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Random sampling remap for compressible two-phase

flows

M. Bachmann, P. Helluy, J. Jung, H. Mathis and S. Müller

RWTH Aachen and IRMA, Université de Strasbourg

Abstract

In this paper we address the problem of solving accurately gas-liquid compress-

ible flows without pressure oscillations at the gas-liquid interface. We intro-

duce a new Lagrange-projection scheme based on a random sampling tech-

nique introduced by Chalons and Goatin in [CG07]. We compare it to a ghost

fluid approach introduced in [WLK06, MBKKH09] which is based on the ghost

fluid method for the poor [AK01]. Despite the non-conservative feature of the

schemes, we observe the numerical convergence towards the relevant weak solu-

tion for shock-contact interaction test cases. Finally, we apply the new scheme

to the computation of the oscillations of a spherical air bubble inside water.

Keywords: Finite volume, Godunov scheme, Ghost fluid method,

Lagrange-projection, Glimm scheme, bubble oscillations.

Introduction

The bad precision of conservative Godunov schemes applied to two-fluid

flows is a subject that has been studied now for more than twenty years, see

[Abg88, Kar94, SA99a, BHR03, MBKKH09] and included references. This bad

precision implies perturbations on the pressure profiles, that are often called the

“pressure oscillations“ phenomenon.

For the moment, it has not been possible to design a simple conservative
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scheme that preserves the constant velocity-pressure states. This property,

which amounts to preserving the contact discontinuities in one-dimensional

flows, seems to be mandatory for obtaining reliable schemes. Thus, many au-

thors have proposed modified Godunov schemes in order to achieve this prop-

erty. Karni [Kar94] proposes to solve the pressure evolution equation instead

of the mass fraction evolution equation at the interface. Abgrall and Saurel

[Abg88, SA99a] propose to solve the mass fraction equation in a non-conservative

way in order to recover the preservation of constant velocity-pressure states

(S-A approach). Fedkiw and collaborators [FAMO99] introduced the ghost

fluid method (GFM): at the interface, they propose to introduce two virtual

fluids in order to construct a scheme that only requires a one-fluid Riemann

solver. The GFM has been improved in many works. We will concentrate

here on one variant of the GFM based on the ghost fluid method for the poor

[AK01, FRS08, WLK06, MBKKH09]. It is not possible to give a comprehensive

survey of this field, but many other attempts have been proposed: changing

the two-fluid model to a more general one [SA99b, WK05, KL10], using a La-

grangian approach at the interface [HMM08], etc.

A common feature of all the above-mentioned approaches is that the schemes

are generally non-conservative. It is possible to construct very exotic schemes

that are conservative but they are then very complicated and can be used only

for academic test cases [HMM08]. A natural question arises, which is whether

these schemes converge, or not, towards the relevant solution of the initial two-

fluid models. Indeed, generally, non-conservative schemes converge towards

wrong solutions. It is a purely nonlinear behavior [HL94], which is still not

yet well understood because a non-conservative Lax-Wendroff theory does not

exist (for a recent work on this aspect, see [AK10]). Here, the situation is rather

subtle because the non-conservation of the schemes is generally located at the

contact discontinuity, which is a linearly degenerated field. When all the dis-

continuous waves (shocks and contacts) are well separated, it is thus not a full

paradox to observe convergence towards the good solution. However, in case

of complicated nonlinear interactions, when all the waves are mixed, it is diffi-
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cult to understand why the non-conservative approach leads to well converging

schemes. For one-dimensional problems, wave mixing occurs in very simple sit-

uations: at the initial time of a Riemann problem, for instance, or when a shock

wave is running over a moving interface.

Our first objective in this paper is to provide a new non-conservative scheme

for solving two-fluid flows. Our approach is an adaptation of previous works

of Goatin, Chalons and Coquel [CG07, CC08] on Lagrange-projection schemes.

The idea is to use a projection step based on random sampling techniques,

very similar to the Glimm scheme method. The classical Glimm scheme [Gl65]

implies an exact Riemann solver. Here, because the random sampling is only

performed in the projection step, it is possible to rely on approximate Rie-

mann solvers in the Lagrange step. We will see that in the presence of strong

shocks, our approach has to be adapted, in order to avoid oscillations and non-

convergence: we simply propose to perform the random sampling strategy only

at the two-fluid interface. As for other schemes, our random sampling projection

scheme is not conservative. Let us recall that the Glimm scheme is not conser-

vative too, but possesses statistically conservation properties [Gl65]. Whether

such properties still hold for our sampling projection scheme is not yet known.

Our second objective is to perform a numerical convergence study for several

classical non-conservative schemes for two-fluid flows, and compare them to

our new scheme. We will observe, surprisingly, that the numerical solutions

seem to converge towards the good weak solutions. According to our previous

considerations, this behavior is absolutely not obvious. Finally, we compare our

new scheme to the GFM in a more complex configuration. We present a hard

test case consisting in computing the oscillations of a spherical gas bubble in

a compressible liquid. We present the results obtained with the GFM and the

random projection scheme.

1. The two-fluid model

In this paper, we investigate the numerical approximation of the Euler sys-

tem for a compressible two-fluid mixture. The density of the mixture is ρ, the
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velocity is u and the internal energy is e. We denote by E the total energy de-

fined by E = e+u2/2. The pressure is noted p. For simplicity, but without loss

of generality, we only consider one-dimensional flows. The unknowns depend

on the spatial position x and on the time t. The PDE system is made of mass,

momentum and energy conservation laws

∂tρ+ ∂x(ρu) = 0, (1)

∂t(ρu) + ∂x(ρu
2 + p) = 0, (2)

∂t(ρE) + ∂x((ρE + p)u) = 0. (3)

In the case of a one-fluid flow, the pressure would be a function of the density

and the internal energy

p = p(ρ, e).

Because we consider two-fluid flows, our pressure is a function of the density and

the internal energy but also of a supplementary unknown ϕ, the colour function,

p = p(ρ, e, ϕ). (4)

The colour function is transported with the flow

∂tϕ+ u∂xϕ = 0.

Combining this transport equation with the mass conservation law (1) gives a

conservative form of the colour function equation

∂t(ρϕ) + ∂x(ρϕu) = 0. (5)

Finally, defining the conservative variables vector

W = (ρ, ρu, ρE, ρϕ)T , (6)

and the flux vector

F (W ) = (ρu, ρu2 + p, (ρE + p)u, ρϕu)T , (7)

the system (1)-(3), (5), (4) can be written

∂tW + ∂xF (W ) = 0. (8)
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For practical computations, we will use the pressure law of a mixture of

stiffened gases. We consider a gas and a liquid satisfying stiffened gas laws

p = (γi − 1)ρe− γiπi,

with i = 1 for the gas and i = 2 for the liquid. The parameters γi > 1 and πi

are obtained from physical measurements. The mixture pressure is defined by

p(ρ, e, ϕ) = (γ(ϕ)− 1)ρe− γ(ϕ)π(ϕ). (9)

The mixture parameters are given by

1

γ(ϕ)− 1
= ϕ

1

γ2 − 1
+ (1− ϕ)

1

γ1 − 1
,

γ(ϕ)π(ϕ)

γ(ϕ)− 1
= ϕ

γ2π2
γ2 − 1

+ (1− ϕ)
γ1π1
γ1 − 1

,

in such a way that ϕ = 1 in the pure liquid phase and ϕ = 0 in the pure gas

phase. This system has nice mathematical properties: it is hyperbolic and the

Riemann problem has a unique solution, even with large data [BHR03].

