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Abstract

Modern real-time embedded systems are highly com-
plex and distributed. Timing analysis of these systems is
a challenging task. Model checking is increasingly be-
ing used for analyzing such systems. In this paper, we use
timed automata based model checking for the timing anal-
ysis of distributed embedded systems with fixed priority
preemptive tasks which exchange messages via communi-
cation buses with specific access protocols. We have con-
structed a general task model inUPPAAL for preemptable
tasks based on the preemption handling method proposed
by Waszniowskiet al. We present two case studies, one
involving an advanced automotive control application us-
ing the FlexRay bus, and the other using a Controller Area
Network (CAN) bus. We also present a case study showing
how the explicit-time model checkerSPIN can be used for
computing the end-to-end latency between tasks and how
it compares with the implicit-time handling methods used
by timed automata based model checkers.

1. Introduction

Real-time embedded systems are increasingly permeat-
ing all aspects of our life. Even a small car has dozens of
processors communicating with each other to control and
monitor the functionality of the vehicle. The constraints
imposed by application requirements in the automotive
and avionics domains very often lead to complex and dis-
tributed real-time systems. These systems are heteroge-
neous in terms of processor architectures and scheduling
schemes, and involve resource sharing and complex de-
pendencies between tasks. This makes it very difficult to
analyze such systems for timing and other performance
properties. Existing analytic methods used for analyzing
such systems can be overly pessimistic in terms of results,
leading to higher costs.

An approach to multiprocessor scheduling using fixed
priority preemptive tasks and TDMA (or fixed-priority
non-preemptive) messages, calledholistic schedulingwas
pioneered by Tindelet al [26, 25]. These techniques
extended the classical theory of uniprocessor schedul-
ing [16] by combining processor and bus scheduling.

They use an iterative fixed point computation to deter-
mine worst case latencies, with static offsets for tasks for
modelling communication delays. This holistic schedul-
ing analysis was extended by Palencia and Harbour [21]
allowing both static as well as dynamic offsets to give
more accurate results.

Another analytical approach to the timing analysis of
distributed embedded systems is offered by the framework
of Real-Time Calculus[24, 5]. It models the arrival pat-
tern of tasks and the service offered by the resources to
the tasks, along with the scheduling policy. It can be used
to derive hard upper and lower bounds of various perfor-
mance criteria such as maximum end-to-end delay expe-
rienced by an event stream or buffer requirements.

Perathoneret al [22] compare the influence of differ-
ent system abstractions on the performance analysis of
distributed real-time embedded systems. They have con-
sidered various activation patterns and dependencies as
benchmarks. According to their study, timed automata [2]
based model checking is the only technique which gives
accurate results across all benchmarks. This is because the
other techniques involve abstractions that ignore the pres-
ence of correlations between task activations and data de-
pendencies, in the process computing the end-to-end delay
of a task chain as the sum of the local worst case response
times. Model checking on the other hand explores actual
execution paths and is able to come up with precise figures
for end-to-end timing. This has motivated us to perform
analysis using timed automata on large heterogeneous and
multiprocessor embedded systems.

Although timed automata perform well across all
benchmarks there are serious issues about their scalability.
The size of the state space is exponential in the number of
clocks, the largest constant in the system and the num-
ber of concurrent timed automata. The complexity caused
by the largest constant can be tackled by using symbolic
methods but the number of concurrent tasks and clocks
depends entirely on the application in hand. This makes
timed automata difficult to apply for real-world schedul-
ing problems.

The clock variables in a timed automaton model cannot
be stopped; this makes handling of preemptable tasks us-
ing timed automata impossible. Modeling such tasks cor-
rectly can only be done by usingstopwatch automata, au-



tomata with clocks that can be stopped and restarted. Un-
fortunately, reachability analysis of stopwatch automata
is an undecidable problem [13]. However, there are cer-
tain methods [28, 18] by which we can model preempt-
able tasks in timed automata with over-approximation.
More recently, UPPAAL 4.1 has made modelling with
stop-watches possible with the the support of an efficient,
zone-based over-approximate state-space exploration [7].

