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Abstract

Real time systems must respect their temporal con-

straints both in nominal and degraded conditions. Envi-

ronment disturbances cause faults which are revealed by

errors during task execution. Therefore, schedulers must

be fault tolerant to guarantee no missed deadline. Phe-

nomena like electromagnetic fields disturb real-time sys-

tems on a extended period of time. It is difficult to fore-

cast faults and their consequences to build efficient fault-

tolerant systems. The classical fault models deal with

pseudo-periodic faults. They are not made for phenomena

extended in time. This paper intends to describe electro-

magnetic disturbances in a new fault model, named fault

burst model. In adequation with the fault burst model, we

provide error recovery strategies. Finally, we study the

effects of strategies on the schedulability analysis to guar-

antee fault tolerance when fault bursts occur.

1 Introduction

The reliability of a real-time system made of several

tasks is not only based on the nominal behaviour of these

tasks, but should also take into account the effect of hard-

ware faults on the task behaviour. Two complementary

approaches are used to limit the effect of faults: spacial

redundancy (duplication, triplication of the most critical

hardware) and time redundancy (robust data model, re-

execution of erroneous code). In small systems like Un-

manned Aerial Vehicles (UAV) or satellites, the use of

spacial redundancy is limited, so it becomes essential to

use time redundancies to guarantee the reliability of the

real-time system.

The temporal distribution of faults must be known to

establish an efficient choice of time redundancy. The

classical fault model, named pseudo-periodic fault model,

deals with isolated faults. A minimum time interval be-

tween two faults is assumed [10, 9, 14, 3, 8]. This fault

model is efficient to manage either punctual faults or dis-

turbances caused by electromagnetic compatibility. For

example, in an aircraft, these distrurbances can ge gener-

ated by a power supply near an equipment. In this case,

the punctual faults are periodic according to the electro-

magnetic field produced by the power supply.

However this fault model is not designed to manage

phenomena that cause potentially random faults over a

bounded time interval. This phenomena can be a dys-

function of a data sensor, like an object in front of a cam-

era, or disturbances due to some electromagnetic fields,

like those produced by the radar waves in airport areas

[16, 17]. These phenomena must be included in a comple-

mentary model in order to evaluate the fault tolerance of

real time systems in external conditions that can be agres-

sive.

In this paper we define a fault model named fault burst,

to describe this kind of phenomenon. To model the ran-

dom faults we assume that the temporal distribution of

faults is unknown during a fault burst. A fault burst is

a bounded time interval during which the real-time sys-

tem is disturbed. The notion of burst is tackled in [12] to

fit the reality of transmission errors on CAN network. In

these works a probabilistic error model is proposed where

an error burst represents the gravity of transmission errors.

Moreover, we describe the concept of error recovery

strategy which defines the scheduler behaviour after an

error detection. The scheduler will correct the faulty task,

and will eventually apply preventive corrections to poten-

tial faulty tasks.

We investigate task scheduling under the fault burst hy-

pothesis and the chosen error recovery strategy and eval-

uate the fault tolerance of fixed-priority and preemptive

schedulers [11, 7, 1]. The feasibility tests of a task set

are based on the Worst Case Response Time (WCRT)

computation [2, 1, 6, 19, 18]. WCRT is the difference

between the release and the completion of task instance

when the worst case scenario of task sequence happens.

This WCRT must be less or equal than the task deadline

to guarantee that a task is schedulable.

This paper is structured as follows. Section 2 describes

the traditional pseudo-periodic fault model and our fault

burst model. Section 3 describes error recovery strategies

and error recovery tactics. Section 4 provides the schedu-

lability analysis of the error recovery strategies introduced

in section 2. Section 5 presents the results obtained by

simulation, and finally section 6 presents our conclusions.



2 Temporal Distribution of Faults

A real time system can be disturbed by several types

of phenomenon. These phenomena do not have the same

temporal distribution of faults, and do not cause the same

effects on real time systems. It is necessary to use fault

models to take into account these phenomena in the val-

idation process. This section focus on the fault features

of system disturbances. We describe the pseudo-periodic

fault model and the fault burst model. We present their

main features and show their application domain.

2.1 Pseudo-Periodic Fault Model

The classical temporal distribution of faults is featured

by the pseudo-periodic fault model. Pseudo-periodic

faults represent a fault distribution such that two consecu-

tive faults are separated by a known minimum time inter-

val. We denote TF this minimum time interval (Figure 1).