On the numerical side, the situation is more complicated. For instance, it

is well-known that standard conservative finite volume schemes have a poor

precision when applied to this kind of flow. Even worse, in some configurations

of liquid-gas flows, the explicit Godunov scheme cannot be used because it leads

to negative densities.

2. The Lagrange-projection approach

For the finite volume approximation, we consider a sequence of times tn,

n ∈ N, such that t0 = 0 and τn = tn+1 − tn > 0. We also consider mesh points

xni+1/2 at time n. The cell Cn
i is the interval ]xni−1/2, x

n
i+1/2[. We denote by xni

the center of cell Cn
i

xni =
xni−1/2 + xni+1/2

2
.

The length of cell Cn
i is noted hni = xni+1/2−x

n
i−1/2. According to the notations,

the mesh is moving but at some time step we will go back to the initial mesh at

n = 0. We note

xi = x0i , Ci = C0
i , hi = h0i , etc.
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We are looking for an approximation of W in the cell Cn
i

Wn
i ≃W (x, t), x ∈ Cn

i , t ∈]tn, tn+1[.

For the numerical approximation, we need an (exact or approximate) Rie-

mann solver. The (exact or approximate) solution of the Riemann problem

∂tV + ∂xF (V ) = 0,

V (x, 0) =





WL if x < 0,

WR if x > 0,

is noted

R(
x

t
,WL,WR) = V (x, t).

Each time step of the Lagrange-projection scheme is made of two stages. In

the first stage, we approximate the solution with a Lagrange scheme

h
n+1/2
i W

n+1/2
i − hni W

n
i + τn

(
Fn
i+1/2 − F

n
i−1/2

)
= 0.

The Lagrange flux is defined by

Fn
i+1/2 = F (Wn

i+1/2)− u
n
i+1/2W

n
i+1/2,

Wn
i+1/2 = R(uni+1/2,W

n
i ,W

n
i+1),

where the cell boundary xni+1/2 moves at the velocity uni+1/2 of the contact

discontinuity in the approximation of the Riemann problem between WL =Wn
i

and WR =Wn
i+1

x
n+1/2
i+1/2 = xni+1/2 + τnu

n
i+1/2.

In particular, this defines the new size of cell Cn
i

h
n+1/2
i = x

n+1/2
i+1/2 − x

n+1/2
i−1/2 = hni + τn(u

n
i+1/2 − u

n
i−1/2). (10)

This evolution equation is known as the discrete geometric conservation law

in the context of finite volume schemes on moving meshes, cf. [FGG01]. In

particular, (10) can be generalized to higher dimensions. It permits to avoid

the actual computation of the moving mesh.

After the Lagrange stage, we have to go back to the initial Euler mesh. This

can be done with several methods

6



2.1. The averaging projection

In this approach, we average back on the Euler grid, with a simple L2 pro-

jection

Wn+1
i =

τn
hi

max(uni−1/2, 0)W
n+1/2
i−1 −

τn
hi

min(uni+1/2, 0)W
n+1/2
i+1

+

(
1−

τn
hi

max(uni−1/2, 0) +
τn
hi

min(uni+1/2, 0)

)
W

n+1/2
i . (11)

And we go back to the initial Euler grid

Cn+1
i = Ci, hn+1

i = hni .

It can also be written

Wn+1
i =W

n+1/2
i −

τn
hi

(
max(uni−1/2, 0)(W

n+1/2
i −W

n+1/2
i−1 )+

min(u
n+1/2
i+1/2 , 0)(W

n+1/2
i+1 −W

n+1/2
i )

)
. (12)

In this way, it is clear that the projection step is an upwind approximation of

∂tW + u∂xW = 0.

This method is fully conservative and thus has a bad precision for multi-fluid

problems [BHR03]. It is possible to improve the precision by the Saurel-Abgrall

approach. It consists in performing a non-conservative projection on the colour

function. Instead of projecting ρϕ as in (11) we project directly ϕ, which gives

ϕn+1
i = ϕ

n+1/2
i −

τn
hi

(
max(uni−1/2, 0)(ϕ

n+1/2
i − ϕ

n+1/2
i−1 )+

min(u
n+1/2
i+1/2 , 0)(ϕ

n+1/2
i+1 − ϕ

n+1/2
i )

)
.

This approach results in a globally non-conservative scheme: it induces a nu-

merical mass transfer between the two phases. In the case of the stiffened gas

pressure law (9) it can be proved that the resulting scheme preserves constant

(u, p) states.
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2.2. The Glimm projection

In this approach, we construct a sequence of random or pseudo-random

numbers ωn ∈ [0, 1]. According to this number we take

Wn+1
i =





W
n+1/2
i−1 if ωn <

τn
hi

max(uni−1/2, 0),

W
n+1/2
i if τn

hi
max(uni−1/2, 0) ≤ ωn ≤ 1 + τn

hi
min(uni+1/2, 0),

W
n+1/2
i+1 if ωn > 1 + τn

hi
min(uni+1/2, 0).

And we go back to the initial Euler grid

hn+1
i = hni . (13)

This method is only statistically conservative [Gl65]. It preserves exactly con-

stant velocity-pressure states. The contacts are solved in one point. The draw-

back is that the solution may be noisy. In particular, for strong shocks the whole

method does not converge towards the correct entropy solution.

A good choice for the pseudo-random sequence ωn is the (k1, k2) van der

Corput sequence, computed by the following C algorithm

float corput(int n,int k1,int k2){

float corput=0;

float s=1;

while(n>0){

s/=k1;

corput+=(k2*n%k1)%k1*s;

n/=k1;

}

return corput;

}

In this algorithm, k1 and k2 are two numbers that are relatively prime and

k1 > k2 > 0. For more details, we refer to [Tor99]. In practice, we consider the

(5, 3) van der Corput sequence.

2.3. Mixed projection

In order to improve the convergence of the Glimm approach, it is possible

to follow the following mixed projection step. If cell Ci and its two neighbours

are in the same fluid, i.e., if

(ϕn
i−1 −

1

2
)(ϕn

i −
1

2
) > 0 and (ϕn

i −
1

2
)(ϕn

i+1 −
1

2
) > 0,
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then, we follow the projection given by (12). In all the other cases, we follow the

Glimm projection (13). This approach allows a better precision at the interface

because it is resolved in only one point.

3. The modified ghost fluid approach

Our ghost fluid method follows the ideas of the ghost fluid method for the

poor of Abgrall and Karni [AK01] and its modification by Farhat et al. [FRS08]

as well as the ideas of the real ghost fluid method developed by Wang, Liu and

Khoo in 2006 [WLK06].

As usual, the interface between the liquid and the gas is identified by a

function ψ. In fluid A, we have ψ > 0 and in fluid B, ψ < 0. And thus, the

interface corresponds to the level set ψ = 0. As in the previous method, the

level set function ψ is transported by the flow

∂tψ + u∂xψ = 0. (14)

The pressure law of the liquid and the pressure law of the gas are distin-

guished by the sign of ψ. Obviously, the differences between the colour function

model and the level set model are only formal. However, the numerical imple-

mentations are rather different, because we separate the discretization of the

level set equation (14) and the fluid flow (1-3), respectively, instead of discretiz-

ing the coupled system (8) with (6) and (7). In the following the level set

function ψ is approximated in cell Ci at time tn by ψn
i . For the fluid flow we

discretize the evolution equations (1-3) for mass, momentum and energy sepa-

rately, i.e., in (8), we replace (6) and (7) by the vector of conserved quantities

W = (ρ, ρu, ρE)T (15)

and the associated flux vector by

F (W ) = (ρu, ρu2 + p, (ρE + p)u)T . (16)

9



This system is approximated by a finite volume scheme

Wn+1
i =Wn

i −
τn
hi

(
Fn,−
i+1/2 − F

n,+
i−1/2

)
, (17)

with a possible non-conservative numerical flux, i.e., Fn,−
i+1/2 6= Fn,+

i+1/2. In the

following we describe in detail how to compute the numerical fluxes. Here we

have to distinguish between cells away from the phase interface and cells at the

phase interface.

