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RANDOM SAMPLING REMAP FOR COMPRESSIBLE
TWO-PHASE FLOWS

M. BACHMANN, P. HELLUY, H. MATHIS AND S. MULLER

ABSTRACT. In this paper, we address the problem of solving accurately gas-
liquid compressible flows, without pressure oscillations at the gas-liquid in-
terface. We introduce a new Lagrange-projection scheme based on a random
sampling technique introduced by Chalons and Goatin in [CG07]. We compare
it to a Ghost Fluid approach introduced in [WLK06] and [MBKKHO09]. Despite
the non-conservative feature of the schemes, we observe the numerical conver-
gence towards the relevant weak solution, for shock-contact interaction test
cases. Finally, we apply the new scheme to the computation of the oscillations
of a spherical air bubble inside water.

INTRODUCTION

The bad precision of conservative Godunov schemes applied to two-fluid flows
is a subject that has been studied now for more than twenty years (see [Abg88,
Kar94, SA99a, BHR03, MBKKHO09] and included references). This bad precision
implies perturbations on the pressure profiles, that are often called the “pressure
oscillations” phenomenon.

For the moment, it has not been possible to design a simple conservative scheme
that preserves the constant velocity-pressure states. This property, which amounts
to preserving the contact discontinuities in one-dimensional flows, seems to be
mandatory for obtaining reliable schemes. Thus, many authors have proposed
modified Godunov schemes in order to achieve this property. Karni, in [Kar94|
proposes to solve the pressure evolution equation instead of the mass fraction evo-
lution equation at the interface. Abgrall and Saurel [Abg88, SA99a] propose to
solve the mass fraction equation in a non-conservative way in order to recover the
preservation of constant velocity-pressure states (SA approach). Fedkiw and col-
laborators [FAMO99] introduce the Ghost Fluid (GF) method: at the interface,
they propose to introduce two virtual fluids in order to construct a scheme that
only requires a one-fluid Riemann solver. The GF method has been improved in
many works. We will concentrate here in one variant, the Real Ghost Fluid Method
(RGFM) [WLKO06, MBKKHO09]. It is not possible to give a comprehensive survey
of this field, but many other attempts have been proposed: changing the two-fluid
model to a more general one [SA99b, WKO05, KL10], using a Lagrangian approach
at the interface [HMMOS], etc.

A common feature of all the above-mentioned approaches is that the schemes are
generally non-conservative. It is possible to construct very exotic schemes that are
conservative but they are then very complicated and can be used only for academic
test cases [HMMO8|. A natural question arises, which is whether these schemes

Key words and phrases. Finite volume, Godunov scheme, Ghost fluid method, lagrange-
projection, Glimm scheme, gas bubble oscillations.
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converge, or not, towards the relevant solution of the initial two-fluid models. In-
deed, generally, non-conservative schemes converge towards wrong solutions. It is a
purely non-linear behavior [HL94|, which is still not yet well understood because a
non-conservative Lax-Wendroff theory does not exist (for a recent work on this as-
pect, see [AK10]). Here, the situation is rather subtle because the non-conservation
of the schemes is generally located at the contact discontinuity, which is a linearly
degenerated field. When all the discontinuous waves (shocks and contacts) are well
separated, it is thus not a full paradox to observe convergence towards the good so-
lution. However, in case of complicated non-linear interactions, when all the waves
are mixed, it is difficult to understand why the non-conservative approach leads to
well converging schemes. For one-dimensional problems, wave mixing occur in very
simple situations: at the initial time of a Riemann problem, for instance, or when
a shock wave is sent over a moving interface.

Our first objective in this paper is to provide a new non-conservative scheme
for solving two-fluid flows. Our approach is an adaptation of previous works of
Goatin, Chalons and Coquel [CG07, CCO08] on Lagrange-projection schemes. The
idea is to use a projection step based on random sampling techniques, very similar
to the Glimm scheme method. The classical Glimm scheme [Gl65] implies an ex-
act Riemann solver. Here, because the random sampling is only performed in the
projection step, it is possible to rely on approximate Riemann solvers in the La-
grange step. We will see that in presence of strong shocks, our approach has to be
adapted, in order to avoid oscillations and non-convergence: we simply propose to
perform the random sampling strategy only at the two fluids interface. As for other
schemes, our random sampling projection scheme is not conservative. Let us recall
that the Glimm scheme is not conservative too, but possesses statistically conser-
vation properties [Gl65]. We hope that such properties still hold for our sampling
projection scheme.