Related Work The DREAM tool [8] implements a con-
servative approximation method for the verification of
distributed real-time embedded systems with preemptive
tasks by timed automata [18]. To model preemptions it
uses discrete checkpoints at which task interruptions are
allowed. This is a discretized approximation of stop-
watches, which gives an overapproximate result.

In an alternative method proposed by
Waszniowski [28], the clock value at the time of
preemption is abstracted by the nearest lower and upper
integer value to provide the over-approximation. The
DREAM tool has a generalized task model for preempt-
able task which makes it very easy to use. The lack of
such a generalized model makes the use of Waszniowski’s
method difficult. Although the method in the DREAM

tool was tried on quite a few large systems, to the best of
our knowledge, the method proposed by Waszniowskiet
al was never used in such a generic way and on such large
examples.

In this paper we propose a generalized model for pre-
emptable tasks based on the preemption handling method
of Waszniowskiet al, so that it can be easily used for mod-
eling distributed asynchronous systems. We provide case
studies of two automotive control systems - one using a
FlexRay bus [12] and the other, a Controller Area Net-
work bus [20]; both involve preemptive scheduling. We
also compare how the above preemption handling meth-
ods perform in terms of time required for verification.

We also experiment with a general purpose (i.e., un-
timed) model checker using anexplicit-time methodfor
modeling timing properties and compare its results with
UPPAAL. This is done by adapting an example from Mo-
halik et al [19]. In the explicit-time method, we model
time by using an integer variable which is incremented or
decremented to signify the passage of time. This explicit-
time handling method was first proposed by Lamport [14].

While preparing the final draft of this paper we came
to know of the work by Rajeevet al [23] which has goals
similar to ours. This work uses a formalism called Cal-
endar Automata [9] which represents time by maintaining
timestamps of events, and increments time by the max-
imum possible value so that no event in the calendar is
missed. This potentially reduces the state space, as in-
termediate time points are not considered. Since time is
considered to be discrete, and tasks have finite periods,
offsets and execution times, the authors show that the state
space is actually finite, allowing the use of a general pur-
pose model checker. Based on several case studies, the

authors claim that the technique is more scalable than ex-
isting formal methods based timing analysis techniques,
while allowing more accurate results. It would be inter-
esting to compare their method with ours on actual case
studies.

To summarize, the contribution of this paper is to pro-
pose a generalized timed automata based representation
of preemptable tasks based on Waszniowski’s method. By
using the generalized task model, we can very easily ex-
press larger examples that were difficult to express ear-
lier. Moreover, using this generalized model we have suc-
cessfully analyzed the timing properties of systems which
were earlier found to be too big for model checking. We
have also shown how the explicit time approach can be
used for timing analysis, and presented some data about
its time and memory requirements on case studies.

The rest of the paper is organized as follows. In Sec-
tion 2 we explain the basics of timed automata and the UP-
PAAL model checker. Section 3 explains the preemptable
task model we have proposed based on the preemption
handling method of Waszniowskiet al. In Section 4, three
case studies are presented using the proposed task model,
along with experimental results. In Section 5, we describe
the explicit-time method. This is followed by case studies
along with experimental results in Section 6. Finally, in
Section 7, we present concluding remarks.

2. Preliminaries

2.1 Timed Automaton
A timed automaton is a finite automaton which is ex-

tended with clock variables. Clocks are assumed to pro-
ceed with uniform speed. Clock variable can be tested and
reset to zero.