Away from the phase interface:

Let the fluid of two neighbouring cells Ci and Ci+1 belong to the same phase,

i.e.,

ψn
i · ψ

n
i+1 > 0.

Then we take the classical conservative Godunov flux

Fn,−
i+1/2 = Fn,+

i+1/2 = Fn
i+1/2 = F (R(0,Wn

i ,W
n
i+1)).

Thus, only one numerical flux is computed at the cell interface. Note that

the spatial order can be improved by using a second-order reconstruction of

the primitive variables ρ, u, p and the solution is advanced to the next time

step by the finite volume scheme (17). This has been done in [MBKKH09]. In

order to be comparable with the Lagrange projection approach, we confine the

reconstruction to the first order approximation.

At the phase interface:

Let the phase boundary be lying between cells Ci and Ci+1, where cell Ci

corresponds to fluid A and cell Ci+1 to fluid B, i.e.,

ψn
i · ψ

n
i+1 < 0.

Then the left and right state are taken from cells Ci+1 and Ci+2, respectively,

to ensure access to states of the pure phases

WL =Wn
i−1, WR =Wn

i+2.
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Solving the Riemann problem between WL and WR we obtain the interfacial

velocity uI and the interfacial states to the left and to the right of the material

interface I

WIL = lim
ξ→I−

R(ξ,WL,WR), WIR = lim
ξ→I+

R(ξ,WL,WR).

Here R(ξ,WL,WR) denotes the self-similar solution of the Riemann problem

that is constant along rays ξ = x/t = const. We have thus access to the

interfacial states for the densities ρIL, ρIR as well as to the interfacial pressure

pI and the interfacial velocity uI that are both continuous at the interface. For

fluid A, the state (ρIL, uI , pI) replaces the state of the cell Ci and defines the

ghost states as in [WLK06]. The numerical fluxes are thus

F−

i+1/2 = F (R(0,WIL,WIL)) = F (WIL), F+
i+1/2 = F (R(0,WIR,WIR)) = F (WIR).

The evolution equation (17) is slightly modified by

Wn+1
i =WIL −

τn
hi

(
Fn,−
i+1/2 − F

n,+
i−1/2

)
,

and

Wn+1
i+1 =WIR −

τn
hi+1

(
Fn,−
i+3/2 − F

n,+
i+1/2

)
,

[Figure 1 about here.]

This procedure is sketched in Fig. 1. As a consequence, only single-phase

Riemann problems are solved for each cell interface of fluid A to provide the nu-

merical fluxes with the ghost cells as boundary conditions at the phase boundary.

Then the same procedure is used for fluid B. Thus near the phase boundary,

two fluxes F
n,±

i+ 1
2

, one for each fluid, are defined.

On the other hand, the level set function has also to be advanced. This is

done first by solving numerically (14) with a standard upwind non-conservative

finite volume scheme

ψn+1,−
i = ψn

i −
τn
hi

(
max(uni−1/2, 0)(ψ

n
i − ψ

n
i−1) + min(uni+1/2, 0)(ψ

n
i+1 − ψ

n
i )
)

11



Periodically, the approximation of the level set function is reinitialized in

such a way that it remains a signed distance to the interface. This is formally

obtained through the numerical solution of a Hamilton-Jacobi equation

∂τ ψ̃(x, τ) + a(ψ̃)∂xψ̃ = S(ψ̃) (18)

ψ̃(x, τ = 0) = ψn+1,−
i , x ∈ Ci,

with

a(ψ̃) = S(ψ̃)
∂xψ̃∣∣∣∂xψ̃

∣∣∣
, S(ψ̃) =





−1 if ψ̃ < 0,

0 if ψ̃ = 0,

1 if ψ̃ > 0,

.

The level set function is replaced by the reinitialized level set function, i.e., we

take

ψn+1
i = ψ̃(x, τ =∞), x ∈ Ci.

This procedure is described in more details in [MBKKH09].

Finally, due to the update of the level set function, the phase in a cell may

change from one fluid to the other. This situation corresponds to a change of

the sign between time step n and time n + 1, i.e., when ψn
i · ψ

n+1
i < 0. In

this case, it is necessary to also update Wn+1
i in the corresponding cell because

the state corresponds to the wrong equation of state. The fluid variables are

recalculated using the equation of state of the new fluid. The cell being very

close to the phase boundary, the velocities and the pressure, which are constant

for both fluids at the phase boundary, are preserved, see Eq. (19)

Wn+1
i = ρn+1

i

(
1, un+1

i , En+1
i

)T
(19)

→ p
(
ρn+1
i , en+1

i , ψn
i

)
→ ẽ

(
ρn+1
i , pn+1

i , ψn+1
i

)
→

Wn+1
i = ρn+1

i

(
1, un+1

i , Ẽn+1
i

)
.

This modification was suggested by Barberon [BA02]. In addition to this

approach, we propose to modify the density as well, because there will be large
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jumps in the density for two-phase fluids such as water and air. Also the density

is simply replaced by the density of the corresponding ghost cell. More precisely,

if ψn
i ·ψ

n+1
i < 0, and if ψn

i ·ψ
n
i+1 < 0, then, before computing the next time-step,

we substitute the density ρn+1
i in (19) by

ρn+1
i ←





ρIR, if cell i goes to fluid B

ρIL, if cell i goes to fluid A
.

This construction implies that the whole resulting scheme will preserve con-

stant (u, p) states. On the other hand, it is obvious that the scheme is not

conservative. For instance, (20) implies a mass and an energy transfer between

the two fluids. This modification of the density (20) is similar to [FRS08], where

the solution of the finite volume scheme in primitive variable Wn+1
i is substi-

tuted by the solution of the Riemann problem corresponding to the new fluid,

i.e.,

Wn+1
i =WI∗, (20)

where * is either the left or the right state. This procedure ensures that the

velocity and the pressure are continuous at a contact discontinuity.

4. Numerical results

4.1. Introduction

In this part, we compare the three Lagrange-projection approaches (averag-

ing projection, Glimm projection and mixed projection) and the two Eulerian

methods (Saurel-Abgrall and ghost fluid method). Before presenting the results,

we give some information on the discretization used for these algorithms.

For the Lagrange-projection plan, we use a uniform mesh because it allows

to perform the computations on a GPU.

For the Eulerian approach, we apply multi-scale grid adaptation [MÜ03].

In fact, the problem is the precision of the interface position, that can be im-

proved by using more cells at the phase interface than elsewhere. The coarse

discretization consists of 100 cells to which the multi-scale transformation is

applied, see [MBKKH09]. We denote by L the number of refinement levels, i.e.,
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the uniform grid on the finest level consists of 2L ∗ 100 cells. The threshold

value in the grid adaptation is chosen as ǫ = 10−5 such that the error obtained

with the multiscale grid adaptation is comparable with the error obtained with

a uniform grid. Tests are performed with a CFL number of 0.7.