Our second objective is to perform a numerical convergence study for several
classical non-conservative schemes for two-fluid flows, and compare them to our new
scheme. We will observe, surprisingly, that the numerical solutions seem to converge
towards the good weak solutions. According to our previous considerations, this
behavior is absolutely not obvious. Finally, we compare our new scheme to the
RGFM in a more complex configuration. We present a hard test case consisting in
computing the oscillations of a spherical gas bubble in a compressible liquid. We
present the results obtained with the RGFM and the random projection scheme.

1. THE TWO-FLUID MODEL

In this paper, we investigate the numerical resolution of the Euler system for a
compressible two-fluid mixture. The density of the mixture is p, the velocity is v and
the internal energy is e. We denote by E the total energy defined by E = e +u?/2.
The pressure is noted p. For simplicity, but without loss a generality, we only
consider one-dimensional flows. The unknowns depend on the spatial position x
and of the time t. The PDE system is made of mass, momentum and energy
conservation laws

(1.1) Op+ Ox(pu) = 0,
(1.2) di(pu) + 0x(pu® +p) = 0,
(1.3) O (pE) + 0:((pE +p)u) =
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In the case of a one-fluid flow, the pressure would be a function of the density
and the internal energy

p=0p(p,e).

Because we consider two-fluid flows, our pressure is a function of the density and
the internal energy but also of a supplementary unknown ¢, the colour function

(1.4) p=plp,e ).
The colour function is transported with the flow
Oz + u0y,p = 0.

Combining this transport equation with the mass conservation law (1.1) gives a
conservative form of the colour function equation

(1.5) 9 (pp) + 0z (ppu) = 0.
Finally, defining the conservative variables vector
W = (p, pu, pE, pp) ",
and the flux vector
F(W) = (pu, pu® +p, (pE + p)u, ppu),
the system (1.1)-(1.3), (1.5), (1.4) can be written
W + 0, F(W) =0.

For practical computations, we will use the pressure law of a mixture a stiffened
gas. We consider a gas and a liquid satisfying stiffened gas laws

p= (v —1)pe —yimi,

with 4 = 1 for the gas and ¢ = 2 for the liquid. The parameters v; > 1 and m; are
obtained from physical measurements. The mixture pressure is defined by

(1.6) p(p,e,0) = (v(p) — pe — v(p)7m(p).

The mixture parameters are given by

1
= g +(1— ;
Y(p) -1 2 —1 ( )71 —1
’Y(S@)W(SD) Y272 Y171
= p——+(1—-9 ;
Fp) -1 2 —1 ( )71—1

in such a way that ¢ = 1 in the pure liquid phase and ¢ = 0 in the pure gas phase.
This system has nice mathematical properties: it is hyperbolic and the Riemann
problem has a unique solution, even with large data [BHRO3].

On the numerical side, the situation is more complicated. For instance it is now
well-known that standard conservative finite volume schemes have a poor precision
when applied to this kind of flow. Even worse, in some configurations of liquid-gas
flows, the explicit Godunov cannot be used because it leads to negative densities.
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2. THE LAGRANGE-PROJECTION APPROACH

For the finite volume approximation, we consider a sequence of times ¢,,, n € N,

such that to = 0 and 7, = t,,41 — ¢, > 0. We also consider mesh points x?+1/2 at

time n. The cell C}* is the interval ]x?q/za m?+1/2[. We denote by z;' the center of
cell C7

Ty T 0
The length of cell C" is noted hj' = a7, , — @, . According to the notations,

the mesh is moving but at some time step we will go back to the initial mesh at
n = 0. We note

z=a), C;=C? h;=h? et
We are looking for an approximation of W in the cell C}*

W! ~W(x,t), xe€Cl, tEty,tni]

3

For the numerical resolution, we need an (exact or approximate) Riemann solver.
The (exact or approximate) solution of the Riemann problem

OV +0,F(V) = 0,

[ Wrifz <o,
V(z,0) = {W%ﬁx>&

is noted

m%wbwmzvuﬁ.

