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Abstract—Although many multiprocessor resource sharing
protocols have been proposed, their impacts on the schedu-
lability of real-time tasks are largely ignored in most of the
existing literature. Recently, work has been done to integrate
queue locks (FIFO-queue-based non-preemptive spin locks)
with multiprocessor schedulability analysis but the techniques
used introduce a substantial amount of pessimism. For global
fixed task priority preemptive multiprocessor systems, this
pessimism impacts low priority tasks, greatly reducing the
number of tasksets that can be recognised as schedulable. A
new schedulability analysislp-CDW is designed specifically for
analyzing low priority tasks much more accurately. However,
this analysis cannot retain its accuracy when it is used to
analyze high priority tasks. Existing techniques outperform
lp-CDW in such cases. By combinglp-CDW with existing
techniques, we get a hybrid analysis, which performs well at
all priorities and therefore significantly increases the number
of tasksets that can be recognised as schedulable.

I. I NTRODUCTION

More and more real-time embedded systems are being
built with multiprocessor/multicore technology. This is the
industry’s response to the physical limitation on processor
clock speeds. Motivated by this trend, the real-time embed-
ded systems research community has recently given much
attention to extending the knowledge gained in the unipro-
cessor era to the development of real-time multiprocessor
systems. Most of the techniques developed for uniprocessor
systems cannot simply be reused in a multiprocessor envi-
ronment. Schedulability analysis and resource sharing are
prominent examples of such transition difficulties.

Schedulability analysis for uniprocessor systems has been
studied for decades and is well understood. Exact analyses
(both sufficient and necessary) have been developed for tasks
that share resources. In order to bound and reduce each
task’s worst-case blocking time, resource sharing protocols
have been proposed, among which thePriority Inheritance
Protocol, Priority Ceiling Protocol [1] and Stack Resource
Policy [2] are the most widely used.

The most thoroughly studied scheduling policies for real-
time tasks on identical multiprocessors arefully partitioned
and global scheduling policies [3]. A fully partitioned sys-
tem allocates each task to a single processor and disallows
any task migration. This divides the multiprocessor schedul-
ing problem into a task allocation problem and a unipro-
cessor scheduling problem. By contrast, a global system

This work has been funded by the European Commission FP7 JEOPARD
and eMuCo projects and the EPSRC Tempo project (EP/G055548/1)

dynamically determines on which processor a task should
be executed. Execution of a job may migrate from one
processor to another. Multiprocessor real-time scheduling
can also be categorised, according to when the priorities can
be changed, into:fixed task-priority, fixed job-priority and
dynamic-priority. This work focuses on global fixed task-
priority preemptive scheduling (global FP scheduling).

Schedulability of global FP systems has been studied and
many analysis approaches have been proposed. However,
global FP schedulability analyses are not as mature as
their uniprocessor counterparts. Tractable exact analysis is
so far unknown for sporadic tasks, and resource sharing
is ignored in most existing work; although efforts have
been made on multiprocessor resource sharing protocols
themselves. These efforts have resulted in theMultiprocessor
Priority Ceiling Protocol (MPCP)[4], Multiprocessor Stack
Resource Policy (MSRP)[5] and theFlexible Multiprocessor
Locking Protocol (FMLP)[6]. One of the building blocks
of these protocols is thequeue lock(FIFO-queue-based non-
preemptive spin lock), which is a simple, yet efficient mech-
anism of protecting short critical sections on multiprocessors
[7]. In a queue lock system, a task becomes non-preemptible
when it tries to access a shared resource. If the resource is
available, the requesting task locks it and then accesses it
non-preemptively. Otherwise, the requesting task busy-waits
non-preemptively in a FIFO queue until the resource is made
available to it. Eventually the task releases the lock and
becomes preemptible again.

In this paper, we focus on the impact of non-nested
queue locks on global FP multiprocessor schedulability
analysis. The reasoning and results of this study can also
be easily applied to systems where nested resource accesses
are protected by a sharedgroup lock[6].

Even this simple mechanism’s impact on multiprocessor
schedulability analysis has not been well understood. The
state-of-the-art approach to modeling queue locks inflates
the worst-case execution time of every task to account for
the longest time that could be spent on spinning by that task
[4], [5], [6], [8]. For a global FP system, this introduces too
much pessimism at low priority levels where more tasks can
interfere with the task under analysis.The main contribution
of this paper is to provide a new model for analyzing
queue locks that significantly reduces this pessimism at low
priorities. By supplementing an existing approach (designed
for independent tasks) with this new model, we obtain a new
sufficient analysislp-CDW (in which “lp” stands for low



priority and “CDW” is the initials of the authors’ names).
Experiments reveal thatlp-CDW is much less pessimistic
than the state-of-the-art approach when low priority tasksare
being analyzed [9]. However, the state-of-the-art approach
works better at high priorities. As will be seen in section
VI, combining both analyses can significantly increase the
number of tasksets that can be recognised as schedulable.

This paper is organized as follows. First, we summarise
existing work in section II. Next, section III presents our
task model, terminology and notation. This is followed by
discussion of the source of pessimism in existing work and
the introduction of a new approach to modeling spinning
time. Section V elaborates on the proposedlp-CDWanalysis.
Experimental results are presented in section VI. Finally,we
draw conclusions and discuss possible future work.

