N

N

Reducing Queue Lock Pessimism in Multiprocessor

Schedulability Analysis
Yang Chang, Robert Davis, Andy Wellings

» To cite this version:

Yang Chang, Robert Davis, Andy Wellings. Reducing Queue Lock Pessimism in Multiprocessor
Schedulability Analysis. 18th International Conference on Real-Time and Network Systems, Nov
2010, Toulouse, France. pp.99-108. hal-00546915

HAL Id: hal-00546915
https://hal.science/hal-00546915
Submitted on 15 Dec 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00546915
https://hal.archives-ouvertes.fr

Reducing Queue Lock Pessimism in Multiprocessor Schedulalty Analysis

Yang Chang, Robert I. Davis and Andy J. Wellings
University of York, UK, {yang, robdavis, andy@cs.york.ac.uk

Abstract—Although many multiprocessor resource sharing dynamically determines on which processor a task should
protocols have been proposed, their impacts on the schedu- pe executed. Execution of a job may migrate from one
lability of real-time tasks are largely ignored in most of the ,qcag50r to another. Multiprocessor real-time schedulin

existing literature. Recently, work has been done to integite . . L
queue locks (FIFO-queue-based non-preemptive spin locks) C&n also be categorised, according to when the priorities ca

with multiprocessor schedulability analysis but the techiques ~ be changed, intofixed task-priority fixed job-priority and
used introduce a substantial amount of pessimism. For globa dynamic-priority This work focuses on global fixed task-
fixed task priority preemptive multiprocessor systems, thé priority preemptive schedulingylobal FP scheduliny
pessimism impacts low priority tasks, greatly reducing the Schedulability of global FP systems has been studied and

number of tasksets that can be recognised as schedulable. A IVSi hes h b d H
new schedulability analysislp-CDW is designed specifically for ~Many analysis approaches have been proposed. However,

analyzing low priority tasks much more accurately. Howevey ~ global FP schedulability analyses are not as mature as
this analysis cannot retain its accuracy when it is used to their uniprocessor counterparts. Tractable exact arslgsi
analyze high priority tasks. Existing techniques outperfom g0 far unknown for sporadic tasks, and resource sharing
Ip-CDW in such cases. By combinglp-CDW with existing s jgnored in most existing work; although efforts have

techniques, we get a hybrid analysis, which performs well at b d It hari tocol
all priorities and therefore significantly increases the nunber €en made on MUulliprocessor resource sharing protocols

of tasksets that can be recognised as schedulable. themselves. These efforts have resulted inviodtiprocessor
Priority Ceiling Protocol (MPCP)[4], Multiprocessor Stack
I. INTRODUCTION Resource Policy (MSRHS] and theFlexible Multiprocessor

Locking Protocol (FMLP)[E]. One of the building blocks
9 these protocols is thgueue loc FIFO-queue-based non-
preemptive spin lock), which is a simple, yet efficient mech-
anism of protecting short critical sections on multiprames

ded ¢ h v h iy ai /]. In a queue lock system, a task becomes non-preemptible
€d systems research community has recently given muGiy, o, i+ tries to access a shared resource. If the resource is

attention to extending the knowledge gained in the UNIPrO%yailable, the requesting task locks it and then accesses it

cessor era to the development of real-time mumprocessoﬁon-preemptively. Otherwise, the requesting task busiswa

i ¢ simoly b di i ?{on—preemptively in a FIFO queue until the resource is made
systems cannot Simply be reused in a mulliprocessor envl, Jiapie to it. Eventually the task releases the lock and

ronment. Schedulability analysis and resource sharing aBacomes preemptible again

prominent examples of such transition difficulties. In this paper, we focus on the impact of non-nested
Sghedulability analysis for uniprocessor systems has beg eue locks or; global FP multiprocessor schedulability
studied for decades and is well understood. Exact analys alysis. The reasoning and results of this study can also

Eﬁo:h shufnment and necTssar()j/) hazveéoeen ddeVZIOp%d o5 tas e easily applied to systems where nested resource accesses
at share resources. In order to bound and reduce €agll, e ted by a shareoup lock[B].

thask sl;/vorst-case blgckmg tlmer(?o#rclg S_harllng p.rotocols Even this simple mechanism’s impact on multiprocessor
Pave eelr; .pr(_)pOéelll, amF?ng w IIC1 dnsty rl]< gntance schedulability analysis has not been well understood. The
rotocol Priority Ceiling Protocol [l and Stack Resource state-of-the-art approach to modeling queue locks inflates

Policy [are the most widely used. the worst-case execution time of every task to account for

. The most th_oroughly stud_ied scheduling policie_s_ for real'the longest time that could be spent on spinning by that task
time tasks on identical multiprocessors &y partitioned

. L - [, [Bl, [Bl, [B]. For a global FP system, this introduces too
andglobal scheduling policies |~.3]' A fully partitioned SYS" much pessimism at low priority levels where more tasks can

o . ; \Sterfere with the task under analysiBhe main contribution
any task migration. This divides the multiprocessor schedu of this paper is to provide a new model for analyzing
ng problerr;n d'n:p a taslglallocgtmn problem anldbalunlpro-queue locks that significantly reduces this pessimism at low
cessor scheduling problem. By contrast, a globa SySterBriorities. By supplementing an existing approach (design

This work has been funded by the European Commission FP7AEDP for |_n(_1ependent t_asks) with _th|S n_eW model, we obtain a new
and eMuCo projects and the EPSRC Tempo project (EP/G055548/ sufficient analysidp-CDW (in which “Ip” stands for low

More and more real-time embedded systems are bein
built with multiprocessor/multicore technology. This iset
industry’s response to the physical limitation on processo
clock speeds. Motivated by this trend, the real-time embed

priority and “CDW” is the initials of the authors’ names). B. Schedulability Analysis for Independent Tasks

