
HAL Id: hal-00546926
https://hal.science/hal-00546926

Submitted on 15 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Practical Slack-time Analysis Method for DVS
Real-time Scheduling

Da-Ren Chen, You-Shyang Chen, Min-Fong Lai

To cite this version:
Da-Ren Chen, You-Shyang Chen, Min-Fong Lai. A Practical Slack-time Analysis Method for DVS
Real-time Scheduling. 18th International Conference on Real-Time and Network Systems, Nov 2010,
Toulouse, France. pp.139-148. �hal-00546926�

https://hal.science/hal-00546926
https://hal.archives-ouvertes.fr

A Practical Slack-time Analysis Method for DVS Real-time Scheduling

Da-Ren Chen
Department of information

Management,
Hwa Hsia Institute of Technology,

Taipei, Taiwan.
danny@cc.hwh.edu.tw

You-Shyang Chen
Department of information

Management,
Hwa Hsia Institute of Technology,

Taipei, Taiwan.
ys_chen@cc.hwh.edu.tw

Min-Fong Lai
Science and Technology Policy

Research and Information Center,
National Applied Research

Laboratories, Taipei, Taiwan, R.O.C.
e-mail:danny@cc.hwh.edu.tw

Abstract—This work presents a scheduling algorithm to reduce
the energy of hard real-time tasks with fixed priorities assigned
in a rate-monotonic policy. Sets of independent tasks running
periodically on a processor with dynamic voltage scaling (DVS)
are considered as well. The proposed online approach can
cooperate with many slack-time analysis methods based on
low-power work demand analysis (lpWDA) without increasing
the computational complexity of DVS algorithms. The
proposed approach introduces a novel technique called low-
power fluid slack analysis (lpFSA) that extends the analysis
interval produced by its cooperative methods and computes the
available slack in the extended interval. The lpFSA regards the
additional slack as fluid and computes its length, such that it
can be moved to the current job. Therefore, the proposed
approach provides cooperative methods with additional slack.
Experimental results show that the proposed approach
combined with lpWDA-based algorithms achieves more energy
reductions than do the initial algorithms alone.

Keywords- real-time systems, fixed-priority scheduling, dynamic
voltage scaling, slack time analysis

1. INTRODUCTION

Dynamic voltage scaling (DVS) is a standard technique
for managing the power consumption of the systems [23]. A
DVS processor can vary its operation frequency and voltage
during its runtime to use the quadratic relationship between
energy consumption and supply voltage of CMOS
technology. In the recent years, computation and
communication have been steadily moved toward mobile
and portable devices with limited power supply. Therefore,
many primary IC producers have developed their modern
processors with DVS capability, including Intel’s
XScale®[10], AMD’s mobile Athlon®[1] and SamSung’s
Cortex® [21].

There are many substantial researches for scheduling
real-time applications on DVS processors [2, 5, 6, 8, 9, 11,
19, 20, 22]. These approaches differ in many aspects, such
as the scheduling algorithms being on-line/off-line, handling
discrete/continuous voltage levels, assuming average-case,
best-case and worst-case execution times (ACET, BCET
and WCET) of each task, allowing intra-task/inter-task
voltage transitions and assuming fixed/dynamic priority
assignment. However, they still have common objective and
meet the same difficulty. Because lowering the supply
voltage also decreases the maximum achievable clock speed

[16], most DVS algorithms for real-time systems try to
reduce the supply voltage dynamically to the lowest
possible speed level while satisfying the systems’soft/hard
timing constraints. In order to satisfy the timing constraints
of the real-time tasks, dynamic voltage scaling can utilize
slack times when adjusting voltage levels. Consequently,
the energy efficiency of a DVS algorithm highly depends on
the accuracy of estimating the length of slack.

Many previous researches have been conducted
regarding slack time analysis [5, 8, 11, 12, 13, 17, 19].
Lehoczky et al. proposed a slack stealing algorithm [13]
which creates a passive task called slack stealer. It attempts
to make time for servicing aperiodic tasks by stealing all the
processing time it can from the periodic tasks without
deadline missing. The slack stealer relies on the
schedulability conditions given by Lehoczky et al. [14] and
Lehoczky [15] to provide the maximum possible capacity
for aperiodic service at the time it is required. In addition,
they proposed an extension of the algorithm called
reclaimer. It utilizes the pre-allocated but unused worst-case
execution time (WCET) to improve system performance.
Lorch et al. [17] proposed a probabilistic method called
Processor Acceleration to Conserve Energy (PACE) to keep
system performance while minimize expected energy
consumption. Since PACE depends on the probability
distribution of the task’s work load, it must estimates
beforehand the distribution of task work from the
requirements of previous, similar tasks. Pillai and Shin [19]
proposed a cycle-conserving rate-monotonic (ccRM)
scheduling, which contains off-line and on-line algorithms.
The off-line algorithm computes the worst-case response
time of each task and derives the maximum speed that need
to meet all task deadlines. When a task instance completes
early, the on-line algorithm proceed to scale down the
processor speed. Algorithm ccRM is a conservative method
because it only considers the possible slack time before the
next task arrival (NTA) of current job. In [8], Gruian
proposed the methods of off-line task stretching and on-line
slack distribution. Gruian’s off-line method is also
conservative, and its on-line slack time analysis is based on
a probability distribution function. Kim et al. [11] proposed
a greedy on-line algorithm called low-power work-demand
analysis (lpWDA) that derives slack from lower priority tasks,
as opposed to the method in [8, 19] that gain slack time