For the setC of real valued clocks withx, y ∈ C, the
setψ(C) of clock constraintsoverC is given by:

α ::= x ∼ c | x− y ∼ c | ¬α | α ∧ α

wherec ∈ N and∼∈ (≤,≥,<,>,=).
A timed automatonA over the set of actionsAct , the

set of atomic propositionsAP and the set of clocksC is a
5-tuple(L, l0, E, I, V ) where:

• L is a finite set oflocations;

• l0 is theinitial location;

• E ⊆ L × ψ(C) × Act × 2C × L is a set ofedges.
If (l, g, a, r, l′) ∈ E we write l

g,a,r
−→ l′, which repre-

sents a transition from the locationl to the location
l′ with clock constraintg (also called the enabling
condition of the transition orguard), actiona to be
performed (providing synchronization of concurrent
automata) and the set of clocksr to bereset;

• I : L −→ ψ(C) is a function, which for each loca-
tion assigns a clock constraint (also called theinvari-
ant condition of the location); and



• V : L −→ 2AP is anobservationfunction, which
for each location assigns a set of atomic propositions
that must hold in the location.

UPPAAL [3, 15] is a symbolic tool for simulation and
automatic verification of real-time systems modeled as
networks of timed automata extended with integer vari-
ables. Models in the system consists of non-deterministic
processes with finite control structures and real valued
clock variables communicating through synchronization
and shared variables. Every component in the system is
represented by a timed automaton which describes its be-
havior.
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Figure 1. Example of Timed Automaton in UPPAAL

Consider the UPPAAL model shown in Figure 1. The
model consists of two components with three control lo-
cations each. The componentA has one clock variabley
and a synchronization channela, which is shared with the
componentB. The componentB has an integer variablei.
Generally a transition has three labels: aguard involving
integer variables and clock values; aresetaction which
assigns new values to variables and resets clock variables
to zero, and asynchronization actionwith another com-
ponent. The notationa! denotes the sending of an event
anda? the receiving of the event. Every location can also
have aninvariant. The invariant represents the condition
which has to be satisfied within that particular location.
If the invariant does not hold, control cannot stay in that
location and a transition must be taken.

In the model in Figure 1, control can stay in location
A0 until the invarianty ≤ 4 is true, and the transition to
A1 is enabled as soon as the guardy ≥ 4 becomes true.
When the transition is taken, the clock variabley is reset
and the synchronization actiona! is taken, which forces
the componentB to change its location fromB0 to B1

performing an update on the value ofi.

3. Preemptable Task Model

Modeling preemption accurately using timed automata
is not possible as a clock variable measuring the execu-
tion time of a task cannot be stopped when the task is
preempted. However, there are some methods [28, 18]
by which we can model preemption with slight over-
approximation. In this section we explain the proposed

generalized task model, which is based on the method of
Waszniowskiet al [28] for modeling preemption.

 C
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Figure 2. Preemptable Task Model

The basic idea about preemption handling is that only
one task can run on a processor at a time, so whenever a
low priority task is preempted by a higher priority task the
remaining execution time of the preempted task is stored
in a variable. Whenever the task is rescheduled it will only
execute for the remaining amount of time.

The only problem in doing this is, a clock variable is
a real variable and if we want to store the remaining ex-
ecution time of the preempted task, we have to store it
in an integer. To overcome this problem, the value of a
clock variablec measuring the time for which the task
has executed is bounded by the nearest lower and upper
integers. The lower and upper bounds are computed by
a simple bisection algorithm shown in Figure 2. Con-
sider for example a task whose execution time is bounded
by the range(BCET,WCET). Let uc and lc be the near-
est upper and lower integers of the value of clockc at
the time of preemption; then the remaining execution
time of the task is the interval bounded byBCETnew =
max(0,BCET − uc) andWCETnew = WCET − lc.

Every preemptable task is represented by a timed au-
tomaton shown in Figure 2. A task starts in theInit lo-
cation. The task starts execution whenever it receives the
runtasksignal from the scheduler which is modeled by
another automaton. The clock variablet is reset and it
start measuring the execution time of the task. The task
can stay inrun location for itswcetduration. Whenever
the task finishes its execution it goes back toInit location,
which is modeled by transition fromrun to Init. The guard
on this transition represents the condition for the task fin-
ishing its execution. If any higher priority task is enabled
when a lower priority task is executing, the scheduler will
schedule the higher priority task. The lower priority task
is preempted and it moves to thePreemptWaitlocation,
via two intermediatecommittedlocations. The committed
locations, represented by a markC in the model, ensure
that the calculation of the remaining execution time of the
task is done atomically and in zero time.



