems.

Keywords: run-time monitoring; fault-tolerant;

generation; early error detection

1. Introduction

The efficiency of error detection mechanisms is of pri-

mary concern for dependable system designers, since it

impacts the efficiency of fault-tolerance mechanisms for

error-detection and recovery strategies. When an error

is detected, these fault-tolerance mechanisms modify the

system state to guarantee that the service is still delivered,

be it in nominal or in a degraded mode.

In conventional implementation of error-detection and

recovery strategies, the approach is reactive in the sense

that recovery mechanisms are triggered when the current

state of the system is detected as erroneous. This approach

has two impacts: i) the latency of error detection can be

very high, and indeed the error is never detected before

it actually happens, and consequently ii) the time left to

perform a recovery action is reduced.

Improvements in error detection can take advantage of

recent progresses in run-time verification, by integrating

error detectors generated from specifications [12]. The

inability to assess the gain in predictability brought by

such detectors was the reason why they were not widely

adopted. Their cost was also most of time prohibitive in

terms memory and CPU usage. These aspects can now be

mastered and modeled. The behavior of the new genera-

tion of formally generated error detectors can be formally

inferred including timing aspects, [5, 10, 19, 17].

In this paper we propose an approach that is proactive

in the sense that it tries to anticipate the detection of an er-

roneous state in the actual system. Our method performs

the detection based on an abstract model of the computa-

tion, defined by timed automata.

In previous work [17], we showed that this method, the

Early Error Detection (EED), leads to detect in advance a

problem that will appear later in the actual system execu-

tion. The model is embedded in the implementation and

is animated by our monitoring system, based on events

related to the system execution. Intuitively, when the con-

tinuation of the execution in the model can only reach a

failure state, an error is raised. In this work we show how

we can use this approach to anticipate effective problems

and perform recovery actions before the actual error takes

place. We will detail the principle of early error detection,

the way it can be implemented in real-time operation sys-

tems, and finally how usual fault tolerance strategies can

benefit from our monitoring system.

In Section 2, we present and analyze related works

on this topics. Section 3 describes in more details the

principle of Early Error Detection and its formal founda-

tions. Section 4 focuses on the description of the input

formalism to our detector generation framework: timed

automata. It also explains how early error detection can

be interpreted with respect to this model. Section 5 briefly

presents the implementation of our framework in Xeno-

mai. Section 6 is devoted to explain how this mechanism

can be used in usual fault tolerance design patterns. Sec-

tion 7 sums up the contribution and provides some insights

on future works.

2. Problem statement & Related work

Several surveys provide insights on error detection

through model driven engineering [7, 8, 12]. Models are

often related to academic formalisms, e.g., temporal log-

ics or timed automaton [6, 2].

In this field of research, run-time monitors are inde-

pendent detection components integrated in a system to

enhance its error detection capabilities. The monitor ob-

serves the system state and check on-line user-defined

properties. Thus, it emits error signals as soon as one of

the properties being assessed is violated. This architec-
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ture is now well established and can be found in several

key papers along the past decades [9, 15, 14, 12, 10].

In those architectures, two phenomena contribute to de-

tection latency. First, there is the latency introduced by the

communication mechanisms used between the system and

the monitor to relay observation. Second, there is also an

issue when specifications are not expressed as simple in-

variants, leading to a run-time evaluation overhead.

As soon as the monitor has to store information in or-

der to correlate the system state at two distinct instants,

then the algorithm used for the decision procedure may

introduce some latency waiting for useless observations.

In order to avoid such a situation, the notion of early error

detection first appeared in [15] for monitoring dynamic

deadlines on a fixed set of events (chronicles). In [17],

we described an implementation of such a run-time mon-

itor detecting on the fly when the system execution is no

longer matching behaviors described by a variant of timed

automata [2]. A similar approach has been suggested in

[5]. Nevertheless, it was not implemented nor detailed

from the algorithmic point of view.

In this paper, we propose to integrate our early moni-

toring system for real-time applications to usual handling

of degraded modes of operation. We rely on our run-time

monitor implemented for a real-time kernel, Xenomai [1],

focussed on application tasks.