II. RELATED WORK

A. Multiprocessor Resource Sharing

Because of the discovery of the “Dhall effect” by Dhall
and Liu [10], global multiprocessor scheduling was, for
many years, considered inferior to the fully partitioned
approach and therefore initial efforts on multiprocessor re-
source sharing protocols mainly focused on fully partitioned
systems. This has resulted in two approaches: MPCP [4]
and MSRP [5]. MPCP and MSRP both prevent deadlocks
and bound the worst-case blocking time of each task as a
function of other tasks’ critical section lengths rather than
other tasks’ execution times. However, when a task is denied
access to a global resource, MPCP suspends this task and
allows lower priority local tasks to execute (and even lock
resources) while MSRP works according to the queue lock
algorithm.

Recently, more attention has been given to resource
sharing protocols for globally scheduled multiprocessors.
Block et al. [6] proposed a new policy called FMLP, which
categorises resources into two classes:short and long. The
queue lock algorithm is used to protect accesses to short
resources. On the other hand, long resources are protected by
suspension-based locks with priority inheritance. The only
requirement regarding nested resource accesses is that no
long resource access can be nested within a short resource
access. Easwaran and Andersson [11] proposed another pro-
tocol calledparallel-PCPor P-PCP. This is a generalization
of uniprocessor PCP for global FP multiprocessor systems.
Instead of using non-preemptive spin locks, P-PCP suspends
tasks when resources cannot be accessed. A unique feature
of this protocol is a new mechanism that limits the system-
wide parallelism of resource accesses.

To the best of our knowledge, only a small number of
existing global multiprocessor schedulability analysis papers
deal with resource sharing [8], [11]. Although resource
sharing protocols are usually proposed along with some
blocking time analyses, full schedulability analysis is rarely
given in these papers [4], [5], [6].

B. Schedulability Analysis for Independent Tasks

Over the last decade, many analyses have been proposed
for independent tasks on multiprocessors. In Baker’s seminal
work [12], an analysis based on theproblem jobandproblem
window was presented for both global EDF and global FP
scheduling. Both Baruah [13] and Bertogna and Lipari [14]
noticed the pessimism of Baker’s analysis and subsequently
proposed their own improvements.

Baruah’s analysis [13] limits the number of tasks that can
carry in any workload (into the problem window) by setting
the beginning of each problem window to the last time
instant before its problem job’s arrival when any processor
can be idle. By contrast, Bertogna and Lipari’s analyses
[14] assume each problem window starts at the same time
as its problem job’s arrival. In the iterative version of
their analyses, the slack of each task is considered when
determining its carry-in contribution to the total interference
to the problem job. This analysis has recently been improved
upon by Guan et al. [15]. Alternative analyses that were also
inspired by Baker’s work include [16], [17].

III. M ODEL, TERMINOLOGY AND NOTATION

In this paper, we focus on global FP scheduling of
applications that require resource sharing on a homogeneous
multiprocessor system comprisingm identical processors.
An application consists of a static number (n) of tasks
τ1...τi...τn, each of which has a unique ID and priorityi
(1 ≤ i ≤ n wheren represents the lowest priority).

We assume that each task gives rise to a potentially
infinite sequence of jobs and that all the jobs of a task
are released eitherperiodically at fixed intervals of time,
or sporadicallyafter some minimum inter-arrival time has
elapsed. Therefore, every taskτi can be characterised as
(Ci, Di, Ti) whereCi denotes the worst-case execution time
of all the jobs ofτi excluding any time spent on spinning;Di

represents the relative deadline of each job ofτi and finally
Ti denotes the release period or minimum inter-arrival time
of τi. It is also assumed that all of the tasks have constrained
deadlines, i.e.Di ≤ Ti. Furthermore, once a job starts to
execute it will not voluntarily suspend itself.

Intra-task parallelism is not permitted; hence, at any given
time, each job may execute on at most one processor. As
a result of preemption and subsequent resumption, a job
may migrate from one processor to another. The cost of
preemption, migration, and the runtime operation of the
scheduler is assumed to be either negligible, or subsumed
into the worst-case execution time of each task.

As noted by Block et al. [6], current global schedul-
ing algorithms (including global FP) do not consider non-
preemptive sections. Simply running the highest priority
tasks on the remaining preemptible processors is not a good
solution as it is possible for a task to be blocked whenever
other tasks are released or resumed. Instead, Block et al.
proposed the concept of a task being linked to a processor.



A task is linked to a processor at timet if this task would
have been scheduled on that processor at timet under the
assumption that all tasks are fully preemptible. If a task
is linked yet not scheduled, it is deemednon-preemptively
blocked. During this blocking, the blocked task may be
unlinked but it is not allowed to execute anywhere else.

In this work, we assume a standard global FP algorithm
has been modified to implement Block et al.’s scheduling
scheme (but not their FMLP protocol). By using this algo-
rithm, a job in our system can only be non-preemptively
blocked once at the beginning of its execution [6].

In the proposed analysis, if a job of taskτk arrives at
ak, it can have 5 different states within[ak, ak +Dk): non-
preemptively blocked, unlinked, busy-waiting, executingand
completed. Taskτk is said to be non-preemptively blocked
when it is currently among them highest priority ready tasks
but cannot be scheduled to run. Taskτk is said to be unlinked
when it is not among them highest priority ready tasks (τk
is always ready within[ak, ak + Dk) assuming that it has
not completed). Taskτk is said to be busy-waiting when it
is spinning non-preemptively, trying to lock a resource that
is currently being used by another task. Taskτk is executing
when it is consuming processor time while not busy-waiting.
Finally, taskτk is schedulable if it always completes before
or at its deadline.

According to the state of taskτk, the window[ak, ak +
Dk) can be divided into 4 sets of time intervals:Θk, Γk,
Λk andΩk. These are respectively the collection of all the
time intervals (not necessarily contiguous) within[ak, ak +
Dk) during which the job ofτk is non-preemptively blocked
(Θk); unlinked (Γk); busy waiting (Λk); or executing (Ωk).