TF TF TF

1 2 3

Figure 1. Pseudo-Periodic Fault Model

This temporal model deals with isolated faults, design

faults and faults identified in electromagnetic compatibil-

ity. In the latter case, for example, faults due to the pres-

ence of a power supply near a computer unit can be mod-

eled.

This assumption is lightly pessimistic as described on

Figure 1. Faults 1 and 2 are separated by the exact mini-

mum time interval TF , but the fault 3 occurs later than TF .

So this assumption considers more fault occurrences than

really possible by integrating them as periodic events.

In pseudo-periodic fault model, if the frequency of

fault occurences increases, TF decreases. However, if

the fault occurences happen on a bounded time inter-

val, this temporal distribution is not taken into account

by the pseudo-periodic fault model. For theses tempo-

ral distributions, the minimum time interval between two

faults can approach zero. The use of pseudo-periodic fault

model is equivalent to a ∆F equal to zero. The task set

will be not schedulable. To integrate fault distribution that

are over a bounded time interval, we suggest a comple-

mentary fault model.

2.2 Fault Burst Model

Our approach deals with a temporal fault distribution

named fault burst. The fault burst model represents a

time interval ∆F during which the fault distribution is un-

known. Each beginning of a fault burst is separated from

the next one by a minimum time interval TF . No fault can

occur outside ∆F .

In this paper the minimum time interval between two

consecutive faults in a fault burst is unknown. Conse-

quently, ∆F is considered as a black box which causes

faults on task sets during the fault burst. The fault burst

model is depicted on Figure 2.

∆F ∆F

TF TF

Figure 2. Fault Burst Model

This approach differs from the pseudo-periodic fault

model. In the pseudo-periodic model, the focus is on

the fault frequency. Our approach focuses on disturbance

duration. If faults occur during a defined duration, the

real-time system is disturbed randomly, and the pseudo-

periodic model is not adapted to take into account this

faulty configuration. So the fault burst model considers

an unavailibility of the system. This model describes dis-

turbances due to an electromagnetic field, a temporary lost

of a resource due to a reset, etc...

3 Fault Tolerant Mechanisms

In this work, fault tolerance is obtained by error recov-

ery at the task level. In addition to affecting eligible tasks

to a processor, a scheduler defines the actions to undertake

after error detection. Further, we detail these actions and

call them error recovery strategies. To inform the sched-

uler of the current task behaviour we assume that detection

mechanisms such as acceptance tests are available [15] or

watchdog timers which interrupt the execution of the task

once it has exceed its budget. Moreover, we assume that

correction mechanisms can be applied to faulty tasks.

The recovery sequence which corrects a faulty task is

composed of an error detection and an error correction,

and is called error recovery tactic. It can be expressed as

follows:

error recovery tactic = detection + correction

At task set level, we define the error recovery strategy,

which defines the scheduler behaviour and the available

error recovery tactic at the task level. It can be expressed

as follows:

error recovery strategy = tactic + preemption treatment

3.1 Error Recovery Strategy

Error recovery strategies define the scheduler be-

haviour after an error detection. We distinguish the simple

strategy and the multiple strategy.

Simple strategy means that the correction mechanism

is applied only on the faulty task. If non detected errors

exist in preempted tasks, the scheduler will wait for an

effective detection and apply the correction to the corre-

sponding task.

In a multiple strategy, if an error is detected in a task

we assume that all preempted tasks are potentially faulty.



In this case, the scheduler applies an error correction to

the current task, then interrupts all preempted tasks and

executes an error correction on each of them.

3.2 Error Recovery Tactic

An error recovery tactic is composed of the detection

and the correction of errors for a task. We detail each

action below.

Error Detection We assume that detection mechanisms

like acceptance tests are available in the real-time sys-

tem and we focus on the time elapsed between the fault

occurence and the effective error detection. This dura-

tion depends on the distribution of these detection mech-

anisms. The simplest model is a detection mechanism at

the end of tasks. In this model, an error can only be de-

tected just before the task completion, even if the error

occurs just after the beginning of the task. A more com-

plex model consists in splitting tasks in several parts, each

part ending with a detection mechanism. The checkpoint-

ing mechanism is a particular error recovery tactic which

includes task splitting and error correction [5, 4, 14, 3].