3. Early detection for trace monitors

We pointed out on the fact that there exists a class of

monitors providing early error detection services. We re-

call in this section the ideas behind this notion of early

error detection and their formalization in terms of traces.

3.1 Correct behavior and error symptoms

We briefly recall some terminology [4] to identify and

describe the threats to dependability: failures, errors and

faults.

These notions assume that the system interface, its

boundaries, is known. The expected service of a system

is embodied by its nominal behavior. A failure is defined

by an unexpected behavior. It occurs when there is a gap

between the system actual behavior and the expected one

according to its specification. An error is an internal state

of the system leading to failures. Finally, the fault is the

cause of errors. The study of faults is out of the scope of

this paper. Nevertheless, the notion of early error detec-

tion is directly related to the relationship between errors

and failures. Because the duration between the fault ac-

tivation and the failure may be quite large, there is a real

interest to optimize the error detection latency. It would

provide more time for recovery actions.

In order to identify erroneous states, a well spread

method assumes the following claim: any state that has

not been declared correct by the system designer is a pri-

ori erroneous. We use this assumption and derive an error

detector from a description of the system correct states.

There are usually two ways to specify system correct

states: through logical formulas or transition systems. Be-

cause many architectural design languages attach transi-

tion systems to their component structures, we consid-

ered such a formalism to specify correct system behav-

iors (UML and statecharts [22], AADL and its behavioral

annex[11]).

In order to detail the notion of early error detection,

we need to formalize the trace notation used to represent

system executions.

3.2 From Bad prefixes to early detection.

We are relying on a formalized representation of a sys-

tem execution: traces. Timed traces are the most common

representation of real-time system executions.

Timed traces are sequences of alternating events (start,

stop, . . . ) and quantitative durations (1, 5 time units).

Such trace model has been extensively studied in [3]. Al-

ternating durations and events ensures that at most one

event can occur at any given instant. The concatenation

symbol ’.’ is used to separate events and durations, e.g.

start.10.stop. The durations considered are unit free : no

physical duration is actually associated to these numbers.

The physical duration unit, e.g. seconds or milliseconds,

can be defined afterward.

In order to reason about the detection process, prefixes

of traces have been identified as a key concept [5, 13].

For any traces v and u, if there exists a trace w such that

v.w = u, then v is a prefix of u, and u a continuation of v.

In practice, prefixes and continuations can be seen as the

past and future of a trace. The set of prefixes of a given

timed trace represent all the past states of u.

If a trace is not a prefix of some valid trace (let LV

be the set of valid traces), then this trace is called a bad

prefix. A bad prefix, by definition, does not admit any

continuation in LV . It means that the system cannot meet

its specification, whatever is executed later in the system.

Eventually, any bad prefix corresponds to an erroneous

state, and leads to the system failure.

execution progress

not executed continuation executed continuation

t1 t2 t3

tr1

tr2

tr3

OK

KO

Figure 1. Good and bad prefixes

The prefixes of a given trace are totally ordered. We

presented a detailed justification for considering the fol-

lowing claim in [17]: the lower bound of the prefixes of a

bad prefix, that are also bad prefix, is a bad prefix except

in rare artificial cases. In other words, there is always

a trace that allows identifying the exact border between

correct and erroneous traces at run-time. Thus, this lower

bound is call the shortest error symptom. In practice, this



trace corresponds to the first instant from which the speci-

fication can no longer be satisfied. The Figure 1 represents

three traces such that tr1 is the prefix of tr2, and tr2 is the

prefix of tr3. On the figure, the shortest error symptom of

tr3 is between tr2 and tr3.

3.3 Error signalling and Monitor Synchronization

As defined above, the monitor can signal an error as

soon as a shortest error symptom is observed. One of the

advantages of such a formal definition of the shortest error

symptom is to provide the foundations to build a formal

definition of error detection latency.

The shortest error symptoms identify the earliest in-

stants at which the specification allows to distinguish cor-

rect from incorrect executions. If an error detector can

signal errors as soon as the system execution matches a

shortest error symptom, then it means that this detector

has a “zero latency”.