Each time step of the Lagrange-projection scheme is made of two stages. In the
first stage, we approximate the solution with a Lagrange scheme

(3

P22 g (F‘ﬁd/z _ Ffil/Q) =0.
The Lagrange flux is defined by

Fin+1/2 = F(W;}H/z) - “?+1/2Wi11/27
W'ﬁ-l/z = R(u?+1/25Wina 1)

7

where the cell boundary =7, | /2 moves at the velocity u’, /2 of the contact disconti-

nuity in the resolution of the Riemann problem between Wy, = W and Wgr = W[

n+1/2 _ n n
Til1/ = Tit1a t Tnlip/o-

In particular, this defines the new size of cell C*

n+1/2 _ n+1/2 n+1/2
hi =Tit12 ~ P12 T hit 4 o (Ui jo — Uiy yo)-
This formula is important because it can be generalized to higher dimensions. It
permits to avoid the actual computation of the moved mesh.
After the Lagrange stage, we have to go back to the initial Euler mesh. This can
be done with several methods
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2.1. The averaging projection. In this approach, we average back on the Euler
grid, with a simple L? projection

n T n n+1/2 T . n n+1/2
Wit = h*:L max(ui—l/wo)Wij /2 - imln(ui+l/2a0)Wi+t /
(2.1) + (1 - 7};—" max(u;’_q /s, 0) + Z—n min(u o, 0)) Win+1/2.

And we go back to the initial Euler grid
o
It can also be written

n+1/2 Tn n n+1/2 n+1/2
wrt = wt /2 _ T (max(ui_l/Q,O)(W- T2y 1 / )+

i . % i—
)

(2.2) min(u?:f/;, O)(W::il/Q . Win+1/2)) )

In this way, it is clear that the projection step is an upwind approximation of

This method is fully conservative and thus has a bad precision for multifluid prob-
lems [BHRO3]. It is possible to improve the precision by the Saurel-Abgrall ap-
proach. It consists in performing a non-conservative projection on the colour func-
tion. Instead of projecting pp as in (2.1) we project directly ¢, which gives

n n+1/2 Tn n n+1/2 n+t1/2
©F +1 _ %0¢+ / — h— (max(uifl/Q,O)(sDi—F / - (Pl_+1/ )+
i
. n+1/2 n+1/2 n+1/2
mln(uiﬂ/g ,0)(S0¢+1/ - ¥ / )) :

This approach results in a globally non-conservative scheme: it induces a numerical
mass transfer between the two phases. In the case of the stiffened gas pressure law
(1.6) it can be proved that the resulting scheme preserves constant (u,p) states.

2.2. The Glimm projection. In this approach, we construct a sequence of ran-
dom or pseudo-random numbers w,, € [0, 1]. According to this number we take

V[/'in+1 = W,"_tl/z if w, < % max(u?,l/g,o)»

7
wrtt = Wﬁjil/Q ifwy, >1+ ]Tl—n min(u; /9, 0),
n o Tn n Tn . n
(2.3) wn = wnt/2 g ™ max(u;’ /5,0) <w, <1+ W min(uzy /5, 0).

And we go back to the initial Euler grid
R = B2

This method is only statistically conservative [G165]. It preserves exactly constant
velocity-pressure states. The contacts are solved in one point. The drawback is
that the solution may be noisy. In particular, for strong shocks the whole method
does not converge towards the correct entropy solution.

A good choice for the pseudo-random sequence w;, is the (ki, k2) van der Corput
sequence, computed by the following C algorithm
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|
Fluid & I (zhost Fluid A
|
i—2 (=1 (0§ = | BL |2
ol ) ¢ B
PR | . (ST |
)| i | =0y
o L Hy
U =0y, P || P
L} ] 'I'I ]
i—2 | =1 | H1 | i+2
Ghost Fluid B~ ! Fhuid B
|
Phase boundary

FIGURE 3.1. Sketch of the computation of the real and ghost fluid
states from the interfacial states wy, py and pyr, prr determined
by solving a two-phase Riemann problem for the states uy, and up.

float corput(int n,int k1,int k2){
float corput=0;
float s=1;
while(n>0){
s/=k1;
corput+=(k2*njk1) fkl*s;
n/=k1;
}
return corput;

}

In this algorithm, k; and ks are two relatively prime numbers and k1 > k3 > 0. For
more details, we refer to [Tor99]. In practice, we consider the (5,3) van der Corput
sequence.