The bisection algorithm is implemented and new val-
ues ofBCET andWCET are calculated in the sequence
of transitions from therun to thePreemptWaitlocation.
Whenever the higher priority task finishes its execution,
the lower priority task again starts execution by synchro-
nizing with theruntaskchannel. Till then it waits in the
PreemptWaitlocation.

c
new wcet

BCET WCETlc uc

t

 t

T1

T2

x

new bcet

Figure 3. Example: Preemption and Updating ofBCET
andWCET

As shown in Figure 3 , the taskT2 is preempted by the
higher priority taskT1 at x. The taskT2 will update its
new BCET and WCET as shown in Figure 3 and wait in
the PreemptWaitlocation waiting to be scheduled again
by the scheduler.
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Figure 4. Scheduler Automaton

The scheduler automaton for two tasksTask1andTask2
is shown in Figure 4. Control starts in theIdle location,
and whenever a task is released, it moves to theSched-
ule location. A task can be released either by the expiry
of a timer or by the completion of some previous task in
the task chain. In this exampleTask1is released by the
expiry of the timertimer 1 while Task2is released asyn-
chronously by the completion ofTask3.

The decision about which task to execute is made in the
Schedulelocation. In the above figure, the guarden[1] in-
dicates thatTask1is enabled and it will start its execution
irrespective of the status ofTask2. But Task2will start its
execution only when Task1 is not enabled, thus according
a higher priority toTask1.

The scheduler sends aPreemptCPU signal before
scheduling a higher priority task so that the lower priority

task currently executing will be able to store the bounds
for its remaining execution time before yielding the pro-
cessor to the higher priority task (see Figure 2). While any
task is executing, the scheduler automaton remains in its
correspondingRuntasklocation. If a higher priority task
is enabled for execution when a lower priority task is exe-
cuting, the control will move from correspondingRuntask
location toSchedulelocation so that we can schedule the
higher priority task ready at that moment. In Figure 4,
this is shown by the transition from theRuntask2to the
Schedulelocation on receiving the signaltimer 1. A task
announces its completion by sending afinishtasksignal.
The scheduler automaton moves back to theSchedulelo-
cation after receiving this signal. If no other task is en-
abled, the scheduler will go back to theIdle location. The
Schedulelocation is shown to beurgentrepresenting the
fact that all the scheduling decisions are made instanta-
neously. Note that all the signal used for communication
are declared as broadcast signals in UPPAAL.

4. Case Study Using UPPAAL

4.1. Automobile Control Application
We present a case study of a set of advanced automo-

tive control applications presented in [12]. The system
contains three threads of control: adaptive cruise control
(ACC), electric power steering (EPS) and traction control
(TC). Data is collected from sensors and processed in one
of the ECUs. The ECUs then respond to the sensed envi-
ronment through actuators. ACC is responsible for main-
taining safe distance between two cars while TC helps
during slippery road condition by providing efficient trac-
tion. EPS is responsible for assistance in steering. There
are a total of ten sensors, three ECUs and four actuators.
Figure 5 presents the system as a set of task graphs. Ta-
ble 1 shows the worst case transmission time (WCTT) of
messages. The schedule of every thread is shown in the
Tables 2, 3 and 4.
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Message WCTT Message WCTT

T1 T3 48 T10 T11 48
T1 T4 48 T10 T12 48
T2 T4 48 T11 T13 40
T3 T5 80 T12 T14 40
T4 T6 48 T15 T20 48
T7 T10 48 T16 T20 48
T8 T10 48 T17 T20 48
T9 T11 40 T18 T20 48
T19 T22 40 T20 T22 88
T21 T22 80 T22 T23 48
T22 T24 48

Table 1. Worst case transmission time of messages

TasksT4,T11 are mapped onto ECU1, tasksT3,T12,T22

are mapped on ECU2 andT20,T10 are mapped on ECU3.
Fixed priority preemptive scheduling is used on these
ECUs and priorities are assigned according to period. We
assume that time triggered scheduling is used for mes-
sages, which are triggered at the end of task execution.
Further, four FlexRay buses with static slot scheduling are
used for the communication. The detailed bus description
is shown in Figure 6.