Error Correction This paper deals with time redundan-

cies. We consider that error correction is based on re-

execution of code. When an error is detected the scheduler

can re-execute tasks either totally or partially. We assume

that the effects of a fault on a task are eliminated by the ap-

plication of an error correction method. The error recov-

ery method is executed at the initial priority of the affected

task. Preemptions by higher priority tasks can then occur.

Faults can also affect the error correction method. In this

case, the same error correction method will be applied on

the faulty re-execution.

3.3 Focused Strategies

In this section, we describe several error recovery

strategies. Schedulability analysis is provided in section

4 according the chosen strategy.

We consider that the error recovery tactic for the faulty

task is an error detection that occurs at the end of the task

(End Detection), and the error correction is made by a

full re-execution of the task (Full Re-execution). The fo-

cused error recovery strategies define the behaviour of the

scheduler towards the preempted tasks.

End Detection/Full Re-execution/Simple The error re-

covery tactic is applied only on a faulty task. This strategy

is denoted ED/FR/S.

On Figure 3 we consider three tasks τ1, τ2 and τ3 under

a fixed priority scheduler where the WCET are 2, 3 and 2

time units respectively. Task τ1 is the higher priority task

and task τ3 is the lower one. During execution an instance

of τ3 is preempted by an instance of τ2. Before being

preempted an error occurs in the task. This error will be

detected at the end of the instance of τ2. To complete τ2

the re-execution duration is 3 time units.

τ1

τ2

τ3

Re-execution

Fault

Error Detection

Figure 3. ED/FR/S Strategy

End Detection/Full Re-execution/Multiple The error

recovery tactic is applied on both the faulty task and all

preempted tasks. This strategy is noted ED/FR/M. This

error recovery strategy is similar to the one used in [13].

This strategy is illustrated on Figure 4. The task set

and its properties are the same as in Figure 3. When an

error occurs during the instance of τ1, instances of τ2 and

τ3 are preempted. Therefore after the error detection re-

execution of the three instances is made.

τ1

τ2

τ3

Figure 4. ED/FR/M Strategy

4 Schedulability Analysis

In the previous sections we suggested a new fault

model named fault burst model and defined several er-

ror recovery strategies. The current section provides the

schedulability analysis for task sets under fault burst ac-

cording to the focused strategy. The section is structured

as follows. Subsection 4.1 presents the computational

model. Subsection 4.2 reminds the Worst Case Response

Time computation under free fault hypothesis. Subsection

4.3 gives our assumptions to compute WCRT under fault

burst. Subsection 4.4 describes the fault burst response

time equation. Following subsections provide the schedu-

lability analysis according the focused strategy.

4.1 Computational Model

Let Γ be a set of n tasks {τ1...τn}. This task set must

be scheduled by the system under free fault assumption.

Each task τi ∈ Γ has a period Ti, a deadline Di and a

Worst Case Execution Time Ci. The task deadlines are

less than equal to the task periods (Di ≤ Ti). We assume

that tasks can either be periodic or sporadic. A sporadic

task is such that a minimum time interval exists between

two task instances. This time interval is considered as

pseudo-periodic. The tasks are supposed to be indepen-

dent, without precedence relations or shared resources.



The tasks are scheduled according to some fixed pri-

ority assignment algorithm (RM, DM) [11, 2]. The pri-

orities are distinctly attributed for each task τi ∈ Γ, so,

for n tasks we consider n priority levels such that 1 is the

highest priority level and n the lowest. We consider a pre-

emptive algorithm and assume that overheads due to pre-

emptions are negligible. As we only use error-recovery

methods based on re-execution of code, we assume that

this re-execution happens at the initial task priority. At

any time the highest priority task from the set of runnable

tasks is executed on the processor.

4.2 Free Fault Response Time

In this subsection we remind the computation of the

free fault response time. This result is used in equation

(5).

For a task τi the response time Ri is computed in the

worst case scenario. This occurs when all other higher

priority tasks τj are released simultaneously with τi. In

this scenario, response time Ri is expressed as the sum

of its WCET Ci and as an interference term Ii, due to

preemption by higher priority tasks [6, 19]:

Ri = Ci + Ii (1)

This WCRT is computed under the preemptive sched-

uler hypothesis, so the interference term Ii is expressed

as the maximum number of task instances that occur dur-

ing the execution of τi (equation (2)). We denote hp(i)
the subset of tasks that have higher priority than τi. The

ceiling operator ⌈ ⌉ returns the smallest integer equal or

greater than its argument.