Experiments reveal thdp-CDW is much less pessimistic oyer the last decade, many analyses have been proposed
than the state-of-the-art approach when low priority tasks for independent tasks on multiprocessors. In Baker’s saimin
being analyzed(]9]. However, the state-of-the-art apgmoac,ygrk [17], an analysis based on theoblem jobandproblem
works better at high priorities. As will be seen in sectionyindowwas presented for both global EDF and global FP
I combining both analyses can signif_icantly increase th%cheduling. Both BaruafiTL3] and Bertogna and Lipar! [14]
number of tasksets that can be recognised as schedulablgygticed the pessimism of Baker’s analysis and subsequently
This paper is organized as follows. First, we summariseproposed their own improvements.
existing work in sectiori]l. Next, sectiolll presents our Baryah’s analysi<T13] limits the number of tasks that can
task model, terminology and notation. This is followed by carry in any workload (into the problem window) by setting
discussion of the source of pessimism in existing work angpe beginning of each problem window to the last time
the introduction of a new approach to modeling spinninginstant before its problem job’s arrival when any processor
time. SectiofLV elaborates on the propoke@€DW analysis. can pe idle. By contrast, Bertogna and Lipari's analyses
Experimental results are presented in sedfidn VI. Finalyy, 2] assume each problem window starts at the same time
draw conclusions and discuss possible future work. as its problem job’s arrival. In the iterative version of
Il. RELATED WORK their analyses, the slack of each task is considered when
determining its carry-in contribution to the total intexace
to the problem job. This analysis has recently been improved
Because of the discovery of the “Dhall effect” by Dhall ypon by Guan et al[T15]. Alternative analyses that were also

and Liu [10], global multiprocessor scheduling was, forinspired by Baker's work includé [16]TL7].
many years, considered inferior to the fully partitioned))

approach and therefore initial efforts on multiprocesssr r IIl. M ODEL, TERMINOLOGY AND NOTATION
source sharing protocols mainly focused on fully partiéidn In this paper, we focus on global FP scheduling of
systems. This has resulted in two approaches: MHCP [4dpplications that require resource sharing on a homogeneou
and MSRP [[5]. MPCP and MSRP both prevent deadlocksnultiprocessor system comprising identical processors.
and bound the worst-case blocking time of each task as An application consists of a static number) (of tasks
function of other tasks’ critical section lengths rathearth ...7;...7,,, each of which has a unique ID and priority
other tasks’ execution times. However, when a task is deniefll < i < n wheren represents the lowest priority).
access to a global resource, MPCP suspends this task andWe assume that each task gives rise to a potentially
allows lower priority local tasks to execute (and even lockinfinite sequence of jobs and that all the jobs of a task
resources) while MSRP works according to the queue loclare released eithgperiodically at fixed intervals of time,
algorithm. or sporadicallyafter some minimum inter-arrival time has
Recently, more attention has been given to resourcelapsed. Therefore, every task can be characterised as
sharing protocols for globally scheduled multiprocessors(C;, D;,T;) whereC; denotes the worst-case execution time
Block et al. [6] proposed a new policy called FMLP, which of all the jobs ofr; excluding any time spent on spinninB;
categorises resources into two class#®rt andlong. The represents the relative deadline of each job;caénd finally
gueue lock algorithm is used to protect accesses to shofff; denotes the release period or minimum inter-arrival time
resources. On the other hand, long resources are protected bf 7;. It is also assumed that all of the tasks have constrained
suspension-based locks with priority inheritance. Theyonl deadlines, i.eD; < T;. Furthermore, once a job starts to
requirement regarding nested resource accesses is that erecute it will not voluntarily suspend itself.
long resource access can be nested within a short resourcelntra-task parallelism is not permitted; hence, at anymive
access. Easwaran and Andersson [11] proposed another ptone, each job may execute on at most one processor. As
tocol calledparallel-PCPor P-PCP. This is a generalization a result of preemption and subsequent resumption, a job
of uniprocessor PCP for global FP multiprocessor systemanay migrate from one processor to another. The cost of
Instead of using non-preemptive spin locks, P-PCP suspengseemption, migration, and the runtime operation of the
tasks when resources cannot be accessed. A unique featweheduler is assumed to be either negligible, or subsumed
of this protocol is a new mechanism that limits the system-into the worst-case execution time of each task.
wide parallelism of resource accesses. As noted by Block et al.[]6], current global schedul-
To the best of our knowledge, only a small number ofing algorithms (including global FP) do not consider non-
existing global multiprocessor schedulability analysip@rs preemptive sections. Simply running the highest priority
deal with resource sharing][8]/_[11]. Although resourcetasks on the remaining preemptible processors is not a good
sharing protocols are usually proposed along with somaolution as it is possible for a task to be blocked whenever
blocking time analyses, full schedulability analysis isetg ~ other tasks are released or resumed. Instead, Block et al.
given in these paper5I[4][5].][6]. proposed the concept of a task being linked to a processor.

A. Multiprocessor Resource Sharing

A task is linked to a processor at timef this task would than ;. We also denote by; the worst-case total time a
have been scheduled on that processor at timader the job of taskr; accesses resources (this does not include any
assumption that all tasks are fully preemptible. If a taskspinning time).

is linked yet not scheduled, it is deemadn-preemptively In order to make this paper easier to understand, we
blocked During this blocking, the blocked task may be summarise some frequently used notations in t@ble | with
unlinked but it is not allowed to execute anywhere else. a brief explanation of their meaning.