One of the core issues when dealing with run-time

monitor implementations lies in their architecture. The

problem comes from the communication methods used to

connect the different elements of the monitor. The usual

architecture of the run-time monitor is made of three lay-

ers shown in Figure 2: an observation layer, a decision

layer, and an error dispatch layer or error handling layer.
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Figure 2. Abstract architecture of a monitor-
based detector

Two main issues have to be handled : the location of

the layers, the way they synchronize and communicate,

and how observations are delivered to the decision layer.

We considered the following setting :

• The layers are deployed on a same node. Our imple-

mentation of the monitor is not distributed.

• The layers synchronize themselves thanks to the

scheduling services provided by the underlying run-

time support (here, it is the Xenomai real-time oper-

ating system).

• The observations are handled according to a FIFO

policy by the decision layer.

These assumptions guide the design of the monitor using

Xenomai programming interface.

The usual synchronization scheme assume that the

monitor is a purely reactive component waiting for new

observations. A monitor enforcing early error detection

tries to identify shortest error symptoms. One of the nice

properties of shortest error symptoms is to catch both tim-

ing and behavioral errors (wrong event).

Consider the following set of correct traces : LV =
{start.X.stop | X ∈ [0, 20[}. The trace start.24.stop

is a bad prefix and corresponds to a deadline miss. The

shortest error symptom of start.24.stop is start.20. The

monitor will have to wake up as soon as the state repre-

sented by start.20 is reached. For these reason, the moni-

tor cannot be implement as a fully reactive system. Timers

can be used for this purpose.

The next section explains how to generate a fully op-

erational monitor that provides early error detection for a

set of valid traces specified by a timed automaton.

4. Shortest error symptoms Monitor

In this section, we first highlight the kind of errors and

failure targeted through our approach. Then, we explain

how timed automata can help to specify and check at run-

time relevant misbehaviors. Finally, we show where short-

est error symptoms are involved.

4.1 Targeted errors and their symptoms

There are usually two kinds of error detection services:

generic or application dependent detection services. Us-

ing the specification of application valid behaviors, we are

targeting the second class of services.

The kind of formalism used for specifying valid behav-

iors has a strong impact on the kind of detected errors.

4.1.1 Events and timing

Considering timed traces of events, the detector is target-

ing errors tempering with the control flow of applications.

Many operating system have watchdog timers and dead-

lock detectors. Nevertheless, these mechanisms lack ap-

plication specific knowledge: watchdog detectors suffer

from high latency and poor error confinement, and dead-

lock detection services lack coverage. The aim here is to

use application dependent knowledge to identify wrong

timing or suspicious event involved in data race or dead-

lock conditions.

Three types of constraints can be defined on the ele-

ments of an execution trace:

• Compulsory ordering between events, induced by the

natural sequence of events,

• Upper bound on the time between two events,

• Lower bound on the time between two events.

The aim of the error detector is to trigger an error sig-

nal as soon as it observes that the system will no longer

be able to comply with its specification. Whereas the

scheduling theory is mostly concerned with comparing



different types of upper bounds (i.e. deadline and execu-

tion times), EED takes advantage of leveraging informa-

tion on both lower and upper bounds to identify possible

inconsistencies in an erroneous execution. In few words,

if we can trace a function execution progress and compare

it to its deadline, then if the function is late on schedule,

the monitor can decide to trigger an error signal before

actually reaching the deadline.

We use formal model to generate the monitor. Thus, if

the observations match a shortest error symptom it proves

that the specification is not respected.

4.1.2 Example of early detection

Consider the following execution scenario for a task rely-

ing on a shared resource for its execution. The task has

two modes, i.e. , two execution paths are possible. The

shared resource represents a device from which data is

read, and the task waits to obtain the read value to com-

plete its execution. Reading the value entails a locking

time on the calling task. This locking time depends on

the execution path, since the resource is used differently

in the two execution paths. In the first path, the call is

synchronous and entails a locking time of 10ms. In the

second path, the resource is not actually used in the sense

that the task only gets the previous measure that is in the

cache. In this case, the locking time is so low that it can

safely be considered instantaneous. Another (global) tim-

ing constraint for both paths is that the completion of any

of these two paths must occur within 20ms. In this exam-

ple, the second path can be considered as a degraded mode

of operation of the task, since it will use degraded (with re-

spect to freshness) information to perform the same task,

but with a lower WCET. Let us observe the description

of the first path. The combination of the minimal locking

time with the deadline allows us to claim that if the task

is started, and accesses the resource t ms after its starting

time, with t > 10ms, then the task will either violate the

minimal locking time, or miss the deadline as depicted in

Figure 31.