4.2. Academic validation

The first test consists in a two-fluid shock tube problem. The stiffened gas

parameters are given in Table 1.

[Table 1 about here.]

The interface between the two fluids is located at time t0 = 0 s at position

x = 0 m. The computational domain is [−1; 1] m and the final time is tA = 0.5 s.

Left and right initial states are given in Table 2.

[Table 2 about here.]

The Lagrange-projection approach, the non-conservative projection, the Glimm

projection and the mixed projection are compared. We observe numerical con-

vergence in the L1−norm for the three methods and that Glimm and mixed

projection are more precise than the averaging projection, see Figure 2. The

convergence rate for the averaging projection is approximately 0.5 while it is

approximately 0.8 for the two others.

For the Eulerian approach, the non-conservative methods of Saurel-Abgrall

and the GFM are compared. Obviously the GFM is more precise, see Figure 2.

The convergence rate is approximately 0.5 for the Saurel-Abgrall approach and

0.6 for the GFM.

[Figure 2 about here.]

4.3. 1D academic shock-interface interaction

The interface between the two fluids is located at time t0 = 0 s at position

xI0 = 1 m. The two fluids are moving to the left at velocity u = −1 m/s.

Fluid (A) is on the left, while fluid (B) is on the right. A shock is arriving from

position xSA = −4 m at velocity σ = 4 m/s. The initial position of the interface
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and the shock are chosen in such way that they will interact at position xS = 0

m at time tI = 1 s. The computational domain is [−5; 2] m. The material

parameters are listed in Table 4.

When the shock wave and the interface have interacted at time tI = 1 s,

the solution is simply given by the solution of a two-fluid Riemann problem

between states (A) and (B). In fact, the exact solution is the exact solution of

the Riemann problem between the states WA and WB at final time t = tA− tI .

At time tA = 1.5 s, the shock in the fluid (B) is located at position xSB =

1.56 m, the interface is located at position xI1 = 0.93 m and the rarefaction

wave in the fluid (A) is between positions xRAL = −1.55 m and xRAR = −0.92

m. The solution structure is sketched in Figure 3. The numerical data are

recorded in Table 3.

[Table 3 about here.]

[Table 4 about here.]

[Figure 3 about here.]

4.3.1. Lagrange plus projection schemes

In this case, we observe that the Glimm approach does not converge. This

behavior depends on the strength of the shock wave. A typical plot is given in

Figure 4, where we compare the exact and the approximated densities at time

tA = 1.5 s.

[Figure 4 about here.]

We also provide in Figure 5 a comparison of the mixed and averaging pro-

jection schemes for the densities, where we discretize the interval [−5; 2] m by

500 cells. The CFL number is fixed to 0.7. It is interesting to observe that the

interface position is very well resolved (in only one mesh point) by the mixed

projection scheme and that this good resolution of the contact wave also implies

an improvement of the precision in the left rarefaction wave.

[Figure 5 about here.]
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4.3.2. Modified ghost fluid method

In order to compare the non-conservative methods of Saurel-Abgrall and the

GFM, several numerical solutions are compared with the exact solution.

In Figure 6 the density profiles are shown at t = 1.5 s in case of L = 10.

This corresponds to a cell length of 68 µm. Both methods fit very well with the

exact solution. That means that the interface, the shock and the rarefaction

waves are well resolved.

[Figure 6 about here.]

4.3.3. Convergence study

We compare the numerical convergence in the L1 norm for the three Lagrangian-

projection approaches and for the two Eulerian approaches in Figure 7. For the

Eulerian methods the convergence study is performed for grids having 5 to 13

refinement levels L. We note in Figure 4 that the Glimm approach does not

converge but the four other procedures have small convergence errors. The con-

vergence rate for the averaging projection and for the non-conservative method

of Saurel-Abgrall is approximately 0.5, while it is 0.8 for the mixed projection

and the GFM.

In fact, the Glimm approach does not converge in all cases, we have to use the

mixed projection to avoid oscillations. The best error convergence is achieved

with mixed-projection and the GFM.

[Figure 7 about here.]

4.4. Air-water test case

The second test case is a shock of Mach number 0.67 starting at position

xSA = −3 m running at velocity σ = 3000 m/s in the liquid towards an interface

located at position xI0 = 0.1 m. It interacts with air at time tI = 1 ms at

position xs = 0 m. The water ahead of the shock and the air are moving

towards the shock at velocity of 100 m/s. The computational domain is [−4; 2]

m.
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The exact solution is the exact solution of the Riemann problem between the

states UA and UB at final time t = tA − tI .

At time tA = 1.5 ms, the shock in the fluid (B) is located at position xSB =

1.45 m, the interface is located at position xI1 = 1.18 m and the rarefaction

wave in the fluid (A) is between positions xRAL = −0.88 m and xRAR = 0.4 m.

The configuration is sketched in Figure 3 and the different intermediate states

are summarized in Table 5. The material parameters for the fluids are listed in

Table 6.

[Table 5 about here.]

[Table 6 about here.]

4.4.1. Density graph

In Figure 8, we compare the density obtained with the two Eulerian ap-

proaches and the one obtained with the mixed projection to the exact solution

at time tA = 1.5 ms. For the Eulerian approaches, we use a grid with L = 7

refinement levels that corresponds to a finest cell length of 470µm for a uniform

grid. The global result is presented in the middle as well as a zoom of the shock

position (bottom left), a zoom of the plateau between the rarefaction wave and

the interface (top left) and a zoom very close to the contact position (right). In

the latter one, cell centers are marked by diamonds for the numerical results.

The Saurel-Abgrall approach generates oscillations at the right kink of the

rarefaction wave due to the interaction between the shock and the interface.

This is not the case for the GFM and the mixed projection which match quite

well with the exact solution.

At the interface, there is a smearing of the density for the Saurel-Abgrall

approach. This can be seen in the zoom on the right, where the density decreases

slowly instead of jumping as in case of the GFM or the mixed projection. Due

to the construction of the ghost fluid method, we obtain the desired jump at the

interface but this jump is a little bit shifted compared to the exact solution. As

the cell centers are represented by diamonds in the figure, for L = 7 refinement
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levels, we can see a shift in the position of the interface by 2 cells. With the

mixed projection, there is no smearing on the interface position but the jump

is a little bit shifted too.

Concerning the shock position which is only visible in the zoom due to the big

jump of the density, we notice that its position is well predicted with the GFM

and the mixed projection. This is different for the Saurel-Abgrall approach.

[Figure 8 about here.]

4.4.2. Saurel-Abgrall approximation

As we saw in Section 4.4.1, the Saurel-Abgrall method is not really con-

sistent with the exact solution. To see if the problem comes from a lack of

resolution, we plot the density for the two Eulerian approaches with a very fine

grid corresponding to L = 12 refinement levels in Figure 9. We note that

(i) in the rarefaction wave, the amplitude and the number of oscillations are

largely reduced;

(ii) as the cell centers are represented by diamonds, for L = 12 refinement

levels, we can see a shift in the position of the interface about 4 cells;

(iii) concerning the shock position, the shift reduces as much as the smearing

region at the interface becomes smaller with grid refinement.

[Figure 9 about here.]

From these observations we conclude that the oscillations and the error in

the shock position for the S-A approach are only caused by the previous shock-

interface interaction. To verify this we perform a computation that starts at

tI = 1 ms, i.e., a two-phase Riemann problem is solved. Then the results are

in good agreement with the exact solution everywhere. This result is shown

in Figure 10 in comparison with the exact solution and the numerical solution

with oscillations.