We denote byρ = {ρ1, ...., ρj, ....ρl} the set of all the
resources in the system. Each resource has a unique ID1 ≤
j ≤ l wherel denotes the number of resources in the system.
Without loss of generality, we assume that resource accesses
are never nested.Group locksproposed in [6] can be used
to eliminate this restriction without affecting our analysis.
All resources are protected by queue locks.

Let ρx,ji,k denote taskτi’s kth job’s xth access to resource
ρj and |ρx,ji,k | denote the execution time ofρx,ji,k (excluding
any spinning). Then, we can represent the longest criti-
cal section of taskτi regarding resourceρj as |ρji | =
maxk,x{|ρ

x,j
i,k |}. The longest critical section of all tasks re-

garding resourceρj is therefore given byηj = maxi{|ρ
j
i |}.

The longest critical section of tasks with priorities lower
than τk is given by bk = max{i,j|τi∈lp(k)∧τi∈ac(ρj)}{|ρ

j
i |}

where lp(k) denotes the set of tasks with priorities lower
than τk andac(ρj) denotes the set of tasks that accessρj .
The size ofac(ρj) is represented bynj and we further define
n̂j = min(m,nj). We also useψji to denote the maximum
number of accesses to resourceρj by any job of taskτi.

Let Bi,k denote the longest time a job of taskτi can
be non-preemptively blocked by tasks with priorities lower

than τk. We also denote byβi the worst-case total time a
job of taskτi accesses resources (this does not include any
spinning time).

In order to make this paper easier to understand, we
summarise some frequently used notations in table I with
a brief explanation of their meaning.

Symbols Definitions

Θk the set of time intervals during whichτk is non-preemptively blocked
Γk the set of time intervals during whichτk is unlinked
Λk the set of time intervals during whichτk is busy waiting
Ωk the set of time intervals during whichτk is executing
Υk the maximum total resource access time introduced by tasks with

priorities lower thanτk within Γk

Πk the maximum total amount of time that could be wasted on spinning
within problem window[ak, ak +Dk)

Φk the contribution of the execution of tasks with priorities higher than
τk to the total interference

∆k the contribution of intervalΛk to the total interference that has not
been considered inΠk

ψ
j

i
the maximum number of accesses to resourceρj by any job of task
τi

Ψj

i,k
the maximum total number of accesses to resourceρj by task τi

within τk ’s problem window[ak, ak +Dk)
ηj the length of the longest critical section of resourceρj

|ρj

i
| the length of the longest critical section of resourceρj that can be

entered by taskτi

βi the worst-case total time a job of taskτi spends on resource accessing
ωx,j the total of thex longest|ρj

i
| among all tasks using resourceρj

bk the length of the longest critical section of any tasks with priorities
lower thanτk

Bi,k the longest time a job of taskτi can be non-preemptively blocked by
tasks with priorities lower thanτk

Gj,k
x the maximum number of resource request groups in whichx requests

to ρj can be in parallel withinτk ’s problem window[ak, ak +Dk)

Table I

NOTATION DEFINITION

IV. I MPACT OF QUEUE LOCKS

A. Pessimism in Current Approaches

The state-of-the-art approach to developing queue-lock-
aware schedulability analyses is to inflate the worst-case
execution time of each task to include time spent on spinning
and blocking [5], [6], [8]. All existing studies [5], [6], [8]
assume that every resource access protected by a queue
lock can be interfered with bŷnj − 1 accesses to the same
resource on other processors (Recall thatn̂j = min(m,nj)
and nj represents the total number of tasks that access
resourceρj .). According to [5], [6], [8], the inflated worst-
case execution time of taskτi can be represented as:

C
wia
i = Bi,i + Ci +

X

ρj∈ρ

(ωn̂j−1,j · ψ
j
i ) (1)

whereBi,i denotes the longest blocking timeτi can suffer;
Ci denotes the worst-case execution time ofτi excluding
spinning time;ωx,j denotes the total of thex longest|ρji |
among all tasks regarding resourceρj .

Every taskτi characterised by(Ci, Di, Ti) can then be
substituted byτwiai which is characterised by(Cwiai , Di, Ti)
to form a new taskset. Many global FP analyses designed for
independent tasks can be applied to this new taskset without
any significant change. If such an analysis considersτwiai

schedulable, the corresponding taskτi will be schedulable



as well. However, inflating every task’sCi according to
Equation (1) is pessimistic. This is because not all resource
requests can be issued in parallel and serial resource requests
never cause any spinning among each other (Requests issued
by the same task can only happen serially.).

As illustrated in figure 1, suppose a 4 processor system
consists of 4 tasks and 1 shared resource. Also assume that
each task except task 1 can only request this resource once
betweent1 andt2 even in the worst case. On the other hand,
task 1 could access the resource 100 times within the same
time interval. Finally, this example assumes each resource
access takes exactly 1 time unit. Figure 1a shows that the
maximum total time that could be wasted on spinning in
this case occurs when one of each task’s resource requests
is issued simultaneously and task 1’s request is the first
to be served and task 1 immediately requests again after
its previous access is finished. In this worst case, the total
wasted time (shown in grey) is 9 time units. By contrast, all
existing analyses [5], [6], [8] would give an estimation of
309 (figure 1b).�������� ���� ���	
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Figure 1. Observed Pessimism

In the current model (under global FP scheduling), when
analyzing a task at priorityk, only tasksτi /∈ lp(k) (where
lp(k) denotes the set of tasks with priorities lower than
k) have to inflate their worst-case execution times. This is
because allτi ∈ lp(k) have no effect on taskτk according to
this model and hence are not considered when analyzing task
τwiak . Consequently, ifk is a relatively high priority, only
a few tasks will have to inflate their worst-case execution
times, which counteracts the pessimism of execution time
inflation. However, when priorityk becomes lower, more
and more tasks will have to inflate their execution times and
the pessimism increases cumulatively. We therefore expecta
performance degradation of the state-of-the-art queue-lock-
aware global FP analyses as task priority decreases. Next, we
show how to take advantage of our observation to eliminate
some pessimism, especially at low priorities.