Task Release Deadline

T7 0 800
T8 0 800
T9 0 800
T10 800 1600
T11 1600 2350
T12 1600 2300
T13 2350 3000
T14 2300 3000

Table 2. Schedule of Adaptive Cruise Control

Task Release Deadline

T15 0 675
T16 0 675
T17 0 675
T18 0 675
T19 0 1450
T20 675 2300
T21 0 1450
T22 1450 2450
T23 2450 3000
T24 2450 3000

Table 3. Schedule for Traction Control

Preemptable tasks in the system are represented by the
automata which we have presented in the Section 3. Static
slot scheduling is modeled by a slot monitor automaton

Task Release Deadline
T1 0 450
T2 0 533
T3 450 1050
T4 533 1200
T5 1050 1500
T6 1200 2500

Table 4. Schedule for Electronic Power Steering
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1 2 3 4 5

1 2 3 4 5
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−−− 3

Bus−4
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Figure 6. Static slot allocation on buses

which increments the slot number after the correspond-
ing slot width delay. When scheduling a message an extra
condition is added to check that every message is sent in
its fixed slot. Time triggering of the tasks can be easily
modeled by a timer automaton which will take transition
at that particular time instant. In every task (or message)
automaton two clock variables are used, one modeling its
execution time and the other modeling the time since its
activation. The time after activation can be used for check-
ing the deadline of the task. Whenever a task or message
crosses its deadline, the automaton goes into a committed
location with no outgoing transition, modeling a deadlock.

The worst case response times of the tasks and mes-
sages are checked by checking the reachability of theerror
location of the automaton. This property can be specified
by CTL as AG!(Task.error). Table 5 and Table 6 shows
the worst case response time of messages and tasks which
are scheduled on three ECUs respectively.

4.2. Controller Area Network Bus
The end-to-end latency of messages is an important

design parameter that needs to be within certain speci-
fied bounds for correct functioning of real-time systems.
The time taken by a message through a task chain, start-
ing from a sensor and ending in an actuator, is called its
end-to-end latency. We have used timed automata model
checking for verifying end-to-end latency in this example.

The system we analyze is shown in Figure 7. It is
adapted from [20] and consists of three ECUs, one CAN



Message WCRT Message WCRT

T1 T3 98 T10 T11 373
T1 T4 98 T10 T12 373
T2 T4 173 T11 T13 90
T3 T5 430 T12 T14 40
T4 T6 365 T15 T20 148
T7 T10 448 T16 T20 348
T8 T10 98 T17 T20 398
T9 T11 255 T18 T20 448
T19 T22 40 T20 T22 313
T21 T22 105 T22 T23 98
T22 T24 98

Table 5. Worst case response time of messages

Task Deadline
T3 300
T4 250
T10 600
T11 300
T12 200
T20 300
T22 900

Table 6. Worst case response time of tasks scheduled on
ECUs
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Figure 7. Example network of ECUs communicating
through a CAN bus.

bus, eight tasks (Ti) mapped on different ECUs and five
messages (mi) mapped on a CAN bus as shown. Tasks
mapped on ECUs execute according to fixed priority pre-
emptive scheduling, whereas messages are scheduled on
the CAN bus according to fixed priority non-preemptive
scheduling. If taskTi andTj are scheduled on the same
ECU thenTi has higher priority thanTj if i < j. Similarly
for the messages, a lower index shows higher priority.

Three computation paths are defined,O14−O15,O16−
O17 andO18−O19. The objects follow event based activa-
tion, i.e., T1 is activated periodically every 15 time units,
its completion will trigger messagem2 and so on. We

have analyzed the worst case latency of these chains. Pre-
vious analysis of this system was carried out using holis-
tic scheduling [20] and real time calculus [6]. But as
mentioned in [22] these methods gives pessimistic results
when it comes to complex activation pattern of tasks and
dependencies between tasks.