2.3. Mixed projection. In order to improve the convergence of the Glimm ap-
proach, it is possible to follow the following mixed projection step. If cell C; and
its two neighbours are in the same fluid, i.e. if

1 1 1 1

(pig — 5)(90? - 5) > 0 and (¢;' — 5)(@?“ - 5) >0,

then, we follow the projection given by (2.2). In all the other cases, we follow the
Glimm projection (2.3). This approach allows a better precision at the interface
because it is resolved in only one point.

3. THE MODIFIED GHOST FLUID APPROACH

The real Ghost Fluid method, developed by Wang, Liu and Khoo in 2006
[WLKO06] is an adaptation of the original ghost fluid method of Fedkiw.

In this method, the interface between the liquid and the gas is located by a
function . In the liquid, we have ¥ > 0 and in the gas, ¢ < 0. And thus,
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the interface corresponds to the level-set ¢ = 0. As in the previous method, the
level-set function ) is transported in the flow

And we switch from the pressure law of the liquid to the pressure law of the
gas according to the sign of 1. It is clear that the differences between the color
function model and the level-set model are only formal. However, the numerical
implementations are rather different.

The level-set function 1 is approximated in cell C; at time ¢,, by 9;*. The solution
is approximated by a Godunov scheme

2 witt=wpr - 2 (FY]
(3:2) : re(

n,+
i+1/2 F

1/2)

with a possible non-conservative flux F+1/2 #+ F:J/z If the two cells C; and Cj41
are filled with the same phase, which is true if

i iy > 0.
Then, we take the classical conservative Godunov flux
F o =FNT i1/ = F(R(0, W, W]iy)).

i+1/2 i+1/2 =
If the phase boundary is lying between cell i and cell i+1 where cell ¢ corresponds
to fluid A and cell i + 1 to fluid B, then it means that

/l/}n 11Z)z+1

then the left and right state are taken from cells 4 — 1 and i + 2, respectively, to
ensure access to states of the pure phases

WL = Win—l? WR = 1'7—14—2'

We solve the Riemann problem between W, and Wg. Let u; be the contact velocity
in this exact solution. We can define interfacial states to the left and to the right
of the contact wave by
Wip = lim R({, W, Wg), Wir= lim R({, W, Wrg).
E—uy £—>u1

We have thus access to interfacial states for densities prp, prgr, pressure p; and
velocity uy left and right to the phase boundary. For fluid A, the state (pr, ur, pr)
replaces the states of the cell i and defines the ghost states. The fluxes are thus

F?,:rl/Q (R(OaWIInWIL))a F?,-—";-l/Q (R(OaWIvafR))

The evolution equation is also slightly modified by

Win+1 — W, — v (F”

n,+
i+1/2 F

1/2)

mn,— n,+
<F7,+3/2 Fz+1/2>

and
Wzr—fql WIR hz-{-
This procedure is sketched in Fig. 3. As a consequence, only single-phase Riemann
problems are solved for each cell interface of fluid A to provide the numerical fluxes
with the ghost cells as boundary conditions at the phase boundary. Then the same
procedure is used for fluid B.
Thus near the phase boundary, two fluxes F" +’1 ,
Away from the phase boundary, where only one numerical flux is computed at a

one for each fluid, are defined.
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cell interface, the spatial order is improved by using a second-order reconstruction
of the primitive variables p, u, p. The solution is advanced to the next time step
by the finite volume scheme (3.2).

On the other hand, the level set function has also to be advanced. This is done
first by solving numerically (3.1) with a standard upwind non-conservative finite
volume scheme

n - n T n n n : n n n
v; = i h*n (max(ui_l/Q,O)(wi —¥ily) + mln(ui+1/270)(¢i+1 — ))

Periodically, the level-set function approximation is reinitialized in such a way
that it remains a signed distance to the interface. This is formally obtained through
the numerical resolution of an Hamilton-Jacobi equation

Orib(w,m) + a)0pd = S(¥),

~ ~ O
@) = S@ L
0,0
N -1 if <0,
S(W) = 0 if ¥=0,
1 if 1Z>O7

Yer=0 = ", weC
The level-set function is replaced by the reinitialized level-set function, i.e. we take
Yt = {/;(93,7' =o0), x€C;.