[Figure 10 about here.]
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4.4.3. Convergence Study

The L1-error of the density is summarized in Figure 11. The order of con-

vergence for the Saurel-Abgrall approach is 0.5. Concerning the GFM, the error

seems to tend to the same order under grid refinement, see Figure 11. For the

mixed projection, the convergence rate is approximately 0.8.

[Figure 11 about here.]

4.4.4. Error at the interface

In this section the error in the interface position is discussed in more detail.

For the Saurel-Abgrall approach, a gas mass fraction of 0.5 is chosen to charac-

terize the interface position. For the GFM, it corresponds to the zero level set.

As there is no smearing of the interface with the mixed projection method, the

interface position corresponds to the jump from 1 to 0 in the gas mass fraction.

The error of this position and the exact position of the interface is computed

and used to plot Figure 12, where we represent the logarithm of the difference

between the exact position and the numerical position of the interface.

The Saurel-Abgrall approach shows a convergence rate of 0.5. For the GFM,

the error decreases under grid refinement. The order might be less than 0.5

with several additional refinement levels. However, the interface position is

always shifted compared to the exact solution although the error reduces under

grid refinement. This is due to the non-conservative discretization near to the

phase boundary, where two fluxes are computed at a cell interface. The mixed

projection gives a convergence rate of 0.65.

In Figure 12, we show a graph of the error between the exact position and

the numerical position of the interface.

[Figure 12 about here.]

5. Gas bubble oscillations

5.1. Introduction

In this section we apply the random projection scheme to the bubble oscil-

lation test case described in [HMM08, MBKKH09, Ma10]. Despite the quasi
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one-dimensional framework, the test case implies long computations and fine

meshes. We compare with the results obtained with the GFM on locally refined

grids.

5.1.1. Model

To study the spherical bubble of gas in the liquid phase we consider the

3D-Euler equations. We assume that the flow is invariant under rotation. We

note x the space variable along the radius of the bubble and t the time , see

Figure 13.

[Figure 13 about here.]

With the spherical symmetry the unknowns are the density ρ, the radial velocity

u, the internal energy e and the fraction mass of gas ϕ and they depend only

on (x, t). We can write the 3D-Euler equations in the following form:

∂t(Aρ) + ∂x(Aρu) = 0, (21)

∂t(Aρu) + ∂x(A(ρu
2 + p)) = pA′(x),

∂t(AρE) + ∂x(A(ρE + p)u) = 0,

∂t(Aρϕ) + ∂x(Aρϕu) = 0, (22)

where A(x) = x2 appears because of the symmetry. We recall that p satis-

fies a mixture stiffened gas pressure law defined by (9) with different material

parameters for the gas and the liquid.

We write the system (21)-(22) in the condensed form:

∂t(AW ) + ∂x(AF1(W )) = A′(x)B(W ), (23)

where W = (ρ, ρu, ρE, ρϕ)T , F1(W ) = (ρu, ρu2 + p, (ρE + p)u, ρϕu)T , and the

source term is

A′(x)B(W ) = A′(x)(0, p, 0, 0)T .
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5.1.2. Boundary conditions and initial data

We assume that we have a bubble of gas in a liquid phase. Then the initial

conditions are of the form

Y (x, 0) =





YL, if x < Rb

YR, if x > Rb

, (24)

where Rb is the initial radius of the bubble and Y = (ρ, u, p, ϕ)T .

For the boundary conditions, we take wall boundary condition on the right

side and on the left side.

The initial left and right states are computed as it was down in [MBKKH09],

we briefly recall this method. The equilibrium radius Req is the radius, where

the pressure in the bubble is equal to the pressure acting from outside, there is

a static equilibrium. Hence

pi(Req) = p0 +
2σ

Req
,

with p0 being the ambient pressure and σ the surface tension. Neglecting surface

tension we have:

pi(Req) = p0.

With the ideal gas law pV = nRT we get the number of molecules (in [mol])

inside the bubble (R is the specific gas constant):

n =
p0V0
T0R

=
p04πR

3
eq

3T0R
,

where T0 is the ambient temperature. If we now choose an arbitrary radius,

e.g., the starting radius, we use the adiabatic gas law to get the pressure inside

the bubble

pi(Rb) = p0

(
R3

eq

R3
b

)γg

, (25)

where γg is the polytropic exponent of the gas. Once we have the pressure

pi(Rb), then with the ideal gas law we know the temperature

T (Rb) = T0

(
Req

Rb

)3(γg−1)

. (26)
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As pρ−γg = const, we obtain

ρ(Rb) = ρ0,gas

(
pi(Rb)

p0

) 1
γg

, (27)

where ρ0,gas is the density of the gas at (p0, T0).

We assume that T0 = 293.15 K, p0 = 105 Pa, γg = 1.4, ρ0,gas = 1.204 kg.m−3,

γliq = 3 and ρ0,liq = 1000 kg.m−3. We study two different test cases where the

difference are the initial radius of the bubble and the speed of sound in the liquid

phase. The first case that is easier will be called the "weakly compressed bubble"

and the second test case will be called the "strongly compressed bubble".

The weakly compressed bubble:. We study the behavior of a spherical bubble

that is slightly dilated. We assume that the maximal radius of the bubble is

Rmax = Rb = 0.7469 × 10−4 m with an equilibrium radius of Req = 0.692 ×

10−4 m, cf. [MBKKH09]. We then obtain:

p(Rb) = 72567.68471 Pa,

T (Rb) = 267.4867417 K,

ρ(Rb) = 0.9575410293 kg.m−3.

To obtain slowly oscillations we assume a speed of sound in the liquid of c0,liq =

50 m.s−1. Using the relation

πliq =
c20,liq × ρ0,liq

γliq
− p0, (28)

we obtain πliq = 7.33333333× 105 Pa.

The strongly compressed bubble:. We study a cavitation bubble inducted by

a laser pulse. From experiments performed at the University of Göttingen,

cf. [MBKKH09], we are given the maximal radius of the bubble Rmax = Rb =

0.7469× 10−3 m. Thus the equilibrium radius is approximately Req = 0.692×

10−4 m, cf. [MBKKH09].
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We then obtain:

p(Rb) = 4.578711364 Pa,

T (Rb) = 16.87727242 K,

ρ(Rb) = 0.0009575410292 kg.m−3.

We assume a speed of sound in the liquid of c0,liq = 1500 m.s−1. Using the

relation (28) we obtain πliq = 7.49900000e8 Pa.

5.2. Numerical scheme with Glimm procedure

In order to solve the system (23), we decide to apply a Lagrangian approach

as it was done in the previous part. The motivation for this choice is that the

Eulerian approach is known to have poor precision and to smear the interface.

Note that for the Lagrangian approaches to be presented below the approxi-

mated ϕ takes only two values: 1 in the gas and 0 in the liquid.

As it is explain in Section 2, we look for an approximation

Wn
i =

1

V n
i

ˆ xn
i+1/2

xn
i−1/2

A(x)W (x, tn)dx, (29)

where

V n
i =

ˆ xn
i+1/2

xn
i−1/2

A(x)dx (30)

is the volum of the cell Cn
i =]xni−1/2;x

n
i+1/2[. The boundaries of the cell Cn

i

are moving from tn to tn+1 and we use the same notation as in Section 2. The

bubble interface is supposed to coincide with a cell edge at time t = 0 s.