Ii =
∑

j∈hp(i)

⌈

Ri

Tj

⌉

Cj (2)

As Ri appears on both sides of equation (1) it is solved

by a fixed point algorithm. The relation is given by equa-

tion (3).

Rn+1
i = Ci +

∑

j∈hp(i)

⌈

Rn
i

Tj

⌉

Cj (3)

The initial value of the iteration is R0
i = Ci +

∑

j∈hp(i) Cj . We denote Rn
i the nth value of Ri. The

algorithm ends as soon as Rn+1
i > Di, or earlier if

Rn+1
i = Rn

i . In the first case the task is unschedulable

and the task set is not feasible. The latter case means that

the algorithm provides a WCRT Ri whose value is Rn
i .

The inconvenient of this algorithm is that no value of

WCRT is provided if the task is unschedulale. However,

the advantage is that this algorithm is applicable if the task

set is overloaded (in particular when fault burst occurs).

4.3 General Assumptions

The H1 hypothesis is a classical assumption in fault

tolerance scheduling [13, 8]:

H1: The period between two fault bursts is greater than

equal to the greatest task deadline of the task set

(equation (4))

TF ≥ maxi∈n(Di) (4)

The hypothesis H1 is consistent with phenomena like

High-Intensity Radiated Fields (HIRF) described in [16].

The exposure time of an aircraft fly-by or over ground

HIRF transmitters (radar transmitters) does not exceed

tenths of second, the elapsed time between two aircraft

exposures is about few seconds 1.

From the H1 hypothesis we infer that each task in-

stance is disturbed by at most one fault burst. We deduce

the P1 property:

P1: There is at most one fault burst by WCRT computa-

tion.

If the focused task τi is unschedulable, the fixed point

algorithm will stop before the next fault burst since Ri >

Di. Otherwise, the task is schedulable, the WCRT com-

puted is less than equal to the task deadline and the algo-

rithm will end before the next fault burst. Therefore the

P1 property guarantee the ending of the fixed point algo-

rithm.

We assume that each equipment has an instantaneous

update rate. No reset or restart are necessary to have the

nominal behaviour of the equipment.Therefore, at the end

of a fault burst, each equipment recovers its nominal be-

haviour. We can then deduce hypothesis H2. However

latent errors in the current task and in the preempted tasks

cannot be detected before an error detection.

H2: At the end of ∆F , equipments affected by distur-

bances recover their nominal behaviour.

4.4 Fault Burst Response Time Equation

Response time R∆F

i of a task τi is expressed as the

sum of its WCRT Ri under the no-failure hypothesis, the

fault burst ∆F , the interferences I∆F

i due to preemptions

by higher priority after the end of the fault burst tasks and

an additional factor due to the error recovery strategy Fi

(equation (5)) . This expression is similar to [3].

R∆F

i = Ri + ∆F + (I∆F

i + Fi) (5)

Equation 5 is built as a sum of worst case scenarios. After

the task release the WCRT Ri should be necessary for

the task to complete. A fault burst occurs just before the

effective completion of the task and causes an execution

error. During the fault burst, we do not know the fault

distribution and their consequences on the task set. In the

worst case the fault distribution inside the fault burst is

such that no task completes. We assume so that until the

end of the fault burst the considered task is not completed.

Higher priority tasks can have preempted the considered

1The worst case exposure to a typical rotating air search radar would

be 15 sweeps (2 seconds between sweeps) each lasting less than 100 ms.



task. The elapsed timed since the task release is, therefore,

equal to Ri + ∆F .

Then we study the worst case scenario for the system

recovery. We always consider that the running task after

the end of the fault burst is erroneous. Moreover, we con-

sider that the fault which causes the error occurs just after

the beginning of a task execution. This execution can be

either the normal execution or the re-execution. So we

assume that after the end of fault burst the WCET of the

running task is necessary to detect the error and to trigger

the corrections according to the focused strategy. As the

corrections are executed at the initial priority of the corre-

sponding task, they can be preempted by the higher task

priority. We defined the term I∆F

i to integrate all the pre-

emptions from the elapsed time Ri + ∆F . Its expression

is given by equation (6).

I∆F

i =
∑

hp(i)

⌈

R∆F

i − (Ri + ∆F )

Tj

⌉

Cj (6)

From the execution point of view error detection and

error corrections are considered as additional time. This

additional time can be computed independently since it

depends only on the chosen strategy. We denote this re-

covery term Fi. The number of detections and correc-

tions included in the term Fi varies according to the sim-

ple strategy and the multiple strategy.