In this work, we assume a standard global FP algorithnf Symbols | Definitions |
has been modified to implement Block et al’s schedulindg__ ©« the set of time intervals during which, is non-preemptively blocked
scheme (buit not their FMLP protocol). By using this algo-—-—| e = o ime Menes g wpn £ e
rithm, a job in our system can only be non-preemptivelyl < the set of time intervals during which, is executing

f A : il T the maximum total resource access time introduced by tas#s
blocked once at the beginning of its executibh [6]. priorities lower tharr, within Iy
In the proposed analysis, if a job of task arrives at I, the maximum total amount of time that could be wasted on spanr

within problem window[ay,, ax + Dx)

g, It Caljl have 5 d|ffere_nt states Wlth[f_w ap + Dk)_: non- L the contribution of the execution of tasks with prioritiegter than
preemptively blockedinlinked busy-waiting executingand 7}, to the total interference

: : _ : Ay the contribution of intervalA;, to the total interference that has nt
compl_et_ed Task 7 is said to be non pre(_em_ptlvely blocked been considered il
when it is currently among the: highest priority ready tasks) the maximum number of accesses to resoyrgeny any job of task
but cannot be scheduled to run. Tagks said to be unlinked " Th _ — e

g . .] the maximum total number of accesses to resoyrgeby task 7;
yvhen it is not among the highest priority rgady tas_k&,(* | Within 7’s problem window[ay, ar + D)
is always ready withinag, ar, + Dy) assuming that it has n; the length of the longest critical section of resoufge
not completed). Taskk is said to be busy-waiting when it [p?] the length of the longest critical section of resouyge that can be
. entered by task;
is spinning non-preemptively, trying to lock a resourcet tha Bi the worst-case total time a job of task spends on resource accessing
is currently being used by another task. Taghks executing waj | the total of thex longest|p;| among all tasks using resourpg
b the length of the longest critical section of any tasks witlontties

when it is consuming processor time while not busy-waiting lower thant,

Finally, taskr, is schedulable if it always completes before| B;» | the longesttime a job of task; can be non-preemptively blocked b
or at its deadline tasks with priorities lower thar

. . Gik the maximum number of resource request groups in whichquests
According to the state of task,, the window|ay, ax + to p; can be in parallel withirr,,’s problem window[ay, ax + D)
Dy,) can be divided into 4 sets of time interval®y, Ty, Table |
A, and Q. These are respectively the collection of all the NOTATION DEFINITION

time intervals (not necessarily contiguous) within, ax +
Dy,) during which the job ofr, is non-preemptively blocked
(©4); unlinked (x); busy waiting (\,); or executing Q). A Pessimism in Current Approaches

We denote byp = {p1,...., p;,....1} the set of all the The state-of-the-art approach to developing queue-lock-
resources in the system. Each resource has a uniquedD aware schedulability analyses is to inflate the worst-case
j <l wherel denotes the number of resources in the systemexecution time of each task to include time spent on spinning
Without loss of generality, we assume that resource acsessand blocking [[5], [[6], [8]. All existing studied [5]1]6],]8
are never nestedsroup locksproposed in[]6] can be used assume that every resource access protected by a queue
to eliminate this restriction without affecting our anatys lock can be interfered with by; — 1 accesses to the same
All resources are protected by queue locks. resource on other processors (Recall that= min(m, n;)

Let Pfkj denote task;'s kth job’s zth access to resource and n; represents the total number of tasks that access
p; and |p®| denote the execution time gf/ (excluding resourcep;.). According to [5], [6], [8], the inflated worst-
any spinning). Then, we can represent the longest critié@Se execution time of task can be represented as:

IV. IMPACT OF QUEUE LOCKS

cal section of taskr; regarding resource; as |p]| = C" = Bii +Ci + Z(wﬂj,lﬁj) (1)
maxy . {|pj}|}. The longest critical section of all tasks re- pi€p
garding resource; is therefore given by); = max;{|p}|}. whereB; ; denotes the longest blocking timgcan suffer;

The longest critical section of tasks with priorities ‘Iower C; denotes the worst-case execution timerpfexcluding

than 7, is given bybx = maxy; ji-cip(k)rrcacp)} 1Pt} spinning time;w, ; denotes the total of the longest|p? |

wherep(k) denotes the set of tasks with priorities lower among all tasks regarding resourege

than7;, andac(p;) denotes the set of tasks that access Every taskr; characterised byC;, D;, T;) can then be

The size oluc(p;) is represented by; and we further define sybstituted by which is characterised byC**, D, T;)

n; = min(m, n;). We also use); to denote the maximum to form a new taskset. Many global FP analyses designed for

number of accesses to resouygeby any job of taskr;. independent tasks can be applied to this new taskset without
Let B;, denote the longest time a job of task can any significant change. If such an analysis considgis

be non-preemptively blocked by tasks with priorities lowerschedulable, the corresponding taskwill be schedulable

as well. However, inflating every task€; according to maximize the total spinning time caused by accesses to that
Equation[(l) is pessimistic. This is because not all resurcresource in a given problem window. Since the total spinning
requests can be issued in parallel and serial resourcestsquetime consists of the spinning time introduced by tasks with
never cause any spinning among each other (Requests issugaly priority, our new model does not cumulate pessimism
by the same task can only happen serially.). as the priority of the problem job decreases. However,
As illustrated in figurddl, suppose a 4 processor systerwhen this priority is high, too many tasks (with priorities
consists of 4 tasks and 1 shared resource. Also assume tHawver than the problem job) unnecessarily contribute to the
each task except task 1 can only request this resource onestimated total spinning time. Due to the limitation on spac
betweent; andt, even in the worst case. On the other hand,we do not provide proofs for lemmas and theorems given in
task 1 could access the resource 100 times within the santbis paper. They can be found inl [9].
time interval. Finally, this example assumes each resource First, we consider how resource access requests generate
access takes exactly 1 time unit. Figlile 1a shows that théne maximum amount of spinning. In a multiprocessor
maximum total time that could be wasted on spinning insystem that is scheduled according to the FP algorithm of
this case occurs when one of each task’s resource requeftock et al. described in sectidallll, the maximum amount
is issued simultaneously and task 1's request is the firsdf spinning time that can be introduced by tasks accessing a
to be served and task 1 immediately requests again afteesourcep; can only be achieved when resource requests on
its previous access is finished. In this worst case, the totatach processor arrive one by one without any delay and the
wasted time (shown in grey) is 9 time units. By contrast, allfirst request in each processor’s resource request sequence
existing analyse< [5][16]/]8] would give an estimation of arrives simultaneously.