start 

deadline 20
10 ms from 

start

locking_get

lock time

lock time & deadline
in conflict

Figure 3. Conflict between timing con-

straints

An early termination of the reading on the shared re-

source as well as the deadline miss could be interpreted

1In this case, the WCET is at least t+10, so WCET ≥ t+10 > 20,

whereas WCET < 20 by the deadline specification

here as the observable consequences of either an error in

the execution flow of the critical section, or the propaga-

tion of a late timing failure before the critical section.

When such a situation can be identified in advance

early error detection will provide a mean to save time and

avoid the execution of non-reversible actions that would

for instance propagate the errors outside of the monitored

application.

In most cases inconsistencies come from a clash be-

tween the knowledge of what should happen (i.e. dead-

lines for instance) what would happen in normal circum-

stances (i.e. the minimal locking time), and what is ac-

tually observed. In the next subsection we describe a for-

malism in which such information can be easily integrated

in order to get the best of early detection.

4.2 Timed automaton

Timed automata are one of the leading formalisms used

to formally specify real-time behaviors. As any other type

of automaton, they can be seen as a handy way to de-

fine sets of traces (representing valid execution) or ana-

lyze state properties (liveness and safety). Through the

modeling of the previous example, the descriptive power

of this formalism will be illustrated based on the content

of the seminal paper [2]

Finite state machines are straightforward representa-

tions of the state that can be reached during an execution

of a system. Transitions represent possible state changes

and are statically defined. In the example described above,

there would be at least four states: one identifying the ini-

tial state from which the execution of a cycle starts; one

identifying the intermediate state from which two transi-

tions, representing the two possible execution paths (nom-

inal and fast), can be fire; and two distinct states represent-

ing the critical section in each path.

 

Figure 4. A Timed Automaton to specify

valid executions

In addition to states and transition inherited from clas-

sical automata, timed automata introduce special timing

variables, that can be seen as resettable clocks with uni-

form time elapse. Edge are labelled with triplets: an

event label allowing to identify the transition by a name, a

guard being the condition under which the transition can

be fired, and the set of clocks that have to be reset when

the transition is fired.

For our example of Figure 4, the edge between states

standby and processing is a transition that can always



be fired, and is fired when event start is observed, leading

to reset the clock x. The transition from the state CS1,

representing the execution of the critical section in the first

execution path, and the standby state is identified by the

event complete. This condition has a guard combining

a condition on the clock that count the time elapse since

the beginning of the current execution of the task, x, and

the clock storing the time spent in the critical section, y.

This transition can only be fired from states satisfying the

guard, i.e. those with clock values such that (x < 20) ∧
(y > 10).

Notice that if an event is observed in a state s whereas

no corresponding transition can be fired from s, then it

means that the event was unexpected, either because it was

in a bad timing, or because it was forbidden. Guards allow

defining conditions in which events are forbidden. The

definition of final states, i.e., states that need to be reach-

able, provide the means to define the completion condition

of an execution corresponding to requirements related to

bounded liveness.

Definition 1 (Accepting condition on traces) A trace is

valid if and only if

• It can be executed on the automaton starting from the

initial state (state identified by inbound arrow), with

all clocks set to zero.

• The last state reached through the execution of the

trace is a final state (i.e., a state identified by a double

circle).

In the remainder of this paper, the requirement that a

final state is actually reachable from the current state will

be called the reachability condition. Whereas there is a

straightforward way to identify unexpected events, it is

far more difficult to identify errors due to the violation of

the reachability condition defined by the automaton. This

is exactly where the EED property defines the objective to

be met.

Intuitively, a monitoring system, based on a descrip-

tion made of timed automata, that complies with the EED

property performs the steps described in Figure 5 (a more

detailed description can be found in [17, 18]).

The major point in this skeleton is to be able to effi-

ciently assess at run-time the reachability property, i.e. ,

we need to have an efficient way to answer the following

question at every time instant: “From the current state,

is there a continuation that reaches a final state?”. The

following subsection presents our approach to reach this

goal, by using a modified version of time abstractions.