B. A Less Pessimistic Modeling of Spinning Time

In order to reduce the pessimism cumulated at low pri-
orities in the current model, our new approach groups, for
each resource, potentially parallel requests to that resource
(issued by tasks at any priority) in each problem window to
ignore those that can never be in parallel with others. The
worst-case grouping of requests to a specific resource should

maximize the total spinning time caused by accesses to that
resource in a given problem window. Since the total spinning
time consists of the spinning time introduced by tasks with
any priority, our new model does not cumulate pessimism
as the priority of the problem job decreases. However,
when this priority is high, too many tasks (with priorities
lower than the problem job) unnecessarily contribute to the
estimated total spinning time. Due to the limitation on space,
we do not provide proofs for lemmas and theorems given in
this paper. They can be found in [9].

First, we consider how resource access requests generate
the maximum amount of spinning. In a multiprocessor
system that is scheduled according to the FP algorithm of
Block et al. described in section III, the maximum amount
of spinning time that can be introduced by tasks accessing a
resourceρj can only be achieved when resource requests on
each processor arrive one by one without any delay and the
first request in each processor’s resource request sequence
arrives simultaneously.
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Figure 2. The maximum total spinning time

This situation is illustrated in figure 2 where most of
the resource requests are blocked (and therefore spinning)
for the same amount of time as described in existing work
[5], [6], [8]. However, the observation discussed previously
allows opportunities for improvement.

In order to estimate the total spinning time, we need to
calculateΨj

i,k, the maximum total number of accesses to
resourceρj by taskτi within τk ’s problem window[ak, ak+
Dk). This is given below

Ψj

i,k = Ni,k · ψj
i

whereNi,k denotes the maximum number of jobs ofτi that
can execute in[ak, ak +Dk) andψji denotes the maximum
number of accesses to resourceρj by any job of taskτi.
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Figure 3. The number ofτi jobs that can execute in[ak , ak + Dk)

Based on the worst-case situation given in figure 3, we
can derive the following:

Ni,k = ⌈
Dk +Di

Ti

⌉ if i 6= k



Ni,k = 1 if i = k

Having got every task’sΨj
i,k regarding a specific resource

ρj , we could simply assume that any two resource requests
can be issued in parallel. However, as discussed previously,
not all resource requests can be issued in parallel and those
requests that can never be issued in parallel never cause any
spinning on each other.

In order to facilitate the proposed total spinning time
analysis, we need to group all the accesses to resourceρj
in [ak, ak +Dk) in such a way that each group contains at
most n̂j requests for resourceρj issued by different tasks.
Because resource requests of the same task can never run in
parallel, this grouping method ensures that no unparallelable
resource accesses can be in the same group.

Among all the possible results of this grouping method,
we are only interested in the worst-case grouping that
maximizes the estimated total spinning time in[ak, ak+Dk).
The development of an algorithm that finds the worst-case
grouping requires knowledge of the total spinning time
caused by each request group with a different size.

According to the worst case given in figure 4, the maxi-
mum total time that could be wasted on spinning by a group
of x parallel resource requests (toρj) is ωx,j · (x−1) where
ωx,j denotes the total of thex longest|ρji | among all tasks
regarding resourceρj .
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Figure 4. More accurate total spinning time

Lemma 1. Suppose a taskset either hasn̂j < 4, or satisfies
the restriction that for any3 < x ≤ n̂j , ωx,j − ωx−1,j ≥
x−3
x−1 (ωx−1,j − ωx−2,j). Then, such a taskset is guaranteed
to have the following characteristic for any2 < x ≤ n̂j and
x′ = x− 1:

(x−1)ωx,j−(x−2)ωx−1,j ≥ (x′−1)ωx′,j−(x′−2)ωx′−1,j (2)

In essence, Lemma 1 suggests that by respecting the above
restriction, the total spinning time difference between a size
x group and a sizex − 1 group is always no less than that
between a sizex− 1 group and a sizex− 2 group.

The restriction described in lemma 1 requires that for any
3 < x ≤ n̂j, thexth largest|ρji | among all tasks regarding
resourceρj should be no less thanx−3

x−1 times of the(x−1)th
largest. For those tasksets that do not obey this restriction,
we can easily inflate some of thênj largest|ρji | regarding
resourceρj when calculating eachωx,j. Then, the maximum

total spinning time that could be caused by any group ofx
resource requests is still(x−1)ωx,j (with ωx,j recalculated).

For any taskset (or any adjusted taskset) as described in
lemma 1, if we usegx to represent the number of size
x groups, the total spinning time can then be denoted as∑2

x=n̂j
(x − 1)ωx,j · gx. The worst-case grouping should

maximize this estimated total spinning time.

Theorem 1. Suppose there is an algorithm that makes as
many sizex parallel request groups as possible wherex is
initially set to n̂j and decreasesx only when the remaining
requests can no longer be grouped to the current group
size. For any taskset (or any adjusted taskset) as described
in Lemma 1, this algorithm gives the worst-case grouping
and therefore maximizes the estimated total spinning time∑2

x=n̂j
(x − 1)ωx,j · gx.