from higher priority tasks. It also balances the gap of
voltage levels between higher and lower priority tasks. They
have shown that lpWDA always produces a valid schedule as
long as transition time overhead is negligible. However
lpWDA is still a conservative method because its slack time
analysis is confined in an analysis scope regarding to the
longest length of task periods. There are also many slack
time analysis methods considering additional assumptions
[5, 9, 12, 18]. In [12], Kim et al. proposed a preemption-
aware DVS algorithm based on lpWDA, which is composed
of accelerated-completion and delayed-preemption
techniques (lpWDA-AC and lpWDA-DP, respectively) to
decrease the preemption times of DVS algorithms. The
lpWDA-AC tries to avoid preemption by adjusting the
voltage/clock speed higher than the lowest possible values
computed using lpWDA. Another technique, lpWDA-DP,
postpones preemption points by delaying an activated
higher-priority task as late as possible while guaranteeing
the feasible schedule of tasks. Both techniques can reduce
more energy consumption when compared to initial ccRM
and lpWDA. Mochocki et al. in [118] also proposed a
transition-aware DVS algorithm for decreasing the number
of voltage/speed adjusting, called low power limited
demand analysis with transition overhead (lpLDAT), accounts
for both time and energy transition overheads. It computes
an efficient speed level based on the average-case workload,
this speed can be used as a limiter. If the limiter is higher
than the speed predicted by lpWDA, lpLDAT knows that
lpWDA is being too aggressive and applies the limiter in the
present schedule. This average-case limiter technique with
slack time analysis also contributes much energy saving
when compared to previous methods. He et al. [9]
considered a fixed-priority scheduling with threshold (FPPT)
which eliminates unnecessary context switches, thereby
saving energy. FPPT gives each task with a pair of
predefined priority and corresponding preemption threshold.
They proposed an algorithm to compute the static slowdown
factors by formulating the problem as a linear optimization
problem. In addition, they considered the energy
consumption of task set under different preemption
threshold assignments. Chen and Hsu [5] proposed a tree
structure corresponding to a set of pinwheel tasks [16]. They
also proposed a DVS algorithm called lpJCRT which
manipulates a tree structure to distribute available slack
evenly among other tasks.

In this paper, we focus on enhancing the on-line slack
computation capability of RM DVS algorithms. Based on
the existing RM DVS algorithms we propose a dynamic
slack-time computation scheme using a slack fluid analysis
which computes the length of potential slack in the interval
that is longer than the longest task period. Fluid slack
analysis can be applied to many up-to-date RM DVS
scheduling with various assumption including transition and
preemption restrictions.

This work improves the on-line slack computation
capability of RM DVS algorithms. Based on existing RM

DVS algorithms, we propose an on-line slack-time
computation scheme using fluid slack analysis, which
computes the length of potential slack in an interval longer
than the longest of task periods. The proposed method does
not need to compute or perform a simulation for stochastic
data, which varies according to different applications. With
a slight modification1, lpFSA can be applied to many RM
DVS scheduling scheme with various assumptions,
including transition and preemption criteria. Our method
does not increase the time complexity of given algorithms
having O(n) time complexity where n denotes the number of
tasks. Experimental results show that most existing RM
DVS algorithms equipped with our method can reduce the
energy consumption by 11% to 25% over the previous
algorithms.

The rest of this paper is organized as follows. In
Section2, we explain the motivation of this work. The basic
idea of fluid slack analysis is proposed in Section 3. We also
describe the details of the technique and algorithm in
Section 4. We present the performance evaluation in Section
5 and conclude with the summary and future work in
Section 6.

2. PRELIMINARIES

In this section, we present the assumptions of the task
systems and introduce the necessary notations. This paper
focuses on how to gain additional slack for the up-to-date
RM DVS scheduling scheme. Many slack-time analysis
techniques with different purposes (e.g., transition-aware,
preemption-aware, etc.) can utilize lpFSA easily, they are
called as the host algorithms of lpFSA. We outline the idea of
lpWDA and lpLDA algorithms in this paper, other techniques
such as lpWDA-AC, lpWDA-DP [12], and lpLDAT [18] are
abridged.

2.1. System Model
We consider the preemptive hard real-time systems in

which periodic real-time tasks are scheduled under the RM
scheduling policy. The DVS processor used in the model
operates at a finite set of supply voltage levels V={v1, …,
vmax}, each with an associated speed. We normalize the
processor speed by Smax corresponding to vmax=1, giving
S={s1,…,1}. A set of n periodic tasks is denoted by
T={τ1,τ2…τn}, where the tasks are assumed to be mutually
independent. Each task τi is described by its worst case
execution cycles wci, and average case execution cycles aci

(wci≧aci). Throughout this paper, the execution cycle of
each task is called work for short. In addition, each task τi
has a shorter period length pi (i.e., a higher priority) than
that of τj if i<j and pn denotes the longest task period. The
relative deadline di of τi is assumed to be equal to its period
pi. Each task is invoked periodically by a job, and the k-th
job of task τi is denoted as τi,k. The first job of each task is
assumed to be activated at time t=0. Each job is described
by a release time, ri,j, deadline, di,k, the number of cycles that

have already been executed exi
k. During run-time, we refer

to the earliest job of each task that has not completed
execution as the current job for that task, and we index that
job with cur. The deadline of the current job for task τi is
di

cur, and exi
cur the number of cycles that the current job of τi

has executed.
Without loss of generality, whenever τi is the first

scheduled task after time rn,k-1, where i≠n, the border denotes
the next release time of τn (i.e., the rn,k). In the fluid slack
analysis method, we estimate the available slack in the
interval [border, rn,k+1).