4.3 Final states reachability conditions

There are basically two ways to check at runtime the

reachability condition. The naive method is to browse the

automaton again and again to check the reachability con-

dition on final states. Although simple and easy to im-

plement, this approach is not only very expensive, but,

1. track the current state of the system within the au-

tomata by synchronizing it to the observations

2. event-based error detection: when an event e oc-

curs:

(a) check whether e is forbidden, because no such

transition exists,

(b) if a corresponding transition exists, check that

firing the transition will not put the system in a

state from which the reachability of final states

is violated.

3. pure timing error: handle the case in which the

reachability condition is violated, due to time elapse

and no transition firing, leading typically to deadline

misses.

Figure 5. Major steps of an EED-compliant

monitoring system

more importantly, the time needed at each step to check

the reachability property is unpredictable.

The approach, we advocate, is to precompute most of

the reachability condition and encode it in the monitor, in

order to have efficient and predictable reachability tests.

Obviously, in this pre-computation step, special care has

to be taken to minimize the amount of stored information,

limiting it only to what is needed at run-time for the de-

tection of violations of the automaton specification.

Intuitively, this means that the transformation will un-

fold (or compile) timing constraints and transform guards

on transitions so that the evaluation of reachability condi-

tion can be performed when firing the transition, without

having to browse the automaton. As clock constraints can

also be defined on control states of the automaton, it is

called an invariant. Thus, it is possible to define the con-

dition under which control states are still alive through a

conjunction of inequations defining the upper bound of

each clock.

In our example, this results in:

• Adding to all nodes a deadline on x at 20, and adding

it also on each transition.

• Updating the constraint on the transition on lock-

ing_get by requiring that x is lower than 10 when

firing.

When comparing the new automaton with the original

specification, it appears that the transformation has made

explicit all conditions on clocks that used to be implicit2.

In most cases a human made timed automaton transforma-

2Recall the example: the process could access the shared data at x >

10 because no guard prevent it locally —the transition can be fired—.

Nevertheless, it will lead the system to the kind of conflict depicted in 3

later on.



tion is not possible, since it is a very burdensome way to

specify behaviors.

Yet, such a transformation can be inferred automati-

cally from a well established transformation: timed ab-

straction. The time abstraction splits up control states as

soon as the enabled and valid transitions differ, accord-

ing to the clock values. In our approach, we used the tool

KRONOS [21] to perform this transformation. The aim

was to allow local decision in the sense that steps 2 and 3

of Figure 5 can be done in a greedy way. Time abstraction

adds clock upper bounds to control states, and integrates

the reachability test and the guards in timing bounds put

on each state. Hence, the challenge was to be able to in-

terpret all the implicit conditions entailed on transition by

the requirement of reachability of final states. This trans-

formation has been proven to be always possible for de-

terministic timed automata even if it can sometimes lead

to an exponential blow up in automaton complexity. This

transformation is called time abstraction and the full de-

scription of this technique is beyond the scope of this pa-

per.

In the next section, we will discuss how we performed

this transformation, and how we used it for our monitoring

system that we developed for the operating system Xeno-

mai.

5. Generating EED from timed automaton

This section presents our proposal for generating real-

time error detectors that implement the early error detec-

tion property for Xenomai applications. In the previous

section, we have briefly presented how a timed automa-

ton can be normalized so that it can be used to identify

on-the-fly shortest error symptoms. The next step is to

embed such a model in a detector observing the system

activity.

5.1 Observation layer

This layer is integrated at compilation time in the ap-

plication source code. Observations are collected through

calls to a function triggering the verification in the de-

cision layer. These function calls are inserted by hand

within the source code through C macros. The macro

has a single parameter that is used to specify which event

is observed. The set of observed events is listed in an

header (.h) file that has to be included within each

file where observations are performed.

In practice, it means that observations can be done in

pseudo-concurrence as the verifications can be called by

threads reaching observation macros at the same time.

The monitor state is thus a shared variable. Each call to

the verification function first reads this state, and then up-

dates it. This instrumentation strategy is simplistic but our

concern was not to provide another instrumentation tool.