Algorithm 1 CalculateGj,kx for every2 ≤ x ≤ n̂j

Input: j, k and non-zeroΨj

i,k
of everyτi.

Output: Gj,k
x (2 ≤ x ≤ n̂j ), the maximum number of resource request groups in

which x resource requests can be in parallel
1: ǫ = 0;
2: for x = n̂j to 2 do
3: Gj,k

x = 0;
4: end for
5: loop
6: Sort Ψj

i,k
in ascending order to form listlist;

7: Let L denote the length of listlist;
8: if L < n̂j − ǫ then
9: ǫ = ǫ + 1;
10: if ǫ = n̂j − 1 then
11: return
12: end if
13: else
14: G

j,k

n̂j−ǫ
= G

j,k

n̂j−ǫ
+ 1;

15: for each of the last(n̂j − ǫ) Ψj

i,k
in list list do

16: Ψj

i,k
= Ψj

i,k
− 1;

17: Remove anyΨj

i,k
that becomes zero;

18: end for
19: end if
20: end loop

Algorithm 1 calculates, for each2 ≤ x ≤ n̂j (from n̂j to
2), Gj,kx , the maximum number of resource request groups
in which x of the remaining ungrouped requests, can be in
parallel.

Line 1 initializes the group size iteratorǫ to zero.(n̂j −
ǫ) represents the current group size, which is reduced by
increasing the group size iteratorǫ. Lines 2-3 initialize the
number of groups of every size to zero.

For each iteration of the infinite loop (lines5-20), we
first sort all tasks’ non-zeroΨj

i,k in ascending order. If the
number of non-zeroΨj

i,k is no smaller than the current group
size (n̂j − ǫ) (line 8), a new group of size(n̂j − ǫ) can be
found as a result of this iteration (line14). In this case,
each of the largest(n̂j − ǫ) non-zeroΨj

i,k are reduced by
one (lines15 - 18).

When the number of non-zeroΨj
i,k is smaller than the

current group size (line8), it is no longer possible to find
any new groups of the current size. Therefore, the group



size is reduced (line9). If the next group size is one, the
algorithm stops (lines10 and12).

Because this algorithm always takes requests from the
largestx remainingΨj

i,k of all tasks (lines15 - 18) to form
a request group of sizex, as many tasks’Ψj

i,k as possible are
left greater than zero. Hence, this algorithm is guaranteedto
create the biggest possible request group on every iteration.
However, this algorithm does not consider different critical
section lengths while grouping, which makes Lemma 2 pes-
simistic. This is necessary because otherwise the complexity
of this algorithm would be too high.

Lemma 2. The maximum total amount of time that could
be wasted on spinning by all tasks in[ak, ak +Dk) can be
upper bounded by:

Πk =
X

ρj∈ρ

(
2

X

x=n̂j

G
j,k
x · ωx,j · (x− 1)) (3)

V. SCHEDULABILITY ANALYSIS LP-CDW

The lp-CDW analysis is based on Bertogna and Lipari’s
sufficient non-iterative analysis designed for independent
tasks (referred to asBL) [14] and requires no further
modifications to the standard global FP scheduling apart
from those discussed in section III.

The BL analysis works on a task by task basis, from
the highest priority down to the lowest priority. When
analyzing the schedulability of taskτk, BL considers one
job of that task a problem job and derives an upper bound
on the interferenceof every higher priority taskτi to the
problem job within τk ’s problem window[ak, ak + Dk).
This interference is defined as the total length of all intervals
within [ak, ak + Dk) during which τk does not execute
(though it is ready) whileτi does. Since the problem job
is always ready to execute within[ak, ak +Dk), tasks with
priorities lower thanτk can never interfere with the problem
job. Moreover, because the global FP scheduling algorithm
(without queue locks) iswork conserving[14], there can
never be any idle processor when the problem job does not
execute. Therefore, if the sum of the upper bounds on all
higher priority tasks’ interference to taskτk is no more than
m(Dk − Ck) then all jobs ofτk will be schedulable.

Compared to theBL analysis, the tasksetslp-CDW targets
have two distinct differences. First, in our tasksets, tasks with
priorities lower than taskτk can also interfere withτk within
its problem window[ak, ak + Dk). This is because parts
of the low priority tasks can be executed non-preemptively.
Second, some resource accesses can cause non-preemptible
spinning, which wastes computation time. Furthermore, be-
cause of the non-preemptible sections, our modified global
FP scheduling algorithm is no longer work conserving.
Therefore, we need a new definition of interference.

Definition 1. The total interference (Ik) to the problem job
(a job of taskτk) within its problem window[ak, ak +Dk)
is the total of any idle time, task execution time or spinning

time that happens whenτk is not executing. For the purpose
of this paper,τk is not considered to be executing when it
is spinning.

Because our total interference includes all the possible idle
time that may exist when the problem job does not execute,
we get the following schedulability condition even though
our scheduling algorithm is not work conserving.

Theorem 2. If the total interference (Ik) to the problem job
(a job of taskτk) within its problem window[ak, ak +Dk)
is no more thanm(Dk − Ck), taskτk will be schedulable.

As discussed in section III, a problem window is com-
posed of 4 time interval sets:Θk, Γk, Λk andΩk. Because
the problem job executes inΩk, this time interval set
contributes nothing to the total interferenceIk.

First, we model the interference that should be analyzed
acrossΘk, Γk and Λk. This includes interference caused
by the execution of tasks with priorities higher than that of
τk and the interference caused by the spinning of any task
(section IV-B). Other interference (i.e. idle time and lower
priority task execution) will be discussed later.