There are multiple active chains present in the system.
To model this, an array of clocks is used. Every time a new
chain is activated, a new clock is activated and it measures
the latency of that particular chain. Whenever that par-
ticular chain finishes its execution, the value of clock is
checked against its deadline.

Table 7 shows a comparison of our results with those
obtained by using Real-Time Calculus. We can see that
the timed automata method shows more accurate results.
As noted earlier, this is due to the fact that model check-
ing explores each and every computation by searching the
entire state space.

Chain UPPAAL Real-Time Calculus
O14 −O15 28 32
O16 −O17 50 60
O18 −O19 110 210

Table 7. Worst case latencies of three task chains

We attempted to perform the timing analysis of this
case study using the approach proposed in the DREAM

tool with some customizations. But the verification en-
countered the state explosion problem. In order to re-
duce the complexity of the system, we modeled the buffers
with variables instead ofbuffer automatonproposed in the
DREAM tool. After all these changes, we were able to ver-
ify the system.

4.3. Real-Time CORBA Application
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Figure 8. Real-Time CORBA Application.

The case study shown in Figure 8 is adapted from [17].
The input data is shown in Tables 8 and 9.BCET and
WCET stand for best and worst case execution time of
a task,DL is its deadline whileSP is its sub-priority.



BCDelayandWCDelayare best and worst case channel
latencies. The tasks in the systems are represented with
rectangular boxes and marked with aC while the buffers
are marked with aB. In Figure 8, the dependencies be-
tween tasks are shown by solid lines while the mapping
of tasks on threads is shown by dotted lines. Threads are
in turn scheduled on processors. The scheduling strategy
between threads is preemptive. The system has nine tasks,
six buffers, three timers and two processors.

To carry out a comparison between the DREAM tool [8]
and our method, we replaced the preemptable task model
used in DREAM with the model discussed in Section 3.
We kept all other components as specified by the DREAM

tool and checked whether the system is schedulable by
checking the propertyA[] not deadlock. We were able
to verify the schedulability of the system in 1.31 seconds
while the DREAM tool model required 5.11 seconds. We
are looking into bigger case studies to analyze in more
detail the relative speeds of these two methods.

Task BCET WCET DL SP
Ins 32 32 170 1
Gps 29 29 170 1

Airframe 80 80 246 2
Nav Display 19 19 532 3

CursorDevice 18 18 65 1
SelectedPoint 24 24 25 2

TacticalDisplay 21 21 80 3
Radar 12 12 13 1

TacticalSteering 16 16 17 2

Table 8. System Description

Channel WCDelay BCDelay BufferSize
airframelc1 0 0 2
airframelc2 0 0 2

tacticaldisplay lc 0 0 2
nav display lc 0 0 3

tactical display rc 2 2 2
nav displayrc 2 2 6

Table 9. System Description

5. Explicit-Time Description Method

Timed systems can be modeled in two ways. The
first, known as theimplicit-time approach, uses special
logics and languages developed for modeling time. UP-
PAAL is an example model checker which models time
implicitly using clock variables. There is an alternative
method for handling time, known as theexplicit-timehan-
dling method. In this method, an ordinary variable, des-
ignated as atimer, is incremented (or sometimes decre-
mented) to model the elapsing of time. With the explicit-
time method, we can use any model checker (i.e., without

clock variable) for verifying timed systems. Lamport has
proposed an explicit-time description method [14] using a
clock-ticking processtick to simulate the passage of time.
In an earlier work, Abadi and Lamport [1] showed that the
explicit-time approach works fine for specifying and ver-
ifying properties of many real-time algorithms. Recently,
the explicit-time method was successfully applied by Van
den Berget al [27] to verify the safety of railway inter-
lockings for one of Australia’s largest railway companies.