309 (figure[lb). DY DI

task1

W

P — s m m

l~— 98 times *4 f

e - T e
= ™ m o m

@ spinning time resource access time

Figure 2. The maximum total spinning time

e This situation is illustrated in figurEl 2 where most of
(b) the resource requests are blocked (and therefore spinning)
Figure 1. Observed Pessimism for the same amount of time as described in existing work

In the current model (under global FP scheduling), wher{S], [B], [8]. However, the observation discussed previpus
analyzing a task at priority, only tasksr; ¢ ip(k) (where allows opportunities for improvement.

Ip(k) denotes the set of tasks with priorities lower than In orderjto estimate the total spinning time, we need to
k) have to inflate their worst-case execution times. This ifalculate¥; ;, the maximum total number of accesses to
because alt; € Ip(k) have no effect on task, according to resou_lr_(lf]qo]_by FaSkTE) V‘l"th'n 7k'S problem windoway,, ax +
this model and hence are not considered when analyzing tas k). This is given be QW v

e Consequently, ifc is a relatively high priority, only Ul = Nik -]

a few tasks will have to inflate their worst-case exeCUt'or\NhereN denotes the maximum number of jobsmfthat

times, which counteracts the pessimism of execution t'm%an execute ifiax, a, + Dy) andzpj denotes the maximum

inflation. However_, when pr_|0r|tyc be<_:omes Io_wer,_ more Jlumber of accesses to resouygeby any job of taskr;.
and more tasks will have to inflate their execution times an

the pessimism increases cumulatively. We therefore expect ‘
performance degradation of the state-of-the-art quecie-lo Ti | Ti \ taski
aware global FP analyses as task priority decreases. Next, w r \ @ <E§“

show how to take advantage of our observation to eliminate ‘ D

some pessimism, especially at low priorities. }

task k

ak ak + Dk

In order to reduce the pessimism cumulated at low pri- A\ ssuton s
orities in the current model, our new approach groups, for Figure 3. The number of; jobs that can execute ifuy, ax + Dy)
each resource, potentially parallel requests to that resou Based on the worst-case situation given in figire 3, we
(issued by tasks at any priority) in each problem window tocan derive the following:
ignore those that can never be in parallel with others. The Dy + D;
worst-case grouping of requests to a specific resourcedhoul Nig = (TW if i#k

B. A Less Pessimistic Modeling of Spinning Time

total spinning time that could be caused by any group: of
Nip=1 if i=k resource requests is stilt—1)w, ; (with w, ; recalculated).
For any taskset (or any adjusted taskset) as described in

Iemmaﬂ if we useg, to represent the number of size
pj, we could simply assume that any two resource reques
groups the total spinning time can then be denoted as

can be issued in parallel. However, as discussed prevlousl
(:v — Dwg ; - 9. The worst-case grouping should
not all resource requests can be issued in parallel and tho
aX|m|ze this estimated total spinning time.

requests that can never be issued in parallel never cause any
spinning on each other. Theorem 1. Suppose there is an algorithm that makes as

In order to facilitate the proposed total spinning time many sizer parallel request groups as possible wherds
analysis, we need to group all the accesses to resqyrce initially set ton; and decreases only when the remaining
in [a, ax + Dy) in such a way that each group contains atrequests can no longer be grouped to the current group
most7; requests for resource; issued by different tasks. size. For any taskset (or any adjusted taskset) as described
Because resource requests of the same task can never runiinLemmalll, this algorithm gives the worst-case grouping
parallel, this grouping method ensures that no unparaliela and therefore maximizes the estimated total spinning time
resource accesses can be in the same group. Zi:ﬁj (x — 1wz ;- ga-

Among all the possible results of this grouping method,
we are only interested in the worst-case grouping that
maximizes the estimated total spinning timédg, a,+D,). Algorithm 1 CalculateG%* for every2 < z < i,
The development of an algorithm that finds the worst-casenput: j, & and non-zerab? , of everyr;.

grouping requires knowledge of the total Spinning timeOutput: Gi*k (2 < z < ny), the maximum number of resource request groups in
which z resource requests can be in parallel

Having got every task’sIJj regarding a specific resource

caused by each request group with a different size. 1 e=0;
According to the worst case given in figutk 4, the maxi- g forz=nalozd

mum total time that could be wasted on spinning by a groupa4: end for
i e 5: loop
of parallel resource requests (tg) is wf” (x—1) where 6 Sortw! , in ascending order to form lidist;
wy,; denotes the total of the longest|p]| among all tasks 7: et 1 denote the length of listist:
8
9

regarding resourcg;. if L <n;—ethen

: e=¢€e+1;
10: if e =0, —1then
11: return
12: end if
task1 13: else
task2 14 Gi‘zwk GZL k7€ + 1;
‘a3 15: for ea_ch of the lastr; — €) @ in list list do
16: =0 —1;
task4 1, T, .
17: Remove any«Il;?w that becomes zero;
&\ spinning time resource access time ig endeir;d for
Figure 4. More accurate total spinning time 20: end loop
Lemma 1. Suppose a taskset either hias < 4, or satisfies Algorithm [T calculates, for each < z < 7; (from 7; to

T _
the restriction that for any8 < = < fj, Wy — We_ 1, > 2), G2*, the maximum number of resource request groups
2=3(y, 1 j — w,—2;). Then, such a taskset is guaranteedin wh|ch x of the remaining ungrouped requests, can be in

to have the following characteristic for aly< = < n; and ~ parallel. o
oy 1 Line 1 initializes the group size iteraterto zero.(7; —