As it is very difficult, if not impossible, to estimate the
exact total interference toτk ’s problem job, we instead
derive an upper bound for each type of interference and
then use the sum of these upper bounds as an upper bound
on the total interferenceIk.

A. Total Workload in the Problem Window

Let’s consider the interference caused by the execution of
tasks with priorities higher thanτk. This has been addressed
in the BL analysis [14]. They used each task’s maximum
workload during [ak, ak + Dk) as an upper bound on
each task’s maximum interference during[ak, ak + Dk) to
estimate the schedulability ofτk.

The maximum workload of taskτi (τi ∈ hp(k)) within
[ak, ak +Dk) can be calculated as:

Wi(Dk) = Ni(Dk) ·Ci +min(Ci, Dk +Di −Ci −Ni(Dk) ·Ti)

where
Ni(Dk) = ⌊

Dk +Di − Ci

Ti

⌋

Based on Bertogna and Lipari’s work, we get the follow-
ing lemma.

Lemma 3. The contribution of the execution of tasks with
priorities higher thanτk to the total interference is no more
than

Φk =
X

τi∈hp(k)

min(Wi(Dk),Dk − Ck) (4)

wherehp(k) denotes the set of tasks with priorities higher
than that ofτk.

Next, we study each of the 3 time interval setsΘk, Γk and
Λk to investigate what contributes to the total interference
Ik during each of them.



B. Θk — non-preemptively blocked

Block et al. [6] proved that by disallowing the migration
of a job that is linked to a processor until it is unlinked,
this job can only be non-preemptively blocked once at the
beginning of its execution in the absence of any suspension.
The maximum length of this non-preemptive blocking is the
longest non-preemptible section of all the jobs with lower
priorities.

Based on Block et al.’s work, we get the following lemma:

Lemma 4. The maximum length of the time intervalΘk is:

Bk,k = max
{i,j|τi∈lp(k)∧τi∈ac(ρj)}

(ωn̂j ,j) (5)

where lp(k) denotes the set of tasks with priorities lower
than taskτk; ac(ρj) denotes the set of tasks that access
resourceρj and ωn̂j,j denotes the total of thênj longest
|ρji | among all tasks using resourceρj .

Sinceτk cannot run duringΘk, it is trivial to prove the
following lemma according to Definition 1.

Lemma 5. The upper bound onΘk ’s contributions to the
total interferenceIk is m ·Bk,k.

It should be noticed that we do not make any assumption
about the cause ofΘk’s contribution to the total interference.
It may be caused by any task other thanτk. It may simply
be idle time.

C. Γk — unlinked

Only four types of execution can contribute to the total
interference duringΓk when task τk is not one of the
m highest priority ready tasks (unlinked). This includes
the execution of tasks with priorities higher thanτk, the
spinning of tasks with priorities higher thanτk, the spinning
of tasks with priorities lower thanτk and finally the non-
preemptive resource accesses of tasks with priorities lower
thanτk. In this subsection, we derive only an upper bound
on the low priority tasks’ non-spinning contribution to the
total interference since all other contributions to the total
interference are considered elsewhere.

Lemma 6. During Γk, whenever a taskτi ∈ lp(k) is
running non-preemptively, a taskτj ∈ hp(k) must be non-
preemptively blocked byτi wherelp(k) (hp(k)) denotes the
set of tasks with priorities lower (higher) than taskτk.

Lemma 7. During Γk, the maximum amount of non-
preemptive resource accesses introduced by tasks with pri-
orities lower thanτk is no more than:

Υk = min(
X

i∈hp(k)

min( ˆbi,k,Dk−Ck),
X

i∈lp(k)

min( ˆβi,k,Dk−Ck))

(6)
where ˆbi,k denotes the total time that a higher priority task

τi can be non-preemptively blocked by resource accesses
(without any spinning) of tasks with priorities lower thanτk
within [ak, ak+Dk); and ˆβi,k denotes the total time a lower

priority task τi non-preemptively accesses any resource
within [ak, ak +Dk).

Next, we demonstrate how to calculatêbi,k and ˆβi,k.
Figures 5 and 6 illustrate the situations in whicĥbi,k and
ˆβi,k reach their maximum values respectively. Forˆbi,k, this

happens whenbk and onlybk is completely carried into the
problem window[ak, ak +Dk) and ends at the deadline of
the carry-in job and then, all other jobs ofτi are blocked by
bk at their arrivals. Hence, the maximum number of complete
bk executions within the problem window[ak, ak+Dk) can
be calculated as follows: fghi jkl klklml mn o pnmn qmrs sml o pl

ktu uvuwxqyz{ z| qmrs yktu }z{~urq w�yqywm} ruwqyz{ z| qmrsr �yqt ��yz�yqyur }z�u� qtm{ s�
Figure 5. How to calculateˆbi,k

Ñi(k) = ⌊
Dk +Di − bk

Ti

⌋

Then, ˆbi,k can be represented as:

ˆbi,k = Ñi(k) · bk + min(bk,Dk +Di − bk − Ñi(k) · Ti)

wheremin(bk, Dk + Di − bk − Ñi(k) · Ti) represents the
carry-out part of the non-preemptive resource access.

��� ���������� ����� ���� � ��� �� ���� � �������� �������������� ��������� �� ���� �
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Figure 6. How to calculate ˆβi,k

For ˆβi,k, the worst case happens whenτi’s carry-in job’s
non-preemptive resource accesses and only those accesses
(with a total length ofβi) are carried into the problem
window [ak, ak + Dk) and the carry-in job completes at
its deadline. Then, all other jobs ofτi run immediately at
their arrivals and always make their non-preemptive resource
accesses at the beginning. Hence, the maximum number
of complete βi executions within the problem window
[ak, ak +Dk) is given by:

N̄i(k) = ⌊
Dk +Di − βi

Ti

⌋

Thus, ˆβi,k is given by:

ˆβi,k = N̄i(k) · βi + min(βi,Dk +Di − βi − N̄i(k) · Ti)



wheremin(βi, Dk + Di − βi − N̄i(k) · Ti) represents the
carry-out part of the resource accesses.