To write the two numerical schemes, we have to define:

An
i+1/2 = A(xni+1/2) = (xni+1/2)

2, (31)

A
n+1/4
i+1/2 = A(xni+1/2 + uni+1/2

τn
2
) = (xni+1/2 + uni+1/2

τn
2
)2, (32)

A
n+1/4
i = A(xni+1/2 + uni+1/2

τn
2

+ xni−1/2 + uni−1/2

τn
2
), (33)

= (xni+1/2 + uni+1/2

τn
2

+ xni−1/2 + uni−1/2

τn
2
)2, (34)

V
n+1/2
i =

ˆ x
n+1/2

i+1/2

x
n+1/2

i−1/2

A(x)dx, (35)
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5.2.1. First algorithm.

To obtain an explicit first order finite volume scheme, we use a splitting

method to solve the system (23):

• we use a Lagrange-projection scheme to solve

∂t(AW ) + ∂x(AF1(W )) = 0, (36)

between time tn and tn+1 with the initial condition

Wn(x) =Wn
i if x ∈]xni− 1

2

;xni+ 1
2

[. (37)

The solution of this step is denoted by Wn+ 1
2 .

• we solve

∂t(AW ) = A′(x)B(W ), (38)

between time tn and tn+1 with the initial condition

W (x) =W
n+ 1

2

i if x ∈]xni− 1
2

;xni+ 1
2

[. (39)

We explain the different steps of the algorithm to obtain Wn+1 with Wn:

Lagrange step: We integrate the system (36) on the space-time trapezoid

Q = {(x, t) ∈ R
2 | tn < t < tn+1, x

n
i− 1

2

+ t× vni−1/2 < x < xn
i+ 1

2

+ t× vni+1/2}(40)

=
⋃

tn<t<tn+1

]xn
i− 1

2

+ t× vni−1/2;x
n
i+ 1

2

+ t× vni+1/2[×{t} (41)

Using the Green’s formula, we obtain the following approximation:
ˆ

Q

∂t(AW ) + ∂x(AF1(W ))dxdt = 0 (42)

⇒ V
n+1/2
i W

n+ 1
2
,−

i = V n
i W

n
i − τn(A

n
i+1/2F

n
1,i+1/2 −A

n
i−1/2F

n
1,i−1/2),(43)

where Fn
1,i+1/2 is the Lagrangian flux:

Fn
1,i+1/2 = F (W (uni+1/2,W

n
i ,W

n
i+1))− u

n
i+1/2W (uni+1/2,W

n
i ,W

n
i+1),

= (0, pni+1/2, u
n
i+1/2p

n
i+1/2, 0)

T ,
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and W (uni+1/2,W
n
i ,W

n
i+1) is obtained with an exact solution of the Riemann

problem:

∂tW + ∂xF1(W ) = 0, (44)

W (x, 0) =





Wn
i , if x < 0

Wn
i+1, if x > 0

,

on the ray x
t = uni+1/2. As A is a smooth function, we assume that A is constant

in a neighborhood of xni+1/2 and we can write system (23) in the form (44) in

the neighborhood of xni+1/2.

Projection step: With the previous part we are able to compute W
n+ 1

2
,−

i

(see (43)) which is an approximation ofW (x, tn+1) on cell Cn+1/2
i =]x

n+1/2

i− 1
2

;x
n+1/2

i+ 1
2

[.

To go back to the original grid we use the mixed projection but we do not write

it similarly as in Section 2.3, because we need to take into account A. In fact

we have to distinguish two cases:

• if we are not at the interface, it means that (ϕn
i−1 −

1
2 )(ϕ

n
i −

1
2 ) > 0 and

(ϕn
i −

1
2 )(ϕ

n
i+1 −

1
2 ) > 0, we use the averaging projection which takes the

form:

W
n+ 1

2

i =
1

V n
i

ˆ xn

i+1
2

xn

i− 1
2

A(x)Wn+ 1
2
,−(x)dx

=
1

V n
i

ˆ xn

i− 1
2

+max(0,un

i− 1
2

)τn

xn

i− 1
2

A(x)Wn+ 1
2
,−(x)dx

+
1

V n
i

ˆ xn

i+1
2

+min(0,un

i+1
2

)τn

xn

i− 1
2

+max(0,un

i− 1
2

)τn

A(x)Wn+ 1
2
,−(x)dx

+
1

V n
i

ˆ xn

i+1
2

xn

i− 1
2

+min(0,un

i+1
2

)τn

A(x)Wn+ 1
2
,−(x)dx

=
V

n+1/2
i,L

V n
i

W
n+ 1

2
,−

i−1 +
V

n+1/2
i,M

V n
i

W
n+ 1

2
,−

i +
V

n+1/2
i,R

V n
i

W
n+ 1

2
,−

i+1
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where

V
n+1/2
i,L =

ˆ xn

i− 1
2

+max(0,un

i− 1
2

)τn

xn

i− 1
2

A(x)dx, (45)

V
n+1/2
i,M =

ˆ xn

i+1
2

+min(0,un

i+1
2

)τn

xn

i− 1
2

+max(0,un

i− 1
2

)τn

A(x)dx, (46)

V
n+1/2
i,R =

ˆ xn

i+1
2

xn

i− 1
2

+min(0,un

i+1
2

)τn

A(x)dx. (47)

• if we are at the interface, we use the Glimm projection. We construct a

sequence of random or pseudo-random numbers ωn ∈ [0, 1]. According to

this number we take

W
n+ 1

2

i =





W
n+ 1

2
,−

i−1 if ωnV
n
i < V

n+1/2
i,L ,

W
n+ 1

2
,−

i if V
n+1/2
i,L ≤ ωnV

n
i ≤ V

n
i − V

n+1/2
i,R ,

W
n+ 1

2
,−

i+1 if ωnV
n
i > V n

i − V
n+1/2
i,R .

Source term step:. Now, we have to solve (38) with the initial condition (39).

To obtain an explicit first order finite volume scheme, we integrate the system

(38) on the space-time trapezoid

Q′ =]xni− 1
2

;xni+ 1
2

[×]tn; tn+1[. (48)

Thus, we obtain for the time derivation

ˆ

Q′

∂t(AW )dxdt = V n
i W

n+1
i − V n

i W
n+ 1

2

i (49)

and we apply for the integration of the source term a first order approximation

ˆ

Q′

A′(x)B(W )dxdt = τnB(W
n+ 1

2

i )(An
i+1/2 −A

n
i−1/2), (50)

resulting in the following formula

V n
i W

n+1
i = V n

i W
n+ 1

2

i + τnB(W
n+ 1

2

i )(An
i+1/2 −A

n
i−1/2). (51)
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5.2.2. Second algorithm.

For smooth solutions we can write the system (21)-(22) in the form:

∂t(Aρ) + ∂x(Aρu) = 0, (52)

∂t(Aρu) + ∂x(Aρu
2) +A∂xp = 0,

∂t(AρE) + ∂x(A(ρE + p)u) = 0,

∂t(Aρϕ) + ∂x(Aρϕu) = 0, (53)

where A = A(x) = x2 is a smooth function. We write the system (52)-(53) in

the condensed form:

∂t(AW ) + ∂x(AF2(W )) +A(x)∂xG(W ) = 0, (54)

where W = (ρ, ρu, ρE, ρϕ)T , F2(W ) = (ρu, ρu2, (ρE + p)u, ρϕu)T , and the

source term is

A(x)∂xG(W ) = A(x)(0, ∂xp, 0, 0)
T .

Remark 1. The second component of the flux F2 is different to the second
component of the flux F1 of the first model.