This procedure is described in more details in [MBKKHO09].

Finally, during the update of the level set function, a cell may switch from one
fluid to the other. This situation corresponds to a change of the sign between time
stepn and time n + 1, i.e. when ¢} - 1/}?*1 < 0. In this case, it is necessary to
also update VVZ-”+1 on the corresponding cell. The fluid variables are recalculated
using the equation of state of the new fluid. The cell being very close to the phase
boundary, the velocities and the pressure, which are constant for both fluids at the
phase boundary, are preserved. This modification was suggested by Barberon[?].
In addition to this approach, we propose the modification of the density. As no
exact value for the density is known, the density is replaced by the density of the
corresponding ghost cell. More precisely, if ¢} - w?“ < 0, and if ¥ - 97, <O,
then, before computing the next time-step, we substitute the density by

1
pi ™t pir

and the energy ef“ is also modified in such a way that

1 1
P = p(o T e )

is not changed. This construction implies that the whole resulting scheme will

preserve constant (u,p) states. On the other hand, it is also clear that the scheme

is not conservative. For instance, the last update implies a mass and an energy

transfer between the two fluids.
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~LOGIH)
28 .30 32 34 36 38 40 42 44

LG ierraor)

— Average — — Glimm

FIGURE 4.1. Convergence study: Glimm projection versus aver-
aging projection, academic validation.

4. NUMERICAL RESULTS

4.1. Academic validation. The first test consists in a two-fluid shock tube. The
stiffened gas parameter are

Y2 =2, m=1,

Y1 = 147 T = 0.

We take for the left and right initial data

(p[nuLapLa SDL) = (2a 1/27 27 1)7
(pR7uR7pR7 SOR) = (1’ 1/27 17 0)

For the Lagrange-projection approach, the non-conservative projection and the
Glimm projection are compared. We observe numerical convergence in the L'
norm for the two methods and that the Glimm projection is more precise than the
averaging projection. See Figure 4.1. The convergence rate for the two methods is

approximately 0.6.

4.2. 1D academic shock-interface interaction. An interface between two fluids
is located a time t = 0 at position x = 1. The two fluids are moving to the left
at the velocity v = —1. The fluid (2) is on the left, while the fluid (1) is on the
right. A shock is arriving from the left at velocity o = 4. The initial position of
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Tenact’ ——

-5 -4 -3 -2 -1 a 1 2

FI1GURE 4.2. Glimm approach, density plot. BV explosion due to
wall-heating effect propagation.

the contact and the shock are chosen in such way that they will meet together at
the abscissa © = 0 at time ¢t = 1. The EOS parameters are the following

y1=14 m =0,
Yo =2 my=T.
The initial data are, if z < —4
(pr,ur,pL,¢r) = (3.4884,1.1333,23.333,1),
ifx>1

(PR;UR7PR7SDR) = (17 _172a0)7
andif -4<2x <1

(,OM7UM7PM’S0M) = (23_15271)

After that the shock and the contact waves have met at time ¢ = 1, the solution is
simply given by the resolution of a two-fluid Riemann problem between states (L)
and (R). The solutions is sketched in Figure 4.5. The numerical data are recalled
in Table 1.

4.2.1. Lagrange plus projection schemes. In this case, we observe that the Glimm
approach does not converge. This behavior depends on the strength of the shock
wave. A typical plot is given on Figure 4.2, where we compare the exact and the
approximated densities at time ¢ = 1.5.

In this case, we thus compare the averaging projection approach with the mixed
projection approach. We obtained the results of Figure 4.3 The mixed projection
has a better precision than the averaging projection.

We also provide on Figure 4.4 a comparison of the mixed and averaging projection
schemes for the densities for a mesh of 500 cells of the interval [-5;2]. The CFL
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-LOGih)

2 .22 24 28 28 .3 32

1 i 1 (S 1

LG ierraor)

—— Mixed remap — — Average

F1GURE 4.3. Academic shock-interface interaction. Convergence
study. Mixed projection and averaging projection.

number is fixed to 0.7. It is interesting to observe that the interface position is
very well resolved (in only one mesh point) by the mixed projection scheme and
that this good resolution of the contact wave also implies an improvement of the
precision in the left rarefaction wave.