5.2 Decision layer

The decision layer is implemented by a function that

has access to the data structure storing the normalized au-

tomaton description, and especially the location invariants

and the transition table. We use the KRONOS tool set [21]

to normalize the automaton. Because KRONOS only pro-

vides a raw text format, we translate it in a C data struc-

ture. Then, this data structure is loaded during the initial-

ization phase of the application.

As said before, the state of a timed automaton is made

of a location index and a clock vector. The automaton

state is only updated when an observation is performed.

This update can affect both the location index and the

clock vector. Clocks are increased or reset depending on

the transition fired. Invariants are enforced by setting a

timer according to the time left in each location. For in-

stance, if we consider the example of the previous sec-

tion, then the location processing has to comply with

"X < 20". Thus, as soon as this location is entered (fir-

ing the transition "start"), then a timer is set to enforce

the deadline on the clock X . This timer is set to expire at

20 − X time units later.

Each time an event is received, then the transition table

of the currently occupied location is searched. The event

is validated if and only if the condition is true: there exists

a transition with its guard satisfied by the current clock

vector, such that its label corresponds to the event being

checked. Each time an event is validated, then the transi-

tion is fired and a new location is entered, then the timer

has to be reset or updated.

The verification function has three possible behaviors :

• check an event and validate it : the function return

normally

• check an event and declare it invalid : i) the verifica-

tion function releases a recovery task concurrent to

the calling task with a higher priority, ii) the verifica-

tion function returns an error code like any C func-

tion.

The two methods proposed to signal the error are intended

to allow either local or global error handling policies.

5.3 Synchronization and scheduling during verifica-

tion

The monitor state is a shared variable used for read and

write accesses during the verification of an event. Thus, it

is necessary to ensure at least mutual exclusion on verifi-

cations. Moreover, the verification call enforces a strong

synchronization between the application and the monitor.

In order to offer maximal error confinement capabilities,

the verification is performed synchronously.

For this reason, the verification has to be performed as

fast as possible. Before actually starting the verification,

the verification function protects itself from any preemp-

tion by locking the scheduler. Once the verification is fin-

ished the scheduler is released just before returning from

the verification function.



This synchronization method can be considered as dis-

appointing with respect to usual best practices in schedul-

ing theory. Verification steps deactivate the scheduler.

Thus, a lower priority task can trigger a verification step

whereas a higher priority task should have been resched-

uled in a close future.

We are dealing with error detection at the scale of a set

of tasks. A same automaton describes synchronizations

and timing constraints on tasks of the same criticality, a

priori. Thus, lower priority tasks may be as relevant as

higher priority tasks in order to detect errors. One could

consider that the verification task is supposed to have at

least a higher priority than any task monitored.

Moreover, the recovery actions triggered by the moni-

tor will comply with application scheduling policy: either

the recovery actions are executed by the task (at its own

priority level) that called the detector, or by an indepen-

dent recovery task when global recovery action is needed.

In both cases, the user can rely on the usual properties

of the fixed priority scheduler of Xenomai to analyze and

predict when the recovery task may finish.

6. Integration of EED into fault tolerant sys-

tems

The objective of this section is to illustrate the inter-

est of EDD in fault-tolerant systems. The first example

is based on conventional design patterns used to imple-

ment degraded modes of operation. A nominal mode of

operation is developed together with a series of degraded

modes of operation. The use of EED maximizes the re-

maining time for running a degraded mode of operation.

The second example is extracted from on-board avionics

safety critical systems [20]. The “command-monitor” de-

sign pattern used in the Airbus 320 to 380 can be improved

using EED, i.e., improving the error detection coverage of

the monitor in the temporal domain.

6.1. Implementing degraded modes of operation

Let us consider a real-time periodic application that im-

plements a service defined by a timed specification, as de-

scribed in previous sections.