€) represents the current group size, which is reduced by
increasing the group size iteraterLines 2-3 initialize the
number of groups of every size to zero.
In essence, Lemnfa 1 suggests that by respecting the aboveFor each iteration of the infinite loop (lines20), we
restriction, the total spinning time difference betweeriza s first sort all tasks’ non-zer@/ , in ascending order. If the
x group and a size — 1 group is always no less than that number of non- zer@7 1sno smaller than the current group
between a size — 1 group and a size — 2 group. size (7; — ¢) (line 8), a new group of siz€n; — ¢) can be
The restriction described in lemrih 1 requires that for anyfound as a result of this iteration (ling1). In this case,
3 <z <y, thezth Iargest|pl| among all tasks regarding each of the largest; — ¢) non- zerO\Iﬂ,C are reduced by
resource; should be no less thaf3 times of the(z—1)th one (linesl5 - 18).
largest. For those tasksets that do not obey this restrictio When the number of non- zenb7k is smaller than the
we can easily inflate some of thig largest|p]| regarding current group size (lin®), it is no Ionger possible to find
resourcep; when calculating each,, ;. Then, the maximum any new groups of the current size. Therefore, the group

(z—1)we,j—(—2)we—1,j > (m'—l)ww/,j—(:c’—2)ww/,17j 2)

size is reduced (lin®). If the next group size is one, the time that happens when, is not executing. For the purpose
algorithm stops (lineg0 and12). of this paper,; is not considered to be executing when it
Because this algorithm always takes requests from thé spinning.

« . J . _
largeste remammg\l/lijk of all tasks (Imejs15 18) to_ form Because our total interference includes all the possilbée id
a request group of size, as many tasksl; , as possible are img that may exist when the problem job does not execute,
left greater than zero. Hence, this algorithm is guaranteed o get the following schedulability condition even though

create the biggest possible request group on every iteratio scheduling algorithm is not work conserving.
However, this algorithm does not consider different caitic

section lengths while grouping, which makes Leniha 2 pesTheorem 2. If the total interference ;) to the problem job

simistic. This is necessary because otherwise the contyplexi(a job of taskr;) within its problem windoway,, ax, + D)
of this algorithm would be too high. is no more tharm(Dy, — Cy), tasky; will be schedulable.

Lemma 2. The maximum total amount of time that could As discussed in sectidolll, a problem window is com-
be wasted on spinning by all tasks [y, ax + D) can be posed of 4 time interval set®;, I'x, A, and(;. Because
upper bounded by: the problem job executes if, this time interval set

2 contributes nothing to the total interferenfe

— gk, o (— . .
M = ze: (Z G way - (@ = 1)) ® First, we model the interference that should be analyzed
S acrossOyg, I'y, and A,. This includes interference caused
V. SCHEDULABILITY ANALYSIS LP-CDW by the execution of tasks with priorities higher than that of

The Ip-CDW analysis is based on Bertogna and Lipari's 7, and the interference caused by the spinning of any task
sufficient non-iterative analysis designed for indepemden(section[IV=B). Other interference (i.e. idle time and lowe
tasks (referred to a$L) [14] and requires no further priority task execution) will be discussed later.
modifications to the standard global FP scheduling apart As it is very difficult, if not impossible, to estimate the
from those discussed in sectibnl 111 exact total interference tey’'s problem job, we instead

The BL analysis works on a task by task basis, fromderive an upper bound for each type of interference and
the highest priority down to the lowest priority. When then use the sum of these upper bounds as an upper bound
analyzing the schedulability of task,, BL considers one on the total interferencé.
job of t_hat task a problem jok_J and de_;ri_/es an upper boungdy otal Workload in the Problem Window
on theinterferenceof every higher priority taskr; to the
problem job within7;'s problem window[ay, ar, + Dy).
This interference is defined as the total length of all irdésv
within [ax, ar + Dy) during which 7, does not execute
(though it is ready) whiler; does. Since the problem job
is always ready to execute withiny, ar + D), tasks with
priorities lower thanr;, can never interfere with the problem
job. Moreover, because the global FP scheduling algorithn?
(without queue locks) isvork conserving[d4], there can '@
never be any idle processor when the problem job does not
execute. Therefore, if the sum of the upper bounds on allVi(Dx) = Ni(Dy) - Ci + min(Ci, Dy, + Di = Ci = Ni(Dx) - Ti)

Let's consider the interference caused by the execution of
tasks with priorities higher than,. This has been addressed
in the BL analysis [14]. They used each task’s maximum
workload during [ax,ar + Di) as an upper bound on
each task’s maximum interference durifig., ay, + Dy) to
estimate the schedulability of,.

The maximum workload of task; (r; € hp(k)) within
&, ax + Dy) can be calculated as:

higher priority tasks’ interference to task is no more than where De+ Dy — C,
m(Dy, — Cy) then all jobs ofr, will be schedulable. N;i(Dy) = L‘“f]
Compared to th&L analysis, the taskseks-CDW targets !
have two distinct differences. First, in our tasksets, sagith Based on Bertogna and Lipari's work, we get the follow-

priorities lower than task; can also interfere withy, within ing lemma.

its problem windowla, ax + Dy). This is because parts | emma 3. The contribution of the execution of tasks with
of the low priority tasks can be executed non-preemptivelypriorities higher thanr, to the total interference is no more
Second, some resource accesses can cause non-preemptibkn

spinning, which wastes computation time. Furthermore, be- O = Y min(Wi(Dy), Dy — Ck) (4)
cause of the non-preemptible sections, our modified global Ti€hp(k)

FP scheduling algorithm is no longer work conserving.wherehp(k) denotes the set of tasks with priorities higher
Therefore, we need a new definition of interference. than that ofry.

Definition 1. The total interferencelf) to the problem job Next, we study each of the 3 time interval sé\s, I';, and
(a job of taskry) within its problem windowWay., ax, + Dy) A to investigate what contributes to the total interference
is the total of any idle time, task execution time or spinning/; during each of them.