Finally, from the fault burst end, we must consider the

sum of I∆F

I + Fi until the task completion. Therefore we

obtain equation (5). To compute the WCRT of the task we

apply the fixed point theorem described in 4.2.

4.5 Recovery Term F1 for the Highest Priority Task

The computation of the term Fi for the highest priority

task (P = 1) does not depend on the considered strategy.

This task cannot be preempted by another task. We as-

sume that a fault burst occurs just before the completion of

the highest priority task. In the worst case scenario, no re-

execution is successful during the fault burst, and the last

re-execution begins just before the end of the fault burst.

Therefore two additional re-executions are necessary to

successfully complete the task. At the end of the first re-

execution error detection occurs out of a fault burst. The

term Fi is computed as twice of the value of WCET of the

highest priority task (equation (7)).

F1 = 2 × C1 (7)

Whatever the focused strategy, the WCRT R∆F

1 is

therefore expressed as the sum of three times the WCET

and fault burst duration(equation (8)).

R∆F

1 = 3 × C1 + ∆F (8)

4.6 ED/FR/S Strategy

We consider that error detection happens at the end of

task instance. The correction method is full re-execution.

We apply simple strategy, so an error detection causes

a full re-execution of the task without forcing a full re-

execution of preempted tasks.

4.6.1 Computation of the Recovery Term Fi

Under fault burst hypothesis there is at most one instance

of higher priority tasks that is potentially affected. When

the fault burst is over the worst case occurs if the WCET

of each task is necessary to detect another error. As a

result, a full re-execution is required to eliminate errors.

So, the time cost Fi is maximal for the considered task.

Its value is equal to the sum between two WCET of higher

priority tasks and the concerned task (equation (9)).

∀(i > 1) Fi = 2 ×
∑

hp(i)

Cj + 2 × Ci (9)

Intuitively the factor 2 in the equation (9) corresponds

to the application of the error recovery tactic for each

higher priority task and concerned task. In the worst case,

one detection and one correction are necessary to guaran-

tee fault tolerance of the task set. Figure 5 describes a

timeline for a task set. The WCRT R∆F

3 is computed for

the third task. In the worst case, after the fault burst ends,

tasks τ1, τ2, τ3 are faulty. The ED/FR/S strategy will be

applied as follows. For each task, a WCET is necessary

to detect the error. Then, each task is re-executed at its

initial priority. This is the reason why an instance of τ1

can preempt the re-execution of τ2. The first part of the

picture contains R3, the second part ∆F and the third one

represents F3 + I∆F

3

τ1

τ2

τ3

R3 ∆F I∆F

3 + F3

Task Instance

Faulty Instance

Re-execution

Task Release

Error Detection

Figure 5. R∆F

3 in ED/FR/S Strategy

4.6.2 Example

Table 1 shows an example of a three task set. The sched-

uler is Rate Monotonic, and the duration of fault burst ∆F

is 50 time units.

The fault burst impact is higher on lower priority tasks.

In the worst case, the extra necessary time to complete the

task τ3 is equal to 540 time units whereas this extra time

is equal to 70 for the task τ1.



Task set ∆F = 50
P T C D R F R∆F

1 300 10 300 10 20 80

2 500 50 500 60 120 240

3 800 150 800 210 420 750

Table 1. ED/FR/S Strategy: results

In our example, the task set is schedulable. We note

that the WCRT R∆F is more than twice as high as the

WCRT R.

4.7 ED/FR/M Strategy

We consider an error detection happening at the end

of the task execution. The correction method is full re-

execution. We apply multiple strategy so that an error de-

tection causes a full re-execution of the task and forces a

full re-execution of the preempted tasks.

4.7.1 Computation of the Recovery Term Fi

Under the fault burst hypothesis there is at most one in-

stance of higher priority tasks that is potentially affected.

When the fault burst is over, multiple strategy is applied

as soon as an error is detected. So, we consider that the

worst case occurs if an error is detected after the longest

WCET. The time cost of correction is maximum if all the

higher priority tasks are fully re-executed. We deduce the

corresponding Fi defined by equation (10).

∀(i > 1) Fi =
∑

j∈hp(i)

Cj + max
j∈hp(i)

Cj + Ci (10)

Intuively the equation (10) means that for the task sub-

set composed by the focused task and its higher priority

tasks, an error detection causes the re-execution of each

task in the task subset.