In the explicit-time method, the timing bounds on ac-
tions can be specified in three ways, via the use of acount-
down timer, countup timeror expiration timer. A count-
down timer decrements the value of a timer and an ac-
tion is triggered when its value reaches zero. A countup
timer increases the timer value and an action is triggered
when it reaches a particular value. An expiration counter
doesn’t change its value; an action will be triggered when
the difference between the expiration counter and the cur-
rent time instance reaches a certain value.

As stated earlier, the passage of time is modeled by
a variable which is either incremented or decremented.
Since model checkers can handle only integer variables,
we have to model the system with discrete-time seman-
tics. Although we lose the continuous semantics of time,
it has been proved that integer clocks are sound for com-
mon real-time systems and their properties [10].

The main advantage of using the explicit-time over the
implicit-time method its its ability to remember the the
current time instant, which helps to model systems with
preemptive scheduling. Moreover, it allows us to use gen-
eral purpose model checkers which have easier learning
curves. The explicit-time approach also suffers from the
state explosion problem. As thetick process decrements
the time variable by one unit, the state space increases
rapidly as the timing parameters in the system increase.
The conceptual simplicity of the explicit-time method has
motivated us to carry out a comparison with the timed au-
tomata based implicit-time methods on a few case studies.

6. Timing Analysis using SPIN

6.1. Task Chain
We have adapted this example from [19]. We are given

a chain of tasks, each of which executes periodically. Each
task processes a message, if there is any, in its input buffer
and then writes the processed message to output buffer, if
it is not full. We have to find out the worst case latency
of messages. A task can start processing a given message
at periodic intervals and the processed message is written
to the output buffer after the worst case execution time of
the task. We have used the SPIN [11, 4] model checker for
analyzing the system. The basic idea of the explicit-time
method is to execute the system one time tick at a time.
The problem in doing this is ensuring that actions enabled
in the current time tick are executed before a new time
tick. This can be done by introducing a new process called
Tick and forcing each process to stop after executing all



statements enabled in the current clock tick, and waiting
for a signal from theTick process before proceeding.

We have made use of the special PROMELA instruction
timeoutfor implementing theTick process. Thetimeout
action is enabled only when no other process in the system
is enabled. This ensures that all the actions enabled in the
current instant are executed before executing actions from
the next time instant. TheTick process decrements the
value of all the timers and this is carried out atomically,
guaranteeing uniformity of time advancement.

Tasks Period WCET
T1 100 50
T2 100 12
T3 50 28
T4 50 17
T5 10 4
T6 10 3
T7 10 2
T8 7 1
T9 15 2
T10 10 5
T11 12 3

Table 10. System description .

Latency Time taken
No. of Tasks UPPAAL SPIN UPPAAL SPIN

6 233 234 0.4 0.8
7 242 244 0.6 2.29
8 250 251 3.0 10.2
9 267 269 30.14 58.1
10 277 279 63.18 144
11 283 287 284.15 733

Table 11. Bounds on the latencies.

Figure 9 shows the model of tasks in the chain. We
have translated the model to PROMELA and tried the tim-
ing analysis using SPIN. Table 11 compares the laten-
cies and time taken for verification using the SPIN and
UPPAAL model checkers. The verification time is in sec-
onds. The results shows that although the implicit-time
approach is more accurate than the explicit-time method,
results in case of the later approach are quite compa-
rable to results of former approach. The only problem
which was observed is that the memory requirement of
the explicit-time method becomes very high as the time
parameters increase. The verification was carried out on
Intel(R) Pentium(R) Dual CPU T2330 1.60 GHz with 2
GB RAM, running Linux Kernel 2.6.

6.2. Controller Area Network Bus
Using the explicit-time method, we have also tried to

perform an end-to-end timing analysis of the controller
area network (CAN) bus used in the case study presented

in Section 4. The periods and execution times of the tasks
are modeled with countdown timers. Whenever a timer
expires,i.e., reaches zero, a new instance of a task is re-
leased. The asynchronous triggering of the tasks is mod-
eled by using thebuffered channelconstruct of SPIN.