B. O — non-preemptively blocked priority task 7; non-preemptively accesses any resource
Block et al. [6] proved that by disallowing the migration Within [ak, ar + Dy).

of a job that is linked to a processor until it is unlinked, Next, we demonstrate how to calculabg, and 3; .
this job can only be non-preemptively blocked once at therjgyres[h andl6 illustrate the situations in whigh, and
beginning of its execution in the absence of any suspensiorbl?_k reach their maximum values respectively. 5% this
The maximum length of this non-preemptive blocking is thehéppens wheh,, and onlyb, is completely carried into the
Iong_e_st non-preemptible section of all the jobs with |°Werproblem window[ay, ay, + D) and ends at the deadline of
priorities. _ the carry-in job and then, all other jobs nfare blocked by
Based on Block et als work, we get the following lemma: ;, o+ their arrivals. Hence, the maximum number of complete
Lemma 4. The maximum length of the time interv@|, is: b executions within the problem windofay,, ax, + Dj) can
be calculated as follows:
Bk = (waj,j) (%)

{i,jlm; €l I}cl%\x-e i} ! !
3,5 T €lp(k)AT; ac(p]) Ti‘ | Ti | Ti ‘
wherelp(k) denotes the set of tasks with priorities lower r A\ @ @ E§
ai Di
\

task i

than taskry; ac(p;) denotes the set of tasks that access !
resourcep; and wy, ; denotes the total of thé; longest |

\

\

‘ task k
|p]| among all tasks using resourge. a ak+ D

SinceTk cannot run during_.)k’ |t iS trivial to prOVe the §§§ The longest critical section of tasks with priorities lower than k,
following lemma according to Definitiof 1. || The execution of task i
Lemma 5. The upper bound o®;’s contributions to the Figure 5. How to calculaté;
total interferencely, is m - By k. Ni(k) = LDk +£i - bkJ
[3

It should be noticed that we do not make any assumption .
about the cause @,.'s contribution to the total interference. Then,b; ;. can be represented as:

It may be caused by any task other than It may simply bix = Ni(k) - by, +min(be, Dy + D; — by — Ni(k) - T3)
be idle time. ' .
wheremin(b, Dy, + D; — by — N;(k) - T;) represents the
C. I'y, — unlinked carry-out part of the non-preemptive resource access.
Only four types of execution can contribute to the total | | ek
interference duringl'y, when taskr; is not one of the a a+ Dk
m highest priority ready tasks (unlinked). This includes { ;
the execution of tasks with priorities higher thap, the T | T | Ti |
spinning of tasks with priorities higher thag, the spinning @ﬁ taski

of tasks with priorities lower tham; and finally the non- t N

preemptive resource accesses of tasks with prioritiesrlowe

than 7. In this subsection, we derive only an upper bound A\ The worst-case total time a job oftask | acoesses resources
on the low priority tasks’ non-spinning contribution to the
total interference since all other contributions to thealtot
interference are considered elsewhere. Figure 6. How to calculatgs;

Other execution of task i

Lemma 6. During I'y, whenever a task; < Ip(k) is For 3, 1, the worst case happens whefs carry-in job’s
running non-preemptively, a task € hp(k) must be non- non-preemptive resource accesses and only those accesses
preemptively blocked by, whereip(k) (hp(k)) denotes the (with a total length of3;) are carried into the problem
set of tasks with priorities lower (higher) than task window [ag, ar + D) and the carry-in job completes at
Lemma 7. During T, the maximum amount of non- its _dead_llne. Then, all other jobs_oi run |mmed|_ately at
preemptive resource accesses introduced by tasks with prfheir arrivals and always make their non-preemptive resur
orities lower thanr;, is no more than: accesses at the beginning. Hence, the maximum number
. L P of complete 5; executions within the problem window
Ty = mln(‘ Z min(b; i, Dr—Cl), | Z min(G;,k, Dr—Clk)) lax, ax + Dy) is given by:
i€hp(k) i€lp(k)
. ®) ¢ oo Di+Di— B
whereb; ;, denotes the total time that a higher priority task Ni(k) = | T,]
7, can be non-preemptively blocked by resource access A]
(without any spinning) of tasks with priorities lower thap elshus’ﬁ“k is given by:
within [a, a4+ Dy); and j; ,, denotes the total time a lower Bik = Ni(k) - Bi + min(Bi, Dy, + D; — B — Ni(k) - T})

wheremin(8;, Dy + D; — 3; — Ni(k) - T;) represents the ~ where (m — 1) -z - n; — (”1)22& - 7; reaches its
carry-out part of the resource accesses. maximum VamM -m; whenz = m — 1. Therefore,

D. Ay — busy waiting we get the following lemma:

During Ay, processors other thm’s could be idle or Lemma 8. DUring A, the antributi_on to the total il_']terfer'
executing any task other than or spinning waiting for a fhn;r?_ that needs to be considered in our analysis is no more
resource. Irrespective of what these processors are daling, ' om2—3m+2
processors totally contributé - m to the total interference, Ak = Z (W - - 5 W) 8)
whereL denotes the maximum length 4f.. However, parts i
of this contribution may have already been considered in the Since the problem job of task, executes in time interval
previous subsections. If we lek;, = L - m represent the €, nothing contributes to the total interference to the
maximum contribution to the total interference during, problem job in this time interval. Therefore, summing the
significant pessimism may be introduced to our analysis. Iterms in LemmaEIZ] £] &] 7 afll 8, gives an upper bound on
this subsection, we demonstrate how to improve upon thishe total interference to the problem job (a job of tagk

value of A,. during its problem windowayg, ay + Dy):
According to the definition of\;, task 7, must be spin-
ning waiting for a resource that has been locked by another I <m - By + i + 1 + Ag + Oy 9)

task. DuringAy, it is likely that some other tasks are also) _
spinning waiting for the same resource and their requests fd*PPIYing TheoreniP gives theorefh 3.

this shared resource are queued befareAs all possible Theorem 3. A tasksetr is schedulable on a multiprocessor
spinning time has been consideredlift, ignoring some system with resources shared among tasks according to the
spinning time during, may prove useful in calculating a qgueue lock algorithm if for each; € T,

less pessimistic value fah.