2.2. Low Power Work Demand Analysis (lpWDA)
In this section, we introduce briefly an on-line DVS

algorithm called lpWDA [11]. Notations eExchange, lαright and
τasyn belonging to lpFSA are present in Section 4. In the line 2
of Algorithm 1,ε denotes an infinitesimal value and readyQ
contains the currently activated tasks whose subset)(tΓACT



is denoted as
)(tΓACT


:= { τκ|κ< αand τκ∈ readyQ(t) }.

Among the tasks in readyQ, the active task τα with the
shortest period is scheduled to run under the RM scheduling.
When ταis executed at time t, loadα(t) denotes the amount of
work required to be processed in [t, dα). If loadα(t) amount
of work should be completed before dα, the slack time
slackα(t) is denoted as

dα(t)-t-loadα(t).
Given the Algorithms 1, 2, 3 and 4 in Figure 1, lpWDA works
in the following steps. First, the system is initialized by
setting the initial upcoming deadlines (ud) and remainder
execution (wrem) of each task. The initial value of Hα(t),
which denotes the estimation of the higher priority work that
must be executed before udα(lines 1-2). The value of ε is
positive and extremely small. Whenever a job τα is
completed or preempted at time t, the remainder

work)(twrem
 , upcoming deadline udαand higher priority

work Hα(t) are updated in line 5. In the lines 6 and 9, when a
job τα is scheduled for execution at time t, Algorithm 2
computes the slack that is available for ταaccording to Hβ(t)
and Lβ(t) (see lines 16 and 17), where udβ is the earliest
upcoming deadline with respect to τα. Notably, function Lβ(t)
computing the amount of lower priority work is performed
recursively until it finds τγwith the longest task period and
lowest priority with respect to τα. The lpWDA computes the
length of the slack-time stealing from lower priority tasks in
the interval [rα, border] and applying the slack to the
currently executing job. Therefore, Algorithms 2 and 3 play
the crucial role for slack-time analysis and dominate the run
time complexity of lpWDA.

Figure 1. lpWDA algorithm.

2.3. Low Power Limit Demand Analysis (lpLDA)
The idea of lpLDA is to generate the stochastic

information called limiter. When its speed is higher than the
speed predicted by lpWDA, we know that lpWDA is being
too aggressive in stealing slack from lower priority jobs and
the limiting speed should be used. Therefore, limiting the
slack utilized by higher priority tasks in lpWDA requires a
careful trade-off between being aggressive and being
conservative. Furthermore, to decrease the time complexity,
lpLDA uses the deadline dicur of job Ji

cur rather than
checking every scheduling point for the minimum constant
speed.

The necessary modifications of lpLDA are marked by
in Algorithms 1 and 4. We refer to t※※※ his addition to

lpWDA as the Average Case Limiter (ACL) in lines 11 and
12. In Algorithm 1, we add line 3, which initializes the
average number of cycles that must be completed before
each job deadline. Lines 31, 33 and 38 in Algorithm 4 ensure
that the current execution information is stored. Line 11 in
Algorithm 1 computes the speed required by each job to
meet its deadline on average. Finally, line 12 of Algorithm 1
selects the maximum of the speed requested by lpWDA and
the limiter, especially restricting the amount of slack that
lpWDA can use. Notably, the transition-aware version of
lpLDA (i.e. the lpLDAT) contains an additional algorithm
presented in [18]. In accordance with the Algorithms 1 and 4,
the scheduling results produced by lpWDA and lpLDA are
similar. The reason is that the speed selected by lpLDA is
always greater than or equal to the speed selected by lpWDA
[18]. In addition, the worst-case utilization of the task set
mentioned in Table 1 is high (i.e., 12

11

), and the speed based on
the limiter proposed by lpLDA does not higher than the
speed predicted by lpWDA. Therefore, the limiting speed
computed by lpLDA should not be used. In order to focus on
how to collect more slack time in the schedule, the
scheduling result produced by lpLDA is abridged.

2.4. Motivational Example
There is a bit of a different between lpLDA and lpFSA.

lpLDA modifies lpWDA and becomes a new version of slack-
time analysis method while lpFSA provides these methods
(e.g. lpWDA, lpLDAT, lpWDA-AC, etc.) a subroutine to improve
their ability of slack-time analysis. The main advantage is
that lpFSA can be independent of each specific slack analysis
method. For instance, the main purpose of lpWDA-AC and
lpWDA-DP is to decrease the context-switch overhead while
lpLDAT is to reduce the transition time and energy overhead.
Other benefits of lpFSA are simple and good compatibility.
In this paper, the methods compatible with lpFSA are called
the host algorithms of lpFSA. Although lpWDA is a linear
time slack analysis method, this heuristic estimates the
available slack in the interval only up to the upcoming
deadline of lower priority tasks.

TABLE I. AN EXAMPLE OF REAL-TIME TASK SET T

Task Period(pi) WCET(wci) ACET(aci)
τ1
τ2
τ3

3
4
6

1.0
1.0
2.0

0.5
0.5
1.0

Example 1. Consider a periodic task set T, it presents the
period length, WCET and ACET of each task in the Table 1.
Figure 2(a) presents the execution schedule under the worst-
case workload in the first hyperperiod. Figure 2(b) shows
the speed schedule under the lpWDA algorithm for the task
set T and assumes the actual work of each task is equal to its
ACET. Before assigning τ1,1 at time t=0, lpWDA computes
the available slack-time up to d3,1=6 by calling Algorithm 3
recursively. However, interval [0, 6) has none of slack-time
under the worst-case execution schedule. If we extend the
length of analysis interval up to 2×pn, one unit of slack-time
is derived from . One can imagine
the slack in [11,12) as fluid, exchanging it with earlier work
and moving it backward to the current scheduling point. For
instance, in Figure 2(a), the slack in interval [11,12) can be
exchanged with the work in interval [7,8), and then slack in
interval [7,8) can be exchanged with the work in interval
[4,5), and it can be exchanged once again with the work in
interval [2,3). Finally, the slack in interval [2,3) can be
exchanged with the work in interval [1,2). Therefore, in
Figure 2(c), τ1,1 is scheduled with speed . This
example presents that an additional future slack can be
utilized by current job and keeps the deadlines of the
subsequent jobs. Actually, lpFSA does not move all of the
jobs in the schedule to readyQ at once (e.g., t=0) or
exchange the slack with work for using this slack. In the
proposed method, most jobs are scheduled under RM
priority policy and lpWDA.