In order to obtain a time-centered finite difference scheme, we adapt the

method proposed in [BAB86] and we write:

V
n+1/2
i W

n+1/2,−
i − V n

i W
n
i + τn

(
A

n+1/4
i+1/2 F

n+1/2
i+1/2 −A

n+1/4
i−1/2 F

n+1/2
i−1/2

)

= −A
n+1/4
i

(
G(W (u

n+1/2
i+1/2 ,W

n
i ,W

n
i+1))−G(W (u

n+1/2
i−1/2 ,W

n
i−1,W

n
i ))
)
,

where Fn+1/2
2,i+1/2 is the Lagrangian flux:

F
n+1/2
2,i+1/2 = F2(W (uni+1/2,W

n
i ,W

n
i+1))− u

n
i+1/2W (uni+1/2,W

n
i ,W

n
i+1),

= (0, 0, uni+1/2p
n
i+1/2, 0)

T ,

and the terms with index (.) n+1/4 are defined in formula (34). As A is a smooth

function, we assume that A is constant in a neighborhood of xni+1/2. To compute

W (uni+1/2,W
n
i ,W

n
i+1) between two cells Cn

i and Cn
i+1, it becomes natural to find
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an exact solution of the Riemann problem:

∂t(ρ) + ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2 + p) = 0,

∂t(ρE) + ∂x((ρE + p)u) = 0,

∂t(ρϕ) + ∂x(ρϕu) = 0

with the initial conditions

W (x, 0) =





Wn
i , if x < 0

Wn
i+1, if x > 0

on the ray x
t = uni+1/2.

With this algorithm we can compute Wn+1/2,−
i . To go back to the original

grid, we use the mixed projection in the case where we have the symmetry, see

Section 5.2.1, thus we obtain Wn+1/2
i and we take Wn+1

i =W
n+1/2
i .

5.2.3. Interface cell averaging for Glimm procedure

As we consider Lagrangian schemes, the stability condition of the two pre-

vious schemes in Sections 5.2.1 and 5.2.2 reads

τn ≤ max
i

(
2V n

i

An
i−1/2 +An

i+1/2

1

cni±1/2

). (55)

We have also to ensure that the cell volumes do not become negative, which

leads to

τn ≤
1

2
max

i
(
xni+1/2 − x

n
i−1/2

| ui±1/2 | +c
n
i±1/2

). (56)

Then the time step τn needs to satisfy these two conditions (55) and (56).

5.3. Numerical scheme with GFM algorithm.

In this section, the finite volume scheme (17) has to be written in spherical

coordinates. The system of Euler equations (21) written in the condensed form

is:

∂t(AW ) + ∂x(AF (W )) = A′(x)B(W ), (57)

where W and F (W ) are defined by (15) and (16), respectively.
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This system is integrated on the space-time trapezoid Q as in equations (42)

and (50). We end up with the following finite volume scheme

V n
i W

n+1
i − V n

i W
n
i + τn(A

n
i+1/2F

n,−
i+1/2 −A

n
i−1/2F

n,+
i−1/2) = (58)

τnB(Wn
i )(A

n
i+1/2 −A

n
i−1/2),

where V n
i is given by (30). The fluxes Fn,−

i+1/2 and Fn,+
i−1/2 are determined by the

procedure of Section 3. For more details on the derivation of the discretization,

we refer to [MBKKH09].

5.4. Numerical results

We compare the three above algorithms presented in Sections 5.2 and 5.3

by means of the oscillation of a spherical bubble. We study the "weakly" com-

pressed bubble and the more difficult test case of the "strongly" compressed

bubble. In the two case we start the computation at time t = 0 s when the

radius of the bubble is maximal, i.e. Rb = Rmax. We have to choose the size of

the domain such that the right wave does not have time to catch the right side of

the domain. In the weakly compressed bubble this condition is not so restrictive

because the speed of sound in the liquid phase is not so large (cliq = 50m.s−1).

For the strongly compressed bubble (cliq = 1500m.s−1), this condition imposes

to choose a large domain to avoid interactions with reflections coming from the

right boundary. For these two test cases we will study by front tracking, the

radius of the spherical bubble of gas. We compare our results to the model

of Keller-Miksis, see [KM80, MBKKH09], This is an ODE model that gives an

approximate solution of the bubble radius for a given equilibrium radius Req. In

our case, Req = 0.692× 10−4 m that fits the model to the experimental results

of the strongly compressed bubble.

5.4.1. The weakly compressed bubble

In this case the maximal radius of the bubble is Rmax = 0.7469 × 10−4 m.

Initial states and material parameters computed in Section 5.1.2 are recalled in

Table 7 and Table 8. The computational domain is [0; 20Rb] and the final time

is tfinal = 5.5e− 5 s.
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[Table 7 about here.]

[Table 8 about here.]

The result on the evolution of the radius of the bubble is presented in Fig-

ure 14.

[Figure 14 about here.]

Note that the two algorithms "Glimm with pDxA" and "Glimm with ADxp",

presented in Section 5.2.1 and Section 5.2.2, respectively, are two different meth-

ods to study the source term of the system (21)-(22). These two algorithms have

been performed on a uniform mesh of 16000 points. They give approximatively

the same result. After the first rebound, the results become different to the

GFM model which is more similar to the Keller-Miksis model. Moreover, con-

trary to the Keller-Miksis model, our algorithms provide us with all quantities

at each time step. Thus, we choose to plot the pressure and the velocity when

the bubble shrinks and expands again for the same radius R1 = 6.8 × 10−5 m,

i.e., at time t = 6.47 × 10−6 s and t = 1.37 × 10−5 s, respectively. The results

are presented in Figures 15 and 16. The three algorithms give the same result

for the velocity, see Figure 15, when the bubble collapses the velocity inside the

bubble is negative and when the bubble expands this velocity is positive. In the

pressure graph, there is a small difference between both algorithms with Glimm

procedure and the GFM. For the GFM the pressure at the center of the bubble

is a little bit larger than for both algorithms with Glimm procedure, see Figure

16. However, the shape of the graph is the same, the pressure inside the bubble

is higher than the pressure outside the bubble.

We can see in Figures 15 and 16 that we have no oscillations in the pressure

and velocity at the interface.

[Figure 15 about here.]

[Figure 16 about here.]
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5.4.2. The strongly compressed bubble

This test case corresponds to the numerical test where the maximal radius

of the bubble is Rmax = 0.7469×10−3 m. Initial states and material parameters

computed in Section 5.1.2 are recalled in Table 9 and Table 10. The compu-

tational domain is [0; 0.1], because we need to choose a larger domain if we do

not want that the reflections on the right boundary interact with the interface.

The final time is tfinal = 1.6 ms.

[Table 9 about here.]

[Table 10 about here.]

As the gas and the water have extremely different physical properties and

as the difference in pressure inside and outside the bubble is huge, this case is

very difficult to study. In fact, most of classical algorithms (Godunov scheme

or averaging projection for example) do not work on this test. Moreover, as the

bubble becomes very small, we have to choose the space discretization such that

it stays smaller than the minimal radius of the bubble, i.e, we need to use a fine

mesh.

As the computational domain is huge and as we need a fine mesh at the

interface bubble, the computational time for both algorithms using Glimm pro-

jection explode if we use a uniform mesh. We choose to cut the grid refinement

on xrup = 2×Rmax and we take a uniform mesh with 8000 points on the right

side of xrup and 8000 point on the left side of xrup. The results are presented

in Figure 17. The "GFM" computation was performed on an adaptively refined

mesh, where the number of coarse grid cells is N0 = 100 and the number of

refinement levels is L = 12.