Figure 6 describes a timeline for a task set. The WCRT

R∆F

3 is computed for the third task. When the fault burst

ends task τ1 is faulty. So, after the error detection, the

task is re-executed. The scheduler applies an ED/FR/M

strategy, and re-executes preventively all the preempted

tasks. The preemption by the higher priority task is taken

into account. The first part of the picture contains R3, the

second part ∆F and the third one represents F3 + I∆F

3 .

τ1

τ2

τ3

R3 ∆F I∆F

3 + F3

Figure 6. R∆F

3 in ED/FR/M Strategy

4.7.2 Example

Table 2 uses the same task set as Table 1. We compute

F and R∆F for each task. We can see that the impact of

fault burst decreased on tasks τ2 and τ3. The task set is

still schedulable.

Task set ∆F = 50
P T C D R F R∆F

1 300 10 300 10 20 80

2 500 50 500 60 70 230

3 800 150 800 210 260 590

Table 2. ED/FR/M Strategy: results

The ED/FR/M strategy provides better results than

ED/FR/S strategy. The WCRT R∆F

3 is 33% lower than

in the ED/FR/S strategy.

This scheduling analysis shows that under the fault

burst hypothesis multiple strategy is generally more effi-

cient than simple strategy. Indeed the worst case response

time is less pessimistic since the time cost due to error de-

tection and correction is reduced. In practice, we can note

that the Fi computation under ED/FR/M strategy repre-

sents the case where the longest WCET is the higher task

one. Therefore, we over evaluate the value of the Fi.

4.8 ED/FR/M Refined Strategy

Previously, we considered that the maximum value of

Fi was the sum of the maximum time detection and max-

imum time correction. When the fault burst is over, task

instances are executed following their priority (the highest

task priority available uses the processor). So, if an error

is detected in the current task instance, re-execution con-

cerns only this task instance and lower piority preempted

tasks.

4.8.1 Computation of the Recovery Term Fi

The refinement consists in finding the maximum value of

the detection and the correction sequences according to

the current task instance. As we do not know the distribu-

tion of faults inside the fault burst, we cannot determine

which task instance will be executed at the end of the fault

burst, so we compute each sequence. The worst case de-

tection is still the WCET of the current task. The corre-

sponding formula of Fi is described by equation (11).

∀(i > 1) Fi = max
j∈hp(i)

(

Cj +

k=j
∑

k=i−1

Ck

)

+ Ci (11)

Figure 7 describes a timeline for a task set. The WCRT

R∆F

3 is computed for the third task. The worst case is built

as follows. There is no instance of the highest priority

task at the end of the fault burst. That means that either

an instance was completed or no instance was released in

the fault burst. Task τ2 has the longuest WCET. This task

is faulty at the end of the fault burst. In the worst case a



WCET is necessary to detect the fault. The re-execution

occurs and the scheduler re-executes the preempted task

τ3. The first part of the picture contains R3, the second

part ∆F and the third one represents F3 + I∆F

3 .

τ1

τ2

τ3

R3 ∆F I∆F

3 + F3

Figure 7. R∆F

3 in ED/FR/M refined Strategy

4.8.2 Example

Table 3 refines the results of the previous Table 2 for task

τ3. We can notice that this refinement imply a compu-

tation time longer than in the example 4.7.2. Indeed the

number of necessary steps to provide the value of R∆F

i is

increased to obtain a more precise result.

Task set ∆F = 50
P T C D R F R∆F

1 300 10 300 10 20 80

2 500 50 500 60 70 230

3 800 150 800 210 250 580

Table 3. ED/FR/M Refined Strategy: results

In fact, the worst case scenario happens when the

higher priority task τ2 fails. So, task τ1 has no influence

in the F3 computation. The WCRT R∆F

3 is better than

previously.

5 Performance Evaluation

This section characterizes the applicability of the de-

scribed strategies. We evaluate the fault tolerance under

fault burst of schedulable task sets under no-failure hy-

pothesis and we compare the error recovery strategies.

5.1 The Nature of the Experiments

For a given processor utilisation, 1000 task sets (10

tasks per task set) were randomly generated. All the task

set are schedulable under the no-failure hypothesis. These

task set features are similar to [10]. Deadlines were al-

lowed to be equal to periods. The minimum and max-

imum values of processor utilisation are 30% and 95%

accordingly. The Rate Monotonic algorithm is used to as-

sign priorities for each task in a task set. The simulation

is made as follows. The fault burst varies from 10% to

35% of the longuest task period. These fault burst values

are consistent with[16, 17] guidance. For each fault burst

value and each task set we applied the three strategies.