Figure 2. The intertask voltage scheduling examples of (a)worst-case
scheduling, (b)lpWDA, (c)lpWDA+lpFSA and (d)a modified worst-case

schedule.

Unfortunately, this straightforward idea cannot work in
the actual situations. For example, in Figure 2(d), when p2 is
modified to 6, the slack in the interval [11, 12) cannot be
transferred before t=6. In detail, jobs τ1,3, τ2,2 and τ3,2 release
simultaneously at time 6. The slack in interval [11, 12)
cannot be exchanged with the work of τ1,2, τ2,1 or τ3,1,
because a deadline missing is likely to take place in one of
those three jobs. Thus, this slack cannot shift to an earlier
time in the schedule and improve power efficiency.

In this paper, our goal is to devise an efficient and
more accurate slack analysis method for DVS RM
scheduling. The idea in Example 1 lengthens the analysis
interval for obtaining additional slack.

3. BASIC IDEA

Let rn,k denote the border of τi which is the first
scheduled job at time t where t≧rn,k-1, we computes the
length of additional slack in the interval [border, rn,k+1). For
example, Figure 3(a) presents the scheduled task set
mentioned in Table 1. When job τ1,1 is ready at time t=0, the
current border is at r3,2=6 and the target interval for
extracting more slack time is [border, r3,3). In this case, the
period of τ2,2 astrides the border while the periods of τ1,2 and
τ3,1 are exactly finished at the border. To precisely compute
how much the additional slack can be transferred like liquid
from interval [border, rn,k+1) to [rn,k-1, border), lpFSA has the
following two phases.
Phase 1: In the interval [border, rn,k+1), we compute the minimum

available slack that can be shifted to approach the right-
hand side of border.

Phase 2: Analyze the amount of slack that can be moved across
the border.

2,2

time

τ1

τ2

τ3

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 3. The DVS scheduling example.

Figure 4. An example of STO.

As long as the slack shift to an earlier time than border, it
can be utilized by an lpWDA-based method to improve the
energy efficiency of the schedules. In the Phase 1, one may
wonder why we only focus on the slack computation in the
interval [border, rn,k+1) but longer or shorter interval. Even if
all the jobs except τn are within [border, rn,k+1), they cannot
make a target slack shift to the right-hand side of border. Job
τn is still able to play the role of exchanging its work with
the slack such that it can approach toward the border. For
example, in Figure 3(b), when we change the period length
of τ1 from 3 to 4, the slack in interval [11, 12) cannot be
exchanged with the work of τ1,3 or τ2,3 because it is
hampered at time 8. So far, only τ3,2 can move the slack by
exchanging with its work in [6, 7) to approach the right-
hand side of border=6. On the contrary, if we extend the
additional analysis interval longer than pn, job τn cannot
move such slack to approach the border and may be blocked
in this interval. Therefore, to extend the analysis interval
longer than 2×pn does not increase a substantial energy
saving but increase the computing overheads during slack-
time analysis. In the Phase 2, after deriving the amount of
slack that has the potential to approach the border, the job
periods astriding the border are applied to compute the
available slack derived from phase1. The available slack is
exchanged with the work of the jobs astriding the border and
their work must be situated before border. After completing
Phase 2, lpWDA-based methods can utilize the additional
slack. In the next section, we present a linear-time heuristics
algorithm for fluid slack analysis.

Figure 5. An example of STB.

4. LOW-POWER FLUID SLACK ANALYSIS(LPFSA)
Before presenting the slack computation method using

the fluid slack analysis, we introduce the following
notations.

Tb=T–{τn}.
where b denotes the number of tasks in Tb and b<n and τn
denotes the task with the longest period in T. In an extended
analysis interval [border, rn,k+1), the number of
synchronization points of the tasks in Tb is computed as
follows:

   (1).),()()(b
,

b
,

TLCMTLCM
kn1knb rrkTSyn －

where LCM(Tb) denotes the least common multiple of the
task periods in Tb. We define the tasks are synchronous at
time t, their jobs release at time t. Therefore, the first
synchronous point of Tb within the interval [border, rn,k+1) is
derived as

(2)).()
)(

b
b

b TLCMrk,Tt
TLCM
1k,n 



 (

According to equation (1), two situations in interval [border,
rn,k+1) are defined as:

Slack Transmission Obstacle (STO):
1.-0,),(nbkTSyn b 

Slack Transmission Bottleneck (STB):
1.-0,),(nbkTSyn b 

When an STO appears in the additional analysis interval,
the slack time is possibly likely to be blocked or diminished
by the synchronous point produced by the tasks period in Tb.
For example, in Figure 4, the tasks except τn are
synchronized at time t. If a slack exists after time t, it cannot
moves backward to the left-hand side of t. In this case, the
slack can still be shifted by exchanging with the work of τn
and be discussed later in phase 2. When 0),(kTSyn b and
b=n-1, the amount of fluid slack approaching the current
border can be estimated by performing Phase 1. For example,
in Figure 5, τi does not synchronize with other tasks in Tb.
Therefore, we can compute the value of Syn(Tx=Tb-τi, k) for
each τi where x=n-2 and b=n-1. Suppose),-(kTSyn i

b  >0,

the earliest synchronization point of the tasks in Tb-τi is
derived from equation (2). In interval [border, rn,k+1), we
define the earliest slack transmission bottleneck incurred by
task set Tb-τi as follows:

(3).2and),) n-bnik,-Ttk,-TTBS i
b

i
b   ((

The release time of τi astriding),-(kTSyn i
b  is defined as

)4(- .)(b
iii

i
b

i
k Tτ,pp

k,τTSTBr 









The difference between equations (3) and (4) is defined as
follows:

(5)0}.,)(max{ i
k

bi
k rkτTSTBdiff －,ｉ

In Figure 5, suppose an initial slack is in the period of at
least one task in Tb, the amount of slack that can be shifted
across),(ｉ kτTSTB b  depends on the length of work of τi
within interval [i

k
i

k
i

k diffrr ,]. However, the higher priority
tasks in Tb-τi may interfere with the length of work of τi in
this interval. To precisely estimate the amount of work of τi
in interval [border, rn k+1), the higher priority work is
classified into two parts. The first part of the work is
provided by the tasks with period that shorter than or equal
to i

kdiff . We define

 )6()(1
short

k
i

b
k

-iT ki p,wcpH  




where ℓdenotes the length of i
kdiff . For example, in Figure

5, the value of diffk
i is ℓand pi-2 is shorter than ℓ. The

worst-case execution cycles of job τi-2 must be included in
Hi

short(ℓ), because τi-2 does not astride the border and has

higher priority than that of τi. The second part is the
additional work required by the task with periods not less
than i

kdiff . That is
)7(,) 11 0}max{()(long

-iii1-ii p,rrRH   

where Ri-1 denotes the worst-case response time of τi-1.
Because RM scheduling, job τh with ℓ≦ph<pi has higher
priority than that of τi. Moreover, since the period of τh does
not astride the border, its work cannot exchange with the
slack located in the right-hand side of border. By equations
(6) and (7), the amount of higher priority work required in
interval [i

k
i

k
i

k diffrr ,) can be express as

)8(
otherwise.,)(

),()(
)(

short
1

longshort
exec

H
pHH

H
i

-iii
i 







The value of Hi
exec(ℓ) denotes the length of work in diffk

i

and cannot be exchanged with the slack at the right-hand
side of border. In the worst case, τi is the only asynchronous
job in Tb and pi-1≧ i

kdiff , we compute the work of the tasks

τb (b≦i-1) of which their periods across ri by computing the
worst-case response time [11] of τi-1. Therefore, the
estimated work of τi in the interval [i

k
i

k
i

k diffrr ,] is derived
from

   (9).0)(maxmin execExchange
i

i
ki

i
ki wc,diffHdiffe ,－

After completing Phase 1, Phase 2 computes the length of
the slack that can be exchanged across the border.

Before transferring the slack to cross the border, we
continue with the case of),(kTSyn b =1 and b=n-1
mentioned in equation (1). When the worst-case response
time of τn is not greater than t(Tb, k), the slack situated after
t(Tb, k) can be shifted to the right-hand side of border by
exchanging with a part of wcn. That is,

(10)
otherwise.，0

),(,)),((

1,-and),(,
Exchange













 kTtRkTtRcw

nbkTtRcw

e b
n

b
nn

b
nn

n

In the equation (9), even if ei
Exchange=0, we can utilize

equation (10) to move the slack by using en
Exchange.

Figure 6. The task periods astride the border.

The remainder is to compute the amount of slack that
can be transferred across the border. Assuming Tborder

denotes a task set in which the tasks astride the border. Let τi
Tborder, the lengths of the left and the right portion of pi

split by border is defined as left
i and right

i , respectively. The

longest left
i and right

i is defined as left
max and right

max ,
respectively. In addition, we define


 border

border
Ti i

wcaccu 

as the total amount of work in the Tborder. As shown in
Figure 6, the lengths of tlef

max , right
max and accuborder limit the

maximum amount of slack that can be transferred across
border. Consequently, the restriction on the amount of slack
in Phase2 can be described as

  (11).min borderrightleftborder accue ,, maxmax 

After completing Phase 1 and Phase 2, we derive the
amount of slack which can approach and cross the border. In
the interval [rn,k-1,rn,k+1), the available slack can be estimated
as

)12(.
2

2slack  









T
i

n
n

i
i

wc
p

p
pe



Based on the equations mentioned above, the algorithm
of the fluid slack analysis is presented in Figure 7.

Figure 7. The algorithm lpFSA.

Example 2. Consider the example of WCET schedule
shown in Figure 2(a). Before assigning τ1,1 at time t=0, we
can derive border=6 and Tborder = {τ2,2} according the task
periods in T. Procedure lpFSA can estimate the length of
fluid slack from interval [6, 12) as follows. When task set T2

={τ1, τ2}, Procedure lpFSA computes Syn(T2,1)=0. Therefore,
in Phase1, the bottleneck caused by τ1 and τ2 is STB(T2 −τ2,
1) = 9 and STB(T2−τ1, 1) = 8 ,respectively.
In line 6, we can derive l=2 and τasyn =τ1. According to
equation (7), (8) and (9), we derive Exchange

asyne =1. In line 10,

the value of Exchange
ne , bordere , slacke and accuborder is 1, 1, 1

and 2, respectively. The value of Exchange
mine is one because of

line 12. Finally, τasyn is τ2,2 and becomes the lowest priority
job among Tborder∪τn,k. Therefore, algorithm lpFSA in Figure