[Figure 17 about here.]

We see in Figure 17 that the amplitude of the first rebound for the three algo-

rithms is comparable but smaller than the one of the Keller-Miksis model. More

precisely, the "Glimm with ADxp" approach has the better first rebound with
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an amplitude corresponding to 72% of the one of the Keller-Miksis model. Note

that the parameters of the Keller-Miksis model are chosen such that it fits to the

experimental results of a laser-induced single bubble collapse, see [MBKKH09].

For the GFM and the "Glimm with pDxA", they are at 65% and 62,7%, respec-

tively. Moreover, the GFM presents a little shift in the first rebound referred

to the others.

However, for the other rebounds, the results are more different. With the

"Glimm with pDxA" algorithm and the GFM, the damping in the next rebounds

is more important than with "Glimm with ADxp" algorithm which is very close

to the Keller-Miksis model although with a smaller amplitude. In the "Glimm

with pDxA" approach and the GFM, the same set of equations are solved that

could explain the similarity in the rebounds.

For better results we have to pass to the second order as it is done in [MBKKH09]

for the GFM. Both algorithms using Glimm procedure do not smear the inter-

face (resolved with ϕ) between the gas and the liquid phase, it could be possible

to pass to second order in space with a method of MUSCL type. We cannot

pass to second order in time if we do not want to smear the interface. With

a second order space approximation and a first order time approximation, the

algorithm would be too unstable on refined meshes.

Remark 2. In this case, we do not plot all quantities at different times be-
cause we have a pressure jump at the interface with both algorithms using
Glimm projection. But there is no problem with the velocity. We do not really
found an explanation to this phenomena. We plot the velocity, see Figure 18,
and the pressure, see Figure 19, at two different times t1 = 1.3 × 10−7s and
t2 = 1.3 × 10−5s, before the first movement of the interface with Glimm. We
note that for a very short time t = t1, it seems to be a regularization of the
pressure between the two initial states. However, at time t2 a pressure jump
appears.
This problem does not come from the conservation error of the Glimm projec-
tion. To check this we tried a pure Lagrangian scheme, i.e., the boundary of
the cell moves and we do not need to perform a projection. We tested this
with the same final time t2 and obtained exactly the same result as with the
Lagrange-projection scheme, i.e., the same pressure jump.

[Figure 18 about here.]

[Figure 19 about here.]
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6. Conclusion

In this paper, we have proposed a new Lagrangian-projection scheme for

computing two-fluid flows. The pressure oscillations at the interface are avoided

thanks to a Lagrange and a projection approach. In the Lagrange step, the

contact waves are perfectly resolved and the interface is not smeared. In the

projection step, we employ a random sampling strategy. The resulting scheme

preserves the constant velocity-pressure states and the interface is solved by one

grid point.

The whole approach performs well for weak shocks. But in the presence

of strong shocks, it appears to be oscillating. Therefore, we had to adapt the

projection step and only apply it at the two-fluid interface, which is located

thanks to the jumps of the colour function. We then presented numerical results

that demonstrate the good convergence behaviour of the scheme, despite that

it is not conservative. We surprisingly observed this convergence property for

other non-conservative schemes for two-fluid flows.

Finally, we apply our Lagrange-projection scheme to a more challenging

problem, which consists in the simulation of the oscillations of a single gas

bubble in a compressible liquid. In the weakly compressed case, all methods

give good results, i.e., in the amplitude of the rebounds and in the time instant

of the collapses. In the strongly compressed case, the first collapse instant

is shifted in time for the GFM compared to the others and the Keller-Miksis

model and the damping in the first rebound is more important than for the

Keller-Miksis model. Nevertheless, the damping for the mixed projection with

the ADxp algorithm in the next rebounds is very close to the Keller-Miksis

model. The use of a first order scheme in space being the explanation of the

damping and the shift in time of the first collapse for the GFM, the use of a

second order scheme should improve the results for the Lagrangian algorithms.

Our perspectives are in several directions:

• first we would like to improve the precision of the random projection

scheme. The first obvious way to do it is to couple it with a second
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order MUSCL extension. This extension has to be deactivated at the

interface, in order to avoid oscillations. For the spherical bubble compu-

tations, another way to improve the precision is to modify the scheme such

that it becomes well-balanced. This can be done by adapting the method

described in [HHM10].

• a challenging extension would consist in extending the random projection

scheme to two- or three-dimensional computations, for instance by a simple

directional splitting algorithm. This will be the objective of a forthcoming

work.
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Figure 6: Academic shock-interface interaction: Density profiles for the exact solution and the
approximation using the Saurel-Abgrall approach (S-A) and the ghost fluid method (GFM).
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Figure 7: Academic shock-interface interaction. Convergence study.
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Figure 8: Water-Air shock-interface interaction: Results at tA = 1.5 ms with a finest resolution
of 470µm (L = 7).
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Figure 9: Water-Air shock-interface interaction: Results for L = 12 refinement levels at
tA = 1.5 ms.
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Figure 10: Water-Air shock-interface interaction: Results for L = 7 refinement levels at
tA = 1.5 ms, computation starts at t = 1 ms.
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Figure 11: Water-Air shock-interface interaction: Convergence of the L1-error in the interface
position.
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Figure 17: Test of the bubble: Oscillation of the radius of the strongly compressed bubble.
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γ [-] π [Pa]
Fluid 2 2.0 1
Fluid 1 1.4 0

Table 1: Academic validation: Material parameters.

59



WL WR

ρ [kg/m3] 2 1
u [m/s] 0.5 0.5
p [Pa] 2 1
ϕ 1 0

Table 2: Academic validation: initial left and right states.
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WA WAS WA∗ WB∗ WB

ρ [kg/m3] 3.488 2 2.89415 3.2953 1
u [m/s] 1.13 -1 1.87672 -1
p [Pa] 23.33 2 13.88 13.88 2
ϕ 1 1 - - 0

Table 3: Academic shock-interface interaction: States at different times in Fig. 3.
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γ [-] π [Pa]
Fluid A 2 7
Fluid B 1.4 0

Table 4: Academic shock-interface interaction: Material parameters.
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WA WAS WA∗ WB∗ WB

ρ [kg/m3] 1620.6 1000 900 5.57 1
u [m/s] 1087.1 -100 2361.4 2361.4 -100
p [Pa] 3.6801E+09 1E+05 7.48506E+06 7.48506E+06 1E+05
ϕ 1 1 - - 0

Table 5: : States at different times in Fig. 3.
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γ [-] π [Pa]
Fluid A 3.0 7.499e+8
Fluid B 1.4 0

Table 6: Water-Air shock-interface interaction: Material parameters of the stiffened gas law
for water and air.
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WL WR

ρ [kg/m3] 0.9575 1000
u [m/s] 0 0
p [Pa] 7.2568e+4 1e+5
ϕ 1 0

Table 7: Weakly compressed gas bubble: Initial left and right states.
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γ [-] π [Pa]
Gas 1.4 0
Liquid 3 7.333e+5

Table 8: Weakly compressed gas bubble: Material parameters.
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WL WR

ρ [kg/m3] 9.575e-4 1000
u [m/s] 0 0
p [Pa] 4.58 1e+5
ϕ 1 0

Table 9: Strongly compressed gas bubble: Initial left and right states.
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γ [-] π [Pa]
Gas 1.4 0
Liquid 3 7.499e+8

Table 10: Strongly compressed gas bubble: Material parameters.
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