First of all, for a request by, for resourcep; that is m - By + T + i + A + @, <m(Dy — Cx) (10)
blocked by some other task, suppose that it is blocked by gecause this analysis is based on the new spinning time
2 resource accesses. The longest duration of this blockingwde"ng approach introduced in sectibmIV-B, it reduces
IS wyj and henpe thg maximum _contrlbutlon to the tOtalpessimism when analyzing low priority tasks compared
interference during this blocking is: - w, ;. In order 1o \ith the existing analyses using execution time inflation.
make this b_lock|_ng lastv,, ; time umts_, the total amount However, Ip-CDW performs poorly at high priorities 9]
of computation time wasted on spinning by alLP{Ocessor%ecause it always assumes that all tasks contribute to the
during this blocking must be at least-w,; —>7,_1 Wy.j total spinning time. By contrast, existing analysis workailw
(grey area in figurgl7). As the minimum total spinning time ¢, high priority tasks since only a few tasks need to inflate

during this blockingz - w;. ; _Z;:i wy,; Must have already iheir execution times in such cases. A detailed comparison
Igeen_con5|dered i, and allx resource accesses within this a1 be found in [9]. In order to make the comparison fair,
time interval must have also been consu;lgge@m weonly e use theBL analysis as the basis of bolp-CDW and
need to considefin —1)-wy,j —aws,;+3 2, Wy = (M= he example of the execution time inflation approach. The
1—2)-w,;+ > o_) w,; When estimating the contribution existing analysis example is a simple use of Bieanalysis

to the total interference during this time interval. on tasksets modified according to secflonIV-A. This analysi
— is referred to asVIA in the rest of this paper.

Therefore, it is necessary to combine existing analysis

with Ip-CDW to obtain good results at all priorities. The

task1 NN\ . .
o2 &&S spiming fme combination of WIA and Ip-CDW (referred to asn-CDW
. \- m resource access time where “m” stands for mixed) analyzes the schedulability of
B\ ot Conifioution to tasks one by one in descending order of their priorities. At
* A total interference
§§ - during Ak each priority, it first uses th&VIA analysis and if it fails,

task4
task5 J

then thelp-CDW analysis is used to check schedulability.

I

W ; Accordingly, algorithmm-CDW dominates bothWVIA and
_ Ip-CDW. As will be seen in sectiof VI and][9], in many ex-
Figure 7. How to calculatehy, periments m-CDW significantly outperforms both analyses
It is straightforward to prove: of which it is composed.
a1 2 VI. EVALUATIONS
(z+1)°—(xz+1)
—1—2) Wy, i < (m=1)-z-n;— 0y _ _ .
(m—1-z)w 'J+Z Wy.g < (m=1)-@n; 2 K& In this section, we empirically compare the performance

y=1

(7) of WIA, Ip-CDW and m-CDW Because Bertogna and Li-

pari's BL analysis|[14] does not consider any resource shar- 0; %éwx T R-CDW —— |
ing and all other analyses are derived fronBit, dominates S ”ﬂ%’l‘,’\\’ T
all other analyses discussed in this paper. Therefore, we us £ 07 % wBL —8
the performance oBL as a reference for the evaluation of g 06 X 8

other analyses. Note that due to space limitations, only a g g'i: % % gt

few representative results are shown in this paper. See [9] D gal T 9

for a comprehensive evaluation. First of all, we present the 0.2t k! X DDD
details of the experiment setup. 0.1 i, e S by

0
1 12141618 2 22242628 3
Taskset utilization

A. Methodology

Our experiments were conducted on randomly generated

-) . Figure 8. m-CDW vs WIA on 4 processors when task number2is
tasksets with variable parameters. Such parameters mclud

the total number of processors, the priority assignment 09l
policy, the total utilization of each taskset, the number of 0.8}
tasks in each set, the maximum number of resource g o7y
accesses in any job of any tagk’*"¢ as well as the upper a g'g I
(C'S“*) and lower ('S'*) bounds on the randomly generated S o4l
longest critical section of every resource accessing task. ? o3}
All experiments assume that only one resource exists. The 0.2
number of resource accessgs(wherej is constant) in any O'é’ _ BL —a—
job of taskr; is randomly generated betwe@rand/?°v"?, 2 24283236 4 44485256 6
This process is also subject to another restriction, which Taskset utilization

. . bound . .. L. . g
requ|reszi qj;f = % This restriction is introduced to Figure 9. m-CDWvs WIA on 8 processors when task number2is

reasonably constrain the experiments and to make different =~]
tasksets comparable. utilisation1.6, m-CDWhas a success rate arourich while

The longest critical section of task, which is denoted as the WIA analysis can only recognise aroungls of all the

|pa_‘| (wherej is constant), has a uniform distribution betweenandomly generated tasksets as schedulable. Intergstingl
Cigub and C'S™. Suppose3™’ = |p!| - 4. Then, the worst- the relative performance oh-CDW compared againstVIA

case total time a job of task spends on resource accessing,'€Mains very good even whém-CDW can barely recognise

denoted ag3;, has a uniform distribution betweeg*® — 3 schedulable tasksets by itself.
1p?]) - 0.4+ |p]| and3“t. The coefficien0.4 is configurable Next, we change the number of processorsito= 8
and it controls how closg; is to 3“0 and keep all other parameters unmodified. As illustrated by

The total utilization of our tasksets ranges betweemd ~ figure[d, the performance gap betweerCDW and WIA
m. Task periods in each set have a log-uniform distributiord™oWs larger andp-CDW improves a lot in this case.
between2000 and 25000. The utilisation and hence worst- N the next experiment, we study, in more detail, the
case execution time of each task is generated according {81Pact of taskset size on the performance of each schedula-
UUnifast-Discard[[8]. Deadlines have a uniform distribu- Pility analysis. First, we assume tasks execute on & 4
tion between the worst case execution times and the periodBrocessor system (figuie]10). The number of tasks in each
For each experiment, we randomly genera:000 taskset is varied betweeﬁ) apd 25. The tote_ll uF|I|sat|on
tasksets for each configuration (including all the above®f €ach taskset tested in this experiment is fixec2.at
parameters) and record the number of these tasksets thiatS' and C'S* are set to5 and 20 respectively. In order

are deemed schedulable by each analysis. to prevent any change to the total utilisation dbedigated to
resource accesses, this experiment §jg)/ = £ 30
B. WIA vsIp-CDW vs m-CDW andpbound = 5.