7 returns Exchange
mine =1 to the Algorithm lpWDA and passes

additional slack Exchangee to Algorithm

CalcLowerPriorityWork(). Notably, the tasks using lpFSA
still execute under RM priority policy except one of the jobs
whose periods span astride the border. At time t=0, when
jobs τ1,1, τ2,1 and τ3,1 enter readyQ at time t=0, τ1,1 has the
highest priority and utilizes additional slack Exchange

mine
estimated by lpFSA. Therefore, job τ1,1 obtains one unit of
time of slack and changes its voltage level from 1 to 0.5. On
the contrary, if primitive lpWDA performs τ1,1 at time t=0,
τ1,1 cannot obtain any slack. When lpWDA executes
iteratively, the value of Exchangee does not change until τ1,1

is completed. Figure 1(c) presents the scheduling result
obtained using Procedure lpFSA. After completing τ1,1,

Exchange
mine unit of slack has been run out, primitive lpWDA

continuously performs voltage scaling on the subsequent
jobs of τ1,1. In the case of τ2,1, it begins after τ1,1 (t=1) and
obtains one unit of slack time from primitive lpWDA.
Therefore, its WCET under voltage v=0.5 is changed to
wc2,1= 2 and actual execution time is ac2,1 = 1. At time t=4,
job τ2,2 is released and moved to readyQ. Its priority is
changed to and lower than the remaining execution time of
τ3,1 by executing line 14 in Procedure lpFSA. Therefore, job
τ2,2 begins its work after completing the remaining work of
τ3,1. Notably, lpFSA only changes job’s priority in T

border and
does not affect the feasibility of lpWDA schedule.
The scheduling result using lpFSA is presented in Figure
2(c), and the values of scheduling parameters are shown in
Table 2. Job τasyn is a global variable mentioned in
Algorithm 1. Whenever job τasyn executes and Exchangee >0, it
lowers its priority to guarantee its timing constraint of job τn.

TABLE II. SCHEDULING PARAMETERS IN EXAMPLE 2

Theorem 3. Algorithm lpFSA has a computational
complexity of O(n) per scheduling point, where n denotes
the number of tasks in the systems.
Proof. In the phase 1, lines 4 and 5 are completed in
constant time for each iterative step according to equations
(2), (3) and (4). In the line 8, the value of Exchange

asyne is derived

from equations (6), (7),(8) and (9), where the value of
)(short

iH in equation (5) needs O(n) time to compute the

amount of work. The worst-case response time Ri of task τi
in equation (7) is computed by accumulating those of
previous tasks. In the line 10 of phase 2, the values of

Exchange
ne , bordere and slacke are derived in O(n) time. Therefore,

the overall time complexity is O(n).

5. PERFORMANCE EVALUATION

In this section, we evaluate the effectiveness of lpFSA
on randomly generated task sets and compare its energy
consumption with ccRM, lpWDA and lpLDAT. Both ccRM and
lpWDA are modified to account for transition time overhead.
In the simulations, lpWDA and lpLDAT are called the host
algorithms of lpFSA to compare with initial algorithms ccRM,
lpWDA and lpLDAT.

In the simulations, each task is characterized by its
worst-case execution wci, its period pi and its deadline di,
where di=pi. We vary three parameters in our simulations: (1)
number of tasks totaltasks in T from 2 to 20 in two task
increments, (2) utilization U for task set, from 0.1 to 0.9 and
(3) the ratio ac/wc of ACET to WCET, from 0.1 to 0.9. For
any given pair of totaltasks, U and ac/wc in T, we randomly
generate 1000 task sets, and the experiment result is the
average value over these 1000 task sets. In a task set, every
task period pi (and deadline di) is uniformly distributed in
the range [1, 100]ms, each schedule is less than or equal to
five hyperperiods in length. The execution time wci of each
task is assigned in the real number range [1, min{pi-1,
90}]ms. After giving the values of tasks’periods and
executions, we assign the utilization U of a task set and
rescale the pi of each task such that the summation of the
task weights (i.e. wci/pi) is equal to a given U. The early
completion time of each job in simulation (1) and (2) was
randomly drawn from a Gaussian distribution in the range of
[BCET, WCET], where BCET/WCET=0.1. In the
simulation (3), each experiment was performed by varying
BCET from 10% to 90% of WCET.

The processor model we assumed is based on the
ARM8 microprocessor core. For all experiments, we assume
there are 10 frequency levels available in the range of 10 to
100MHz, with corresponding voltage levels of 1 to 3.3
Volts. The energy consumptions of all the experiment
results are normalized against the same as the processor
running at maximum speed without DVS technique.

In the Figure 8, we examine the execution time that is
required of each online algorithm, including:

a) ccRM: The algorithm ccRM from [19] is modified
to account for transition overhead.
b) lpWDA: The algorithm lpWDA from [11] is
modified to account for transition overhead.
c) lpLDA: The algorithm lpLDAT from [18].
d) lpWDA-lpFSA: The proposed algorithm is
performed in conjunction with host algorithm lpWDA.

e) lpLDAT-lpFSA: The proposed algorithm is
performed in conjunction with host algorithm lpLDAT.

Figure 8. Maximum execution time for the scheduling algorithms versus
the number of tasks on a 100MHz processor.