D. Λk — busy waiting

During Λk, processors other thanτk ’s could be idle or
executing any task other thanτk or spinning waiting for a
resource. Irrespective of what these processors are doing,all
processors totally contributeL ·m to the total interference,
whereL denotes the maximum length ofΛk. However, parts
of this contribution may have already been considered in the
previous subsections. If we let∆k = L · m represent the
maximum contribution to the total interference duringΛk,
significant pessimism may be introduced to our analysis. In
this subsection, we demonstrate how to improve upon this
value of∆k.

According to the definition ofΛk, taskτk must be spin-
ning waiting for a resource that has been locked by another
task. DuringΛk, it is likely that some other tasks are also
spinning waiting for the same resource and their requests for
this shared resource are queued beforeτk. As all possible
spinning time has been considered inΠk, ignoring some
spinning time duringΛk may prove useful in calculating a
less pessimistic value for∆k.

First of all, for a request byτk for resourceρj that is
blocked by some other task, suppose that it is blocked by
x resource accesses. The longest duration of this blocking
is ωx,j and hence the maximum contribution to the total
interference during this blocking ism · ωx,j. In order to
make this blocking lastωx,j time units, the total amount
of computation time wasted on spinning by all processors
during this blocking must be at leastx · ωx,j −

∑x−1
y=1 ωy,j

(grey area in figure 7). As the minimum total spinning time
during this blockingx ·ωx,j−

∑x−1
y=1 ωy,j must have already

been considered inΠk and allx resource accesses within this
time interval must have also been considered inΦk, we only
need to consider(m−1) ·ωx,j−xωx,j+

∑x−1
y=1 ωy,j = (m−

1− x) · ωx,j +
∑x−1
y=1 ωy,j when estimating the contribution

to the total interference during this time interval.��� ¡��� ¢��� £��� ¤��� ¥ ¦ §¨©ª« ¬§­¨«®¯°¨®§­ ¨§¨§¨±² ®­¨ª«³ª«ª­¬ª´°«®­µ«ª¶§°«¬ª ±¬¬ª¶¶ ¨®¦ª¶·®­­®­µ ¨®¦ª
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Figure 7. How to calculate∆k

It is straightforward to prove:

(m−1−x)·ωx,j+

x−1
X

y=1

ωy,j ≤ (m−1)·x·ηj−
(x+ 1)2 − (x+ 1)

2
·ηj

(7)

where (m − 1) · x · ηj −
(x+1)2−(x+1)

2 · ηj reaches its
maximum valuem

2−3m+2
2 · ηj whenx = m− 1. Therefore,

we get the following lemma:

Lemma 8. During Λk, the contribution to the total interfer-
ence that needs to be considered in our analysis is no more
than:

∆k =
X

ρj∈ρ

(ψj

k ·
m2 − 3m + 2

2
· ηj) (8)

Since the problem job of taskτk executes in time interval
Ωk, nothing contributes to the total interference to the
problem job in this time interval. Therefore, summing the
terms in Lemmas 2, 3, 5, 7 and 8, gives an upper bound on
the total interference to the problem job (a job of taskτk)
during its problem window[ak, ak +Dk):

Ik ≤ m ·Bk,k + Υk + Πk + ∆k + Φk (9)

Applying Theorem 2 gives theorem 3.

Theorem 3. A tasksetτ is schedulable on a multiprocessor
system with resources shared among tasks according to the
queue lock algorithm if for eachτk ∈ τ ,

m ·Bk,k + Υk + Πk + ∆k + Φk ≤ m(Dk − Ck) (10)

Because this analysis is based on the new spinning time
modeling approach introduced in section IV-B, it reduces
pessimism when analyzing low priority tasks compared
with the existing analyses using execution time inflation.
However, lp-CDW performs poorly at high priorities [9]
because it always assumes that all tasks contribute to the
total spinning time. By contrast, existing analysis works well
for high priority tasks since only a few tasks need to inflate
their execution times in such cases. A detailed comparison
can be found in [9]. In order to make the comparison fair,
we use theBL analysis as the basis of bothlp-CDW and
the example of the execution time inflation approach. The
existing analysis example is a simple use of theBL analysis
on tasksets modified according to section IV-A. This analysis
is referred to asWIA in the rest of this paper.

Therefore, it is necessary to combine existing analysis
with lp-CDW to obtain good results at all priorities. The
combination ofWIA and lp-CDW (referred to asm-CDW
where “m” stands for mixed) analyzes the schedulability of
tasks one by one in descending order of their priorities. At
each priority, it first uses theWIA analysis and if it fails,
then thelp-CDW analysis is used to check schedulability.
Accordingly, algorithmm-CDW dominates bothWIA and
lp-CDW. As will be seen in section VI and [9], in many ex-
periments,m-CDW significantly outperforms both analyses
of which it is composed.

VI. EVALUATIONS

In this section, we empirically compare the performance
of WIA, lp-CDW and m-CDW. Because Bertogna and Li-



pari’s BL analysis [14] does not consider any resource shar-
ing and all other analyses are derived from it,BL dominates
all other analyses discussed in this paper. Therefore, we use
the performance ofBL as a reference for the evaluation of
other analyses. Note that due to space limitations, only a
few representative results are shown in this paper. See [9]
for a comprehensive evaluation. First of all, we present the
details of the experiment setup.