4.2.2. Modified Ghost fluid approach. In order to compare the non-conservative
methods of Saurel-Abgrall and the RGFM, several numerical solutions are com-
pared with the exact solution and a convergence study is performed. The coarse
discretization consists of 100 cells on which the multiscale-based transformation is
applied [MBKKHO09]. The convergence study is performed for grids having from 5
to 13 refinement levels L, i.e the uniform grid on the finest level consists of 2% % 100
cells. The threshold value in the grid adaptation is chosen as e = 107°. This small
value is chosen in such a way that the regions containing the finest grid cells are
large enough to avoid additional error from larger cells. The errors obtained with
the multiscale grid adaptation are thus comparable with those obtain with a uni-
form grid. Tests are performed with a CFL number of 0.9. Summary:Q=[-5;2|m,
t €]0;1.5]s Ny =100, 5 < L <13, ¢;,=1.e-5, CFL=0.9

In figures 4.6 and 4.7 are shown the comparison of the density for the two ap-
proaches with the exact solution, the dashed line, at ¢ = 1.5 ms. The first figure
corresponds to a grid with seven refinement levels and the second one to a very fine
grid with twelve refinement levels. The global result is pictured in the middle and
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3.5 T T o
“rho-nined’” ——
“rho-average”
o ——
3k 1
2.9 4
2| ]
1.5 4
1 L L L L L L
=5 =4 -3 -2 -1 a 1 2

FIGURE 4.4. Density. Comparison of the mixed and averaging
projection schemes.

t=0s 1=0.55 t=158

A w wOAY A

X_SW=-4 X_1=1 X 1=X S=0 -1.55 < X_AW < -0.92 X_I-093 X_SA=1.58

FIGURE 4.5. Initialization of the air-air shock-contact interaction

Uw | Uws | Uws Uax Ua
p [kg/m?] | 3.488 | 2 2.80415 | 3.2953 | 1
vlm/s|] |1.13 |[-1 | 1.87672 -1
p [Pa] 23.33 | 2 13.88 13.88 | 2
TABLE 1. Air-Air shock-contact interaction.

a zoom of the shock position on the bottom left, a zoom of the plateau between
the rarefaction wave and the contact on the top left and a zoom very close to the
contact position on the right. In the last one, cell centers are marked by diamonds
for the numerical results.

The Saurel-Abgrall approach generates oscillations at the bottom of the rarefac-
tion wave due to the interaction between the shock and the contact. This is not
the case for the RGFM that coincides quite well with the exact solution. With five
more grid refinement levels, shown in picture 4.7, the amplitude of the oscillations
largely reduce.

At the contact, there is a smearing of the density for the Saurel-Abgrall approach.
This is easy to see in the zoom on the right in which the density for this approach
decreases slowly instead of presenting a jump with the RGFM method. Due to the
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FIGURE 4.6. Results of the shock-contact interaction for 7 refine-
ment levels at t=1.5 ms

construction of the ghost fluid method, we obtain the desired jump at the contact
but this jump is a little bit shifted compared with the exact solution. As the cell
centers are represented by diamonds on the pictures, for 7 refinement levels, we
can see a shift in the position of the contact of 2 cells and in the computation with
twelve levels of refinement, the shift is about 4 cells. This is summarized in Table
3.

Concerning the position of the shock, which is only visible in the zoom because
of the big jump of density, we remark that its position is well predicted with the
RGFM method for both computations. That is not really the case for the Saurel-
Abgrall approach. Under grid refinement, the shift reduces as much as the smearing
region at the contact.

Concerning the Saurel-Abgrall approach, the oscillations and the error in the
position of the shock is only due to the previous shock-contact interaction. When
only the Riemann problem is computed, i.e. when the computation starts at ¢ = 0.5
ms, we obtain the results of Figure 4.9. In this simplified situation, the results are in
good agreement everywhere with the exact solution. A comparison (shock-contact
interaction and direct resolution of the Riemann problem) is shown in figure 4.8.

The L! error of the density are given in Table 2. The order of convergence for
the Saurel-Abgrall approach is approximately 0.5. Concerning the RGFM, the error
seems to tend to the same order under grid refinement.