Figure 8 presents the maximum execution time of each
algorithm on the target processor versus the number of tasks
in the system. The result was generated by inserting a
system timer function and executing each algorithm
separately. Obviously, ccRM has a large advantage with
respective to time complexity when compared to other
online algorithms. Because the algorithms are invoked upon
each release and completion, it is necessary to increase the
execution time of each task by two times the maximum
execution time of the algorithm to account for the
scheduling overhead. To measure the execution time of the
scheduling algorithms, we introduce additional assumptions
as follows. First, the set of experiments present the
execution time of lpFSA and its host algorithms(lpWDA and
lpLDAT). We use the functions of system timer to record
the duration of each algorithm, choose their longest
execution times in each schedule, and accumulate the
execution times separately. At the end of the experiment, the
number of generated schedules divides the accumulated
execution times. Figure 7 illustrates the maximum execution
times of each algorithm on the CPU with highest
speed(100MHz) versus the number of tasks in the system.
lpFSA is an efficient on-line algorithm, which increases
additional execution time less than 45% of those of their
host algorithms.

The overheads considered in the simulations are as follows.
a) Algorithm execution time and energy The

execution time of each algorithm refers to the
simulation results in Figure 8. Its energy
overhead is obtained under the assumption of
the maximum speed Smax.

b) Voltage transition time and energy

The assumption of voltage scaling overhead is the
same as that in [3], For the voltage scaling from Vdd1

to Vdd2, the transition time is:

12
max

2
dddd V-V

I
C

t 




where C and Imax denote the charge to the capacitor
and the maximum output current of the converter.
The transition time is at most 70us between
maximum transition [4]. The energy consumed
during each transition is :

12)1(dddd V-VC-nE  
where λ denotes the efficiency of DC-DC converter.

c) Context-switch time and energy
The context-switch is assumed to be 50μs at
the highest speed Smax as presented by David
in [7].

The average energy consumptions of lpFSA are in the
Figures 9, 10 and 11. Notably, counting these energy
consumptions include not only execution duration of lpFSA
and its host (i.e., lpWDA and lpLDA) algorithms but also the
context-switching time to and from other real-time tasks.
Since the range of task periods has been shortened between
[1, 100]ms, the difference between task periods and
context-switch times or transition times are smaller than
those assumed in [11, 18]. In addition, these energy
overheads arose from lpFSA and its host algorithm are also
being taken into account, the experimental results can be
closer to the actual situations. In these simulations, the host
algorithms with lpFSA are still better than their initial
algorithms respectively.

Figures 9, 10 and 11 also include the results for a
clairvoyant algorithm, named bound, which knows the exact
actual execution cycle of each task beforehand and adopts
an optimal speed accordingly. Every scheduling point in the
whole schedule is checked when looking for the best start
and finish times, and the transition time is always
considered zero. In fact, bound is not a practical algorithm
because it is extremely time-consuming for finding the
suitable start, preemption and completion times, and no
algorithm predict the exact execution cycles beforehand. It
plays a yardstick in the simulations because no real DVS
algorithm can provide better performance than that of bound.

As shown in Figure 9, lpWDA-lpFSA and lpLDAT-lpFSA
reduces the energy consumption up to 18% and 15% over
lpWDA and lpLDAT, respectively. The utilization of a given
task set is assigned randomly from 10% to 90% by a
uniform probability distribution function. As the number of
tasks from 4 to 12, the energy consumption of lpWDA-lpFSA
and lpLDAT-lpFSA are increased steadily. The reason for this
fact is that lpFSA focuses on exploiting the slack in the
extended analysis scope. When the number of task increases,
the number of STO and STB in the analysis interval is likely
to decrease and benefits the computation of slack time.

The experimental results in Figure 10 present that
lpWDA-lpFSA and lpLDAT-lpFSA perform 10% and 5% more
energy saving compared to lpWDA and lpLDAT. In the
experiment, the totaltasks of each task set was randomly
determined from 2 to 20. As the utilization of the task set
decreases, the energy saving of lpWDA-lpFSA and lpLDAT-
lpFSA increase substantially while those of ccRM, lpWDA and
lpLDAT are not. The explanation of the results is that lpFSA
exploits the slack in an additional interval.

In Figure 11, clearly lpWDA-lpFSA and lpLDAT-lpFSA
also outperform the other three algorithms in all cases, and
the improvement increases steadily as BCET/WCET
decreases.

Number of Tasks
2 4

0.60

0.10

1.00

0.50

0.70

0.80

0.90

0.40

0.30

0.20

6 8 10 12 14 16
1
8

﴾ Î[0.1, 0.9], Î[0.1, 0.7] ﴿

bound ccRM lpWDA lpWDA­lpFSA lpLDAT lpLDAT­lpFSA

Figure 9. Energy consumption under different size of task sets.

N
or

m
al

iz
ed

en
er

gy
co

ns
um

pt
io

n

Figure 10. Energy consumption under different utilization.

N
or

m
al

iz
ed

en
er

gy
co

ns
um

pt
io

n

0.60

0.10

1.00

0.50

0.70

0.80

0.90

0.40

0.30

0.20

bound ccRM lpWDA lpWDA­lpFSA lpLDAT lpLDAT­lpFSA

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

﴾ Î[2, 18], Î[0.1, 0.7]﴿

Figure 11. Energy consumption under different ratio of BCET to WCET
sets.

6. CONCLUSIONS

In this paper, we proposed an on-line DVS algorithm
based on the concept of fluid slack analysis called lpFSA.
This algorithm is the first in its class that can be built in the
bottom of the existing RM DVS methods for decreasing the
power consumptions without increasing their time
complexities. Our experimental results show that lpFSA can
reduce overall energy consumption up to 45% when
compared to initial methods.

Several directions will prove worthy for future work.
Although this work focused on RM scheduling, the
proposed fluid slack analysis can be applied to other
scheduling policies such as earliest-deadline first (EDF) and
EDF* [2]. Additionally, the existence of STO in the lpFSA
hampers the transmission of slack in an analysis interval.
Future work can prevent the STOs by relaxing job release
times, thereby increasing available slack.