5.2 Simulation Results

Figure 8 presents the simulation results on 3-D curve

for ED/FR/S strategy. Figure 9 presents the simulation re-

sults for ED/FR/M refined strategy. The X-axis represents

the processor utilisation, the Y-axis the fault burst and the

Z-axis the number of schedulable task sets. The figures

both show that the more the fault burst is increasing, the

more the number of schedulable task sets is decreasing.

The same classical comment is made for the increase of

processor utilisation.
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Figure 8. ED/FR/S Simulation

When fault burst is equal to 0, the case is equivalent to

the pseudo periodic fault. In this case, the ED/FR/S strat-

egy is able to validate some task sets until 55% of proces-

sor utilisation. The ED/FR/M refined strategy improves

this result until 65% of processor utilisation. Now we con-

sider the case where the processor utilisation is equal to

50%. This value is a sufficient condition to validate a task

set when a pseudo-periodic fault occurs, according to [13].

In this case the ED/FR/S strategy validates some task sets

until a fault burst equals 3%. The ED/FR/M refined strat-

egy improves this result to a fault burst equal to 14%. The

ED/FR/M refined strategy is more efficient than ED/FR/S

strategy when fault burst occurs.
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Figure 9. ED/FR/M Refined Simulation

These simulations show the capacity of our strategies



to guarantee the fault tolerance from the scheduling point

of view. The possibility of the ED/FR/M refined strategy

to schedule task sets with 50 % of processor utilisation

under fault burst greater than 10 % is a good result for

real-time system conception.

5.3 Comparison between Strategies

These cases show that in case of fault bursts the multi-

ple strategy is more efficient than the simple strategy. The

task sets validated by simple strategy are also validated

by multiple strategy. For each couple of fault burst and

processor utilisation, the number of schedulable task sets

with the ED/FR/M refined strategy is equal or greater than

the one with the ED/FR/S strategy.

Figure 10 shows the comparison between the previous

strategies for a fault burst fixed to 10% of the longuest

task period of the set. The X-axis represents the proces-

sor utilisation and the Y-axis the number of schedulable

task sets. We can see that the two curves decrease contin-

uously when the processor utilisation increases. The two

strategies are equivalent up until the processor utilisation

reaches 30%. From this value on, the ED/FR/M refined

strategy becomes more efficient.
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Figure 10. ED/FR/S and ED/FR/M Refined

Strategies for a fault burst of 10%

Figure 11 describes qualitatively the difference be-

tween the simple strategy and the multiple strategy. The

rounded faulty task τ2 on the left subfigure does not ex-

ist on the right one. The principle of ED/FR/S strategy

is n detections n corrections. Only the erroneous tasks

are re-executed. The ED/FR/M strategies are based on 1
detection n corrections.

In practice, the preventive re-executions can concern

no erroneous tasks. As the response time is based on the

worst case, the preventive corrections improve the WCRT

approximation by limiting the number of error detections.

From the temporal point of view, we potentially increase

the number of non necessary re-executions. However

from the validation point of view, the approximation of

WCRT is less pessimistic and the number of schedulable

τ1

τ2

R2 ∆F I∆F

2 + F2

(a) ED/FR/S Strategy

τ1

τ2

R2 ∆F I∆F

2 + F2

(b) ED/FR/M Strategy

Figure 11. Qualitative Explanation of

ED/FR/M Strategy Efficiency

task sets increases. The medium case response time is de-

graded in favour of the worst case response time

6 Conclusions

In this paper we defined the fault burst model to take

into account temporal fault distributions which disturb the

real time system over a bounded time interval. This model

can describe the unavailibility or the malfunctionning of a

data sensor and the disturbances due to electromagnetic

fields like High-Intensified Radiated Fields(HIRF). The

fault burst model represents a temporal fault distribution

that is complementary to the pseudo-periodic fault model.

Furthermore, we dealt with fault tolerant mechanisms.

We introduced the error recovery strategy that defines the

scheduler behaviour when an error is detected on a run-

ning task. We defined two error recovery strategies and

assumed that the error detection can occur at the end of

the task. The correction is made by a full re-execution of

the erroneous task. The difference between the two strate-

gies is the treatment of the preempted tasks.