6.1.1 Design

The application, in its nominal mode, implements the full

specification Spec(Nominal) which is associated with a

worst case execution time WCET(Nominal). We also

suppose that there exists a sequence (Deg
i
)i=1..n of de-

graded implementations of the application, with restricted

quality of service, that implement degraded specifications

(Spec(Deg
i
))i=1..n. These degraded implementations

are, by nature, associated with lower worst case execution

times (WCET(Deg
i
))i=1..n:

∀i < n :

{

WCET(Deg
i+1)) ≤ WCET(Deg

i
))

WCET(Deg
i
)) ≤ WCET(Nominal))

In safety critical systems, there exist at least two

modes: the nominal mode and a safe stop mode. Degraded

versions permit to provide more flexibility and availabil-

ity by trying to reconfigure the application to avoid, when

possible, stopping the application. A traditional recon-

figuration mechanism may stop the nominal application

when a failure occurs, and use one of the available de-

graded modes of operation. In a real-time system, it is

crucial that the reconfiguration occurs as soon as possible,

but available failure detectors will not be able to detect

a deadline miss before the actual deadline expires. Us-

ing Early Error Detection, we are able to catch the failure

sooner in the execution, i.e., before the deadline is actually

missed, and use the remaining time budget to launch one

of the possible degraded modes of operation, as shown in

Figure 6.

  Figure 6. EED-based reconfiguration

In this example, the application runs in nominal mode

with a given time budget (expressed by the variable Dead-

line). The detection engines monitors the application and

signals any deviation to the nominal mode specification.

When such a signal occurs, the application is stopped, the

reconfiguration engine computes the remaining time bud-

get (remainingTime), and restarts the application, using

a degraded mode whose worst case execution time is com-

patible with the remaining budget remainingTime.

6.1.2 Algorithm

As mentioned above, the application is a periodic

task that is scheduled by the system for a maxi-

mum budget time, i.e., with a static deadline. Let

Spec(Nominal) be the nominal specification of the ser-

vice, and (Spec(Deg
i
))i=1..n be degraded specifications

with reduced quality of service. We associate with each

specification an EED monitor that checks online whether

an implementation satisfies its specification. As soon as

a deviation is detected, the monitoring engine signals it

to the reconfiguration engine. In practice, each specifica-

tion is implemented in a separate module, and is available

to the reconfiguration engine that can dynamically chose

which version is to be run, given a time budget. When an

EED signal occurs, the reconfiguration engine first com-

putes the remaining time budget, then looks for the de-

graded mode that has an expected worst case execution

time closest to the remaining time, and then launches it.

If no such mode exists, this means that it is not possible

to reconfigure the application in a temporally satisfactory



manner, and a failure is signaled. The code executed when

such a reconfiguration occurs is shown in Figure 7.

// Initial nominal mode

startTime = System.currentTime()

EED.startMonitoring(Spec(Nominal))

Exec (Nominal)

// Code executed when an EEDSignal occurs

when EEDSignal is received

execTime=System.currentTime()-startTime

remainingTime=budgetTime-execTime-reconfigurationTime

availVersions = {Degi : WCET(Degi)<remainingTime}

// only look at degraded versions that are supposed

// to finish before the actual deadline

if availVersions=Ø

then // in this case it is no longer possible to match

// the deadline

signal ApplicationFailure

else // choose the best degraded mode and launch it

next=Degj such that WCET(Degj)=max(WCET(availVersions))

EED.startMonitoring(Spec(next))

Exec(next)

Figure 7. Nominal and reconfiguration code

Notice that this approach assumes that degraded modes

can be started at any time, and that nominal and degraded

modes do not interfere with each other. This is the case,

for example, when the periodic task is a calculus task, or a

filter task, that do not write information in memory before

it is finished.

6.2. Integration into avionics systems

The electrical flight control systems in modern aircrafts

control the slats, flaps and spoilers. These systems have

very stringent safety requirements (in the sense that the

runaway of these control surfaces is generally classified

as Catastrophic and must then be extremely improbable).

The use of such system is nowadays common practice in

civil aircraft, from the A320 to the big Jumbo A380 devel-

oped by Airbus [20], but also in concurrent aircrafts done

by Boeing.

6.2.1 Technical approach

In Airbus systems, the implementation of safety critical

functions relies on duplication and diversification. Such

function is implemented with a PRIM (“active”) and a

SEC computer (“standby”, hot spare). The PRIM com-

puter is responsible for service delivery until it fails, i.e.

becomes silent. The assumption coverage of the fail silent

assumptions relies on a typical architecture, based on the

“command-monitoring” design pattern. The command

channel ensures the function allocated to the computer

(for example, control of a moving surface). The monitor-

ing channel ensures that the command channel operates

correctly. Command and monitoring are running in paral-

lel on two different processors. Failure detection is mainly

achieved by comparing the outputs between the command

and monitoring commands with a predetermined thresh-

old.