A. Methodology

Our experiments were conducted on randomly generated
tasksets with variable parameters. Such parameters include
the total number of processorsm, the priority assignment
policy, the total utilization of each taskset, the number of
tasks in each setn, the maximum number of resource
accesses in any job of any taskψbound as well as the upper
(CSub) and lower (CSlb) bounds on the randomly generated
longest critical section of every resource accessing task.

All experiments assume that only one resource exists. The
number of resource accessesψji (wherej is constant) in any
job of taskτi is randomly generated between0 andψbound.
This process is also subject to another restriction, which
requires

∑
i ψ

j
i = ψbound·2n

m
. This restriction is introduced to

reasonably constrain the experiments and to make different
tasksets comparable.

The longest critical section of taskτi, which is denoted as
|ρji | (wherej is constant), has a uniform distribution between
CSub andCSlb. Supposeβub = |ρji | · ψ

j
i . Then, the worst-

case total time a job of taskτi spends on resource accessing,
denoted asβi, has a uniform distribution between(βub −
|ρji |) · 0.4+ |ρji | andβub. The coefficient0.4 is configurable
and it controls how closeβi is to βub.

The total utilization of our tasksets ranges between0 and
m. Task periods in each set have a log-uniform distribution
between2000 and25000. The utilisation and hence worst-
case execution time of each task is generated according to
UUnifast-Discard[18]. Deadlines have a uniform distribu-
tion between the worst case execution times and the periods.

For each experiment, we randomly generate20000
tasksets for each configuration (including all the above
parameters) and record the number of these tasksets that
are deemed schedulable by each analysis.

B. WIA vs lp-CDW vs m-CDW

First, am = 4 processor system is evaluated. The number
of tasks in each taskset is set to25. ψbound, CSlb andCSub

are set to5, 10 and25 respectively.
Figure 8 depicts the performance ofWIA, lp-CDW and

m-CDW under theDkC priority assignment policy [19].
Thex axis in this figure denotes the total utilisation of each
taskset. They axis shows the success rate of each analysis
(which is the number of tasksets deemed schedulable by an
analysis divided by the total number of tested tasksets, i.e.
20000 in our experiments.). As can be seen in this figure, at
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Figure 8. m-CDW vs WIA on 4 processors when task number is25

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 2  2.4  2.8  3.2  3.6  4  4.4  4.8  5.2  5.6  6

S
uc

ce
ss

 r
at

e

Taskset utilization

lp-CDW
m-CDW

WIA
BL

Figure 9. m-CDW vs WIA on 8 processors when task number is25

utilisation1.6, m-CDWhas a success rate around75% while
the WIA analysis can only recognise around15% of all the
randomly generated tasksets as schedulable. Interestingly,
the relative performance ofm-CDW compared againstWIA
remains very good even whenlp-CDW can barely recognise
any schedulable tasksets by itself.

Next, we change the number of processors tom = 8
and keep all other parameters unmodified. As illustrated by
figure 9, the performance gap betweenm-CDW and WIA
grows larger andlp-CDW improves a lot in this case.

In the next experiment, we study, in more detail, the
impact of taskset size on the performance of each schedula-
bility analysis. First, we assume tasks execute on am = 4
processor system (figure 10). The number of tasks in each
taskset is varied between10 and 25. The total utilisation
of each taskset tested in this experiment is fixed at2.0.
CSlb andCSub are set to5 and 20 respectively. In order
to prevent any change to the total utilisation dedicated to
resource accesses, this experiment sets

∑
i ψ

j
i = ψbound·30

m

andψbound = 5.
Thex axis in figure 10 denotes the number of tasks in each

taskset. They axis shows the success rate of each analysis.
Figure 10 clearly shows the performance gap betweenm-
CDW/lp-CDW and WIA grows as taskset size increases.
Next, we change the number of processors tom = 8 and
adjust the total utilisations of tasksets to4. This experiment
also sets

∑
i ψ

j
i = ψbound·30

m
but it changesψbound to 10.

As illustrated by figure 11, these changes show a similar
performance gap betweenm-CDW/lp-CDW and WIA as
observed in the previous experiment.
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Figure 10. m-CDW vs WIA whenm = 4 and total utilisation is2.0
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Figure 11. m-CDW vs WIA whenm = 8 and total utilisation is4.0

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we provided a significantly improved
schedulability analysis for multiprocessor real-time systems
that allow resources to be shared among tasks. This ef-
fort was made in particular for global FP multiprocessor
scheduling that requires the use of queue locks to protect
shared resources. Although queue lock is a very simple
resource sharing protocol, it is effective and efficient for
many practical industrial applications [7].

To the best of our knowledge, all previous multiprocessor
schedulability analyses that consider the use of queue locks
take the worst-case execution time inflation approach to
modeling time wasted on spinning. It has been shown in this
paper how this approach introduces a significant amount of
pessimism, especially at low priorities. This motivated the
development of a new approach to modeling spinning. It
ignores those resource accesses that can never run in parallel
with others. Because this new analysis,lp-CDW, is designed
specifically to eliminate spinning related pessimism at low
priorities, it needs to be combined with existing analysis
based on worst-case execution time inflation to achieve good
performance at all priority levels.

It remains an open question how to apply the intuition
behind this work to resource sharing protocols that combine
queue locks and suspension-based locks (e.g.FMLP). An-
other issue we intend to solve is nested resource accesses.
So far, they are either disallowed in the proposed analyses
or assumed to share a common lock.
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