We provided the schedulability analysis under the fault

burst model for each described strategy. We defined the

Worst Case Response Time equation and the worst case

scenarios. To evaluate the efficiency of the strategies we

defined a test protocol and made several simulations. We

demonstrated that the ED/FR/M strategy is more efficient

than the ED/FR/S strategy when the fault burst and the

processor utilisation increases.

In the future, we need to investigate formal proofs for

the correctness of our equations. In addition the improve-

ment of previous results can be obtained following two

guidelines. First, we can refine fault models to take into

account material failures. The main idea is to approach to

a model that includes safety analysis as well. Precision of

fault recovery strategies will be improved by this refine-

ment. Second, response time analysis enjoys from a lower

algorithmicc complexity. However worst case response



times are quite pessimistic. We will investigate other ap-

proaches to be more precise.

References

[1] N. Audsley, A. Burns, M. Richardson, K. Tindell, and

A. Wellings. Applying new scheduling theory to static pri-

ority pre-emptive scheduling. Software Engineering Jour-

nal, 8(5):284–292, 1993.

[2] N. Audsley, A. Burns, M. Richardson, and A. Wellings.

Hard Real-Time Scheduling: The Deadline Monotonic

Approach. In IFAC/IFIP Workshop,Atlanta, Georgia,

pages 127–132, May 1991.

[3] A. Burns, R. Davis, and S. Punnekkat. Feasibility Analysis

of Fault-Tolerant Real-Time Task Sets. In Proceedings of

the Eighth Euromicro Workshop Real-Time Systems, pages

29–33, 1996.

[4] E. Gelenbe. On the optimum checkpoint interval. Journal

of the ACM (JACM), 26(2):259–270, 1979.

[5] D. Jasper. A discussion of checkpoint restart. Software

Age, 3(10):9–14, 1969.

[6] M. Joseph and P. Pandya. Finding Response Times in a

Real-Time System. The Computer Journal, 29(5):390–

395, 1986.

[7] J. Lehoczky, L. Sha, and Y. Ding. The rate mono-

tonic scheduling algorithm: exact characterization adver-

age case behavior. Real Time Systems Symposium, 1989.,

Proceedings., pages 166–171, 1989.

[8] A. Liestman and R. Campbell. A Fault-Tolerant Schedul-

ing Problem. IEEE Transactions on Software Engineering,

12(11):1089–1095, 1986.

[9] G. Lima and A. Burns. An effective schedulability analysis

for fault-tolerant hardreal-time systems. In Real-Time Sys-

tems, 13th Euromicro Conference on, 2001., pages 209–

216, 2001.

[10] G. Lima and A. Burns. An optimal fixed-priority assign-

ment algorithm for supporting fault-tolerant hard real-time

systems. IEEE Transactions on computers, 52(10):1332–

1346, 2003.

[11] C. L. Liu and J. W. Layland. Scheduling algorithms for

multiprogramming in a hard-real-time environment. Jour-

nal of the ACM, 20(1):46–61, 1973.

[12] N. Navet, Y.-Q. Song, and F. Simonot. Worst-case dead-

line failure probability in real-time applications distributed

over controller area network. Journal of Systems Architec-

ture, 46(7):607–617, 2000.

[13] M. Pandya and M. Malek. Minimum achievable utiliza-

tion for fault-tolerant processing ofperiodic tasks. IEEE

Transactions on Computers, 47(10):1102–1112, 1998.

[14] S. Punnekkat. Schedulability analysis for fault tolerant

real-time systems. PhD thesis, University of York - De-

partment of Computer Science, 1997.

[15] B. Randell. System structure for software fault tolerance.

ACM SIGPLAN Notices, 10(6):437–449, 1975.

[16] RTCA and EUROCAE. Guide to Certification Of Aircraft

in a High Intensity Radiated Field (HIRF) Environment.

Technical Report ED 107 - ARP 5583, March 2001.

[17] RTCA and EUROCAE. Environmental Conditions and

Testprocedures for Airborne Equipment. Technical Report

ED 14E - DO 160E, March 2005.

[18] M. Spuri. Analysis of Deadline Scheduled Real-Time Sys-

tems. Technical Report RR-2772, 1996.

[19] K. Tindell. An extendible approach for analyzing fixed

priority hard real-time tasks. Technical Report YCS189,

1992.