ACKNOWLEDGMENT

The authors acknowledge support from research grants from R.O.C.
National Science Council NSC-99-2221-E-146-011.

REFERENCES
[1] AMD, “Mobile amd athlon 4 processor model 6 cpga data sheet

rev:g,”Advanced Micro Devices, Technique Report 24332, October
2003. [1]

[2] H. Aydin, R. Melhem, D. Mosse and P. Mejia-Alvarez. Power-Aware
Scheduling for Periodic Real-Time Tasks. IEEE Trans. Comput.,
53(5): 584-600, May 2004.

[3] T. D. Burd and R. W. Bordersen, “Design issue for dynamic voltage
scaling,”International Symposium on Low-power Electronics and
Design, 2000, pp. 9-14.

[4] T. D. Burd, T. Pering, A. Stratakos, R. Brodersen, “A dynamic
voltage scaled microprocessor system,”IEEE journal of Solid-State
Circuits, vol, 35, No. 11, November 2000, pp. 1571-1580.

[5] Da-Ren Chen and Chiun-Chieh Hsu, “Transition-Aware Dynamic
Voltage Scaling for Jitter-Controlled Real-Time Scheduling: A Tree-
Structured Approach,” in the 38th international conference on
Parallel Processing (ICPP’09), 2009.

[6] Jian-Jia Chen and Chin-Fu Kuo, “Energy-Efficient Scheduling for
Real-Time Systems on Dynamic Voltage Scaling (DVS) Platforms,”
in the 13th IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications(RTCSA 2007), Aug. 2007,
pp.28-38.

[7] F. David, Jeffrey Carlyle and Roy Campbell, “Context-switch
overheads for Linux on ARM platforms,”Experimental Computer
Science 2007:3.

[8] F. Gruian, “Hard real-time scheduling for low-energy using
stochastic data and dvs processors,” in Proceedings of the 2001
International Symposium on Low Power Electronics and Design
(ISPLED’01). Huntington Beach, CA: ACM Press, Aug. 2001, pp.46-
51.

[9] Xiao Chuan He and Yan Jia, “Energy-Efficient Scheduling Fixed-
Priority Tasks with Preemption Thresholds on Variable Voltage
Processors,” Lecture Notes in Computer Science, Springer
Berlin/Heidelberg, vol.4672, pp.133-142, 2008.

[10] Intel, “The intel xscale microarchitecture,” Intel Corporation,
Technique Report, 2000.

[11] W. Kim, J. Kim, and S. L. Min,“Dynamic Voltage Scaling Algorithm
for Fixed-Priority Real-Time Systems Using Work-Demand
Analysis,”in Proceedings of the 2003 International Symposium on
Low Power Electronics and Design (ISPLED). New York, NY: ACM
Press, Aug. 2003, pp. 396-401.

[12] Kim W, Shin D, Yun H, Kim J, Min S,“Preemption-Aware Dynamic
Voltage Scaling in Hard Real-Time Systems,”in the Proceedings of
the 2004 International Symposium on Low Power Electronics and
Design (ISPLED). New York, NY: ACM Press, 2004 pp.393–398.

[13] John P. Lehoczky and Sandra Ramos-Thuel, “An Optimal Algorithm
for Scheduling Soft-Aperiodic Tasks in Fixed-Priority Preemptive
Systems,” in the Real-Time Systems Symposium(RTSS’92), 1992,
pp.110-123.

[14] John P. Lehoczky, L. Sha and Y. Ding, “The Rate-Monotonic
Scheduling Algorithm” in the Real-Time Systems Symposium
(RTSS’89), 1989, pp.166-171.

[15] John P. Lehoczky, “Fixed Priority Scheduling of Periodic Task Sets
with Arbitrary Deadlines in the Real-Time Systems Symposium
(RTSS’90), 1990, pp.201-209.

[16] J. W. S. Liu, Real-Time Systems. Upper Saddle River, NJ: Prentice
Hall, 2000.

[17] Jacob R. Lorch and Alan Jay Smith, “PACE: a new approach to
dynamic voltage scaling”IEEE Trans. Computers, Vol. 53, No. 7,
pp.856-869, July 2004.

[18] Bren Mochocki, Xiaobo Sharon Hu, Gang Quan, “Practical On-line
DVS Scheduling for Fixed-Priority Real-Time Systems, ” in
Proceedings of the 11th IEEE Real Time and Embedded Technology
and Applications Symposium (RTAS'05), 2005, pp.224-233.

[19] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for low
power embedded operating systems,” in Proceedings of the
eighteenth ACM symposium on Operating systems principles (SOSP).
New York, NY: ACM Press, 2001, pp. 89-102.

[20] G. Quan and X. S. Hu, “Energy efficient Fixed-priority scheduling for
real-time systems on variable voltage processors,”in the Proceedings
of the 2001 Design Automation Conference (DAC). New York, NY:
IEEE, June 2001, pp. 828.833.

[21] Samsung, “Samsung and Intrinsity Jointly Develop the World’s
Fatest ARM® CORTEX™-A8 Processor Based Mobile Core In 45
Nanometer Low Power Processor,”http://www.samsung.com/.

[22] D. Shin, S. Lee, and J. Kim, “Intra-task voltage scheduling for low-
energy hard real-time applications,” Design & Test of Computers, vol.
18,no. 2, pp. 20.30, March . April 2001.

[23] M.Weiser, B.Welch, A. J. Demers, and S. Shenker, “Schedulingfor
reduced CPU energy,” in Operating Systems Design and
Implementation, pages 13–23, 1994.