The diversified redundancy at system level

(PRIM/SEC) enable safety requirements to be reached

  Figure 8. Computer global architecture

for certification purposes. From a practical standpoint,

the dissimilarity is such that the SEC computer runs a

simpler version of the command software. In summary,

at software level, the architecture of the system leads

to use four software packages (for instance ELAC/-

COM, ELAC/MON, SEC/COM, SEC/MON) when,

functionally, one would suffice.

6.2.2 EED integration and interest

The EDD mechanisms could be integrated into both the

command and/or the monitoring channel of each comput-

ers. The EED mechanisms would improve the detection

in the temporal domain, but also to the behavioral domain

depending on the granularity of the functional software

modeling. This implies, at least, that a model of the com-

mand specification has been developed for its runtime ver-

ification. The integration into the COM is a direct appli-

cation of the use of EDD for handling several degraded

modes of operation. It means that the COM software must

be developed with degraded versions, the bottom version

being the reset of the processor hosting the COM. The ex-

ecution of the EED monitoring is thus collocated with the

COM and thus the EED monitoring can access the event

and data required to animate the model. This approach

enables the COM to improve its behavior with respect to

transient physical faults that could impair the outputs and

their delivery time. The integration of EDD has an im-

pact on the development of the COM but no impact on

the whole COM-MON architecture. However, the EED

monitor being run on the same processor with the COM is

also subject to error propagation. Conversely, the integra-

tion of EED into the MON provides better separation of

concerns and physical isolation between the COM and the

MON. However, this solution implies a slightly different

architecture or, at least requires more complex interactions

between the COM and the MON, which is not the case in

the standard configuration. Indeed, this solution requires



a more detailed interaction between the “command” and

the “monitoring” channels. All events required to animate

the model at runtime must be extracted and forwarded to

the monitoring “channel”. At present the interaction be-

tween the “command” and the “monitoring” channels is

very limited, just a watchdog mechanism. We would as-

sume that the communication channel between COM and

MON in this case is reliable. All messages sent are cor-

rectly received in FIFO order until one fails. In both cases,

the use of EED would improve the standard behavior. On

the PRIM computer, instead of waiting for COM-MON

output discrepancy, the EED-based monitoring will sus-

pend the “command” channel as soon as possible and stop

sending the “I’m healthy signal”. This implies a switch

to the SEC computer that can provide output results early.

This approach enables the SEC channel to take over the

lead without waiting the detection of the PRIM failure on

outputs.

7. Conclusion

Many run-time monitoring frameworks are intended to

be used during the debug phase of system development.

Few of them have been extended in order to support the

integration of error recovery actions at run-time, and all

such prototypes are developed in Java as remote objects.

The interest of our solution lies in the way the detec-

tor is integrated in a real-time system in order to provide

timely reaction. Our implementation in Xenomai benefits

from the fact that Xenomai provides several ports of usual

RTOS APIs, thus enabling the integration of heterogenous

off-the-shelf applications. In this context, the monitor will

ensure that all these applications behave as expected espe-

cially in the case they use API ports instead of Xenomai

native system calls.

The overhead introduced by our approach can be de-

creased at least by a factor 2. An implementation of

this service as a kernel module of Xenomai would de-

crease highly the time spent switching between kernel and

user space during the verification. From our measure-

ments [18], the time spent in system calls is always greater

than the time spent checking events and computing dead-

lines (case study drawn from UPPAAL case studies). Our

prototype is available at the following address: [16].

Interestingly, we showed in this paper that our ap-

proach can be easily integrated with usual resilience pat-

terns, namely degraded modes of operation and the critical

system that runs in many Airbus airplanes.

The next step is to consider a specification language

that fully integrates the architectural dimension of modern

real-time applications, like AADL. Generating monitors

from such models could take into account the scope of

errors and specifications. It would be an opportunity to

study optimization strategies to use early error detection

when the gain in terms of detection latency is high.
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