Channels in SPIN have the capability ofsorted send,
which allows the task with minimumid to acquire the first
place in the buffer. This feature of SPIN is used for mod-
eling task preemption. Whenever a higher priority task,
i.e., a task with lowerid, is enabled for execution, it is put
at the head of the buffered channel. This stops execution
of the current task and starts executing the higher priority
task.

Figure 10 shows the PROMELA fragment of the process
modeling a task.Proc i is a buffered channel, which mod-
els a processor whileexei represents the execution time
of theTaski. The variablerem i shows the remaining exe-
cution time of the task at any moment. Theexpire(exei) is
a defined macro that becomes true whenever the variable
exei reaches zero, which represents the fact thatTaski
has finished its execution.

The PROMELA construct((Proc ? [eval(id)])) in line 6
of Figure 10 makes sure that the task will start executing
only if it is the highest priority task present in the sys-
tem, i.e., it is present at the head of the channel. Here
we are using the polling facility provided with PROMELA

buffered channels. The question mark in the instruction
checks if the argument can match at the head of the buffer.
The square brackets represent side-effect-free polling, and
evalcomputes the current value of theid. The instruction
at line 7 becomes true whenever the task finishes its ex-
ecution, and so itsid must be removed from the buffer.
The instruction at line 8 does this. Now we initialize the
remaining execution time of the task to its original execu-
tion time as shown by a dummy variablen in the code.

The system we are analyzing is asynchronous, so the
completion of one task may release another task. When a
task finishes its execution, theid of the newly enabled task
should be placed in the corresponding buffered channel.
The instruction in line 10 does this through a sorted send.
The double exclamation mark inserts a message into the
buffer queue ahead of the messages with a larger value.

The currently running task is preempted whenever a
higher priority task is enabled for execution. In Figure 10
this condition is indicated by the currently executing task
not being at the head of the buffer, thus causing the condi-
tion at line 11 to hold true. Whenever a task is preempted,
we store its remaining execution time in the correspond-
ing rem i variable so that we can execute the task for that
much duration whenever it is rescheduled.

To check the end-to-end latency of messages, we set a
deadline variable, a countdown variable, to alimit when-
ever a new message enters in the chain. Whenever that
particular message exits the chain, we check that its value
is non-zero,i.e., the message latency is less than limit we
are using.

Table 12 shows the latencies we have obtained by using
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Figure 9. Example: Task Chains

1 active proctype()
2 {
3 start: do
4::atomic
5 {

14}

16}

9             rem_i = n;

12             −−> rem_i = exe_i; goto start;
13   fi;

15   od;

 ?  eval(id);8            Proc
7     if  :: expire(exe_i);
6    ((Proc_i ? [eval(id)])) −−> exe_i = rem_i

11        :: !((Proc_i ? [eval[id]))
10           (runid == −1) −−> Proc_j !! id;

Figure 10. Promela Fragment for Preemptable Task

SPIN. As in the above case, we observe that the results
obtained are comparable with the results from UPPAAL.

7. Conclusion

In this paper, we have performed timing analysis of
complex, distributed real-time systems with preemptive

Chain UPPAAL SPIN

O14 −O15 28 28
O16 −O17 50 55
O18 −O19 110 120

Table 12. Worst case latencies of three task chains

scheduling using timed automata. For handling preemp-
tion in timed automata, we have designed our general
model of preemptable tasks based on the preemption han-
dling method proposed in Waszniowskiet al [28]. We
have shown that results obtained with timed automata are
more accurate than using holistic scheduling and Real-
Time Calculus. We have also shown that the proposed task
model performs much faster than the existing DREAM tool
on the example we have considered.

We have also tried analyzing real-time systems with the
explicit-time method by using the model checker SPIN.
Here we observed that although the implicit-time methods
gives accurate results, explicit-time methods do not per-
form much worse and the results obtained by using SPIN

are only slightly over-approximate.

As future work, we would like to try the timing analy-
sis experiments on bigger and more realistic case studies.
A comparison with the Calendar Automata based model
checking of Rajeevet al [23] for computing end-to-end
latencies would be an interesting exercise.
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