4.3. Air-water test case. For the RGFM, we propose an additional test case
consisting in a shock wave of Mach number 0.67 at the position £ = —3 m running
in the liquid that interacts with the air at ¢ = 0.5ms at the position x = 0 m. The
water ahead of the shock and the air are moving towards the shock at the velocity
of 100 m/s. The computational domain is [—4; 2Jm. The test is sketched in Figure
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4.9 and the different states are given in Table (4). The material parameters for the
fluids are listed in Table 5.
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Saurel-Abgrall RGFM
Levels || L' error | Order || L! error | Order
5 10.20 - 1.8 -
7 4.81 0.54 0.51 0.91
8 3.27 0.56 0.31 0.72
9 2.24 0.54 0.17 0.87
10 1.55 0.53 0.11 0.67
11 1.09 0.51 6.90E-02 | 0.62
12 0.77 0.51 4.54E-02 | 0.60
13 0.54 0.5 3.05E-02 | 0.57
TABLE 2. Water-Air global L! error.
Saurel-Abgrall RGFM
Levels | hy, [m] Error Order || Error Order
5 1.87E-03 || 7.12E-03 | - 3.55E-03 | -
7 4.69E-04 || 3.51E-03 | 0.51 1.03E-03 | 0.89
8 2.34E-04 || 2.46E-03 | 0.51 5.25E-04 | 0.97
9 1.17E-04 || 1.72E-03 | 0.52 2.93E-04 | 0.84
10 5.86E-05 || 1.20E-03 | 0.52 1.59E-04 | 0.88
11 2.93E-05 || 8.42E-04 | 0.51 9.21E-05 | 0.79
12 1.46E-05 || 5.92E-04 | 0.51 5.43E-05 | 0.76
13 7.32E-06 || 4.22E-04 | 0.49 3.38E-05 | 0.68

15

TABLE 3. Water-Air error in the interface position where Ay, is the
grid size for L refinement levels.

Uw Uws Uw « Uax Ua
» [kg/m?] | 1620.6 1000 | 900 5.57 1
v[m/s] | 1087.1 100 | 2361.4 2361.4 -100
p [Pa] 3.6801E+09 | 1IE+05 | 7.48506E+06 | 7.48506E+06 | 1E+05

TABLE 4. Water-Air shock-contact interaction.

v | 7 [Pal
Water | 3.0 | 7.499¢+8
Air |14 |0

TABLE 5. Material parameters for water and air.

5. GAS BUBBLE OSCILLATIONS

In this section we apply the random projection scheme to a bubble oscilla-
tions test case described in[HMMO08, MBKKH09, Mal0]. Despite the quasi one-
dimensional framework, the test case implies very long computations and very fine
meshes. We compare with the results obtained with the RGFM on arbitrary refined

grids.
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FIGURE 4.9. Initialization of the water-air shock-contact interaction

6. CONCLUSION

In this paper, we have proposed a new scheme for computing two-fluid flows.
The pressure oscillations at the interface are avoided thanks to a Lagrange and
projection approach. In the Lagrange step, the contact waves are perfectly resolved
and the interface is not smeared. In the projection step, we employ a random
sampling strategy. The resulting scheme preserves the constant velocity-pressure
states and the interface is solved within one grid point.

The whole approach performs well for weak shocks. But in presence of strong
shocks, it appears to be oscillating. Therefore, we had to adapt the projection step
and only apply it at the two-fluid interface, which is located thanks to the jumps
of the colour function. We proposed then numerical results that demonstrate the
good convergence of the scheme, despite that it is not conservative. We surprisingly
observed this convergence property for other non-conservative schemes for two-fluid
flows.

Finally, we apply our scheme to a more challenging problem, which consists in
the simulation of the oscillations of gas bubble in a compressible liquid. Our simple
scheme gives good results, even if its precision is less than the more sophisticated
RGFM coupled with arbitrary mesh refinement.

Our prospects are in several directions:

o first we would like to improve the precision of the random projection scheme.
The first obvious way to do it is to couple it with a second order MUSCL
extension. This extension has to be deactivated at the interface, in order
to avoid oscillations. For the spherical bubble computations, another way
to improve the precision is to modify the scheme in order that it becomes
well-balanced. This can be done by adapting the method described in
[HHM10].

e a challenging extension would consist in extending the random projection
scheme to two- or three-dimensional computations. This could be tried for
example by a simple directional splitting algorithm. This will be the object
of a forthcoming work.
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