First, am = 4 processor system is evaluated. The number Thez axis in figurdZID denotes the number of tasks in each
of tasks in each taskset is set2®. ¢y*°ud 'S andCS“ taskset. The axis shows the success rate of each analysis.
are set tas, 10 and25 respectively. Figure[ID clearly shows the performance gap betwmen

Figure[® depicts the performance WIA, Ip-CDW and CDW/Ip-CDW and WIA grows as taskset size increases.
m-CDW under the DkC' priority assignment policy[[19]. Next, we change the number of processorsrto= 8 and
The z axis in this figure denotes the total utilisation of eachadjust the total utilisations of tasksets4oThis experiment
taskset. They axis shows the success rate of each analysislso sets) . w{ = w but it changes)?*"? to 10.
(which is the number of tasksets deemed schedulable by ahs illustrated by figurd_11, these changes show a similar
analysis divided by the total number of tested tasksets, i.@performance gap betweem-CDWIp-CDW and WIA as
20000 in our experiments.). As can be seen in this figure, abbserved in the previous experiment.

REFERENCES

[1] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inhenita
protocols: An approach to real-time synchronisatidiEE
ToC, vol. 39, no. 9, pp. 1175-1185, 1990.

[2] T. Baker, “Stack-based scheduling of realtime procgsse
Real-Time Systemsol. 3, no. 1, pp. 67-99, 1991.

[3] R. Davis and A. Burns, “A survey of hard real-time schedul
ing for multiprocessor systemsACM Computing Surveys
to appear preliminary version available from http://www-

%0 12 14 16 18 20 22 o4 users.cs.york.ac.uktobdavis/.

Task number [4] R. Rajkumar, L. Sha, and J. Lehoczky, “Real-time synehro
nization protocols for multiprocessors,” iRroceedings of

Real-time Systems Symposjut88, pp. 259-269.

Success rate

Figure 10. m-CDWvs WIA whenm = 4 and total utilisation i2.0

R— s o [5] P. Gai, G. Lipari., and M. Natale, “Minimizing memory
09l utilization of real-time task sets in single and multi-peesor
0.8F) systems-on-a-chip,” inProceedings of Real-time Systems
L 07F e Symposium2001, pp. 73-83.
5 06" [6] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson,
g 05¢ “A flexible real-time locking protocol for multiprocessgrs
3 04L in Proceedings of RTCSR007, pp. 47-56.
031 [7] B. Brandenburg, J. Calandrino, A. Block, H. Leontyevdan
0.2 J. Anderson, “Real-time synchronization on multiprocesso
0‘3 | BL-we- To block or not to block, to suspend or spin?"Rmoceedings
10 12 14 16 18 20 22 24 of RTAS 2008, pp. 342-353.
Task number [8] U. Devi, H. Leontyev, and J. Anderson, “Efficient synchro
) o nization under global EDF scheduling on multiprocessars,”
Figure 11. m-CDWvs WIA whenm = 8 and total utilisation ist.0 Proceedings of ECRTR006, pp. 75-84.

[9] Y. Chang, R. Davis, and A. Wellings, “Improved schedula-
bility analysis for multiprocessor systems with resourcars
ing,” University of York, Tech. Rep. YCS-2010-454, 2010,
http://www.cs.york.ac.uk/ftpdir/reports/2010/YCSMBCS-

In this paper, we provided a significantly improved 2010-454.pdf.

schedulability analysis for multiprocessor real-timetegss ~ [10] S. Dhall and C. Liu, “On a real-time scheduling problem,
that allow resources to be shared among tasks. This ef- ~Operations Researctvol. 26, no. 1, pp. 127-140, 1978.
fort was made in particular for global FP multiprocessor(11] ?- Ifjasv_var_?n and B.tAndersl?on, Resourcche sdhal"”ng”l:l?naleb
. . IXea-priority preemptive multiprocessor scheauling, Hro-

s;:]hedcl;lmg that reqmlrerz]s thﬁ use of (lquekug locks to p_rotelct ceedings of RTS2009, pp. 377-386.
share resour.ces. Alt OUQ_ queue O_C IS a VeTY simp ‘[3’12] T. P. Baker, “Multiprocessor EDF and deadline monatoni
resource sharing protocol, it is effective and efficient for schedulability analysis,” inProceedings of the 24th IEEE
many practical industrial applications [7]. Real-time Systems Symposj2003, pp. 120-129.

To the best of our knowledge, all previous multiprocessod13] S. Baruah, “Techniques for multiprocessor global stfie-
schedulability analyses that consider the use of queueslock Pility analysis,” in Proceedings of the 28th IEEE Real-Time

. . . . Systems Symposiu2007, pp. 119-128.
take the worst-case execution time inflation approach t 14] M. Bertogna, M. Cirinei, and G. Lipari, “Schedulabjit

VII. CONCLUSIONS ANDFUTURE WORK

modeling time_ wasted on spinning. It has_ bge_n shown in thi analysis of global scheduling algorithms on multiprocesso
paper how this approach introduces a significant amount of platforms,” IEEE Transactions on Parallel and Distributed
pessimism, especially at low priorities. This motivated th Systemvol. 20, no. 4, pp. 553-566, 2009.

development of a new approach to modeling spinning. I{15] N. Guan, M. Stigge, W. Yi, and G. Yu, "New response
ignores those resource accesses that can never run ireparall ~ time bounds for fixed priority multiprocessor scheduling,

. Proceedings of RTS2009, pp. 387-397.
with others. Because this new analy§sDW, is designed [16] S. Baruah and N. Fisher, “Global fixed-priority schedglof

specifically to eliminate spinning related pessimism at low" "~ abitrary-deadiine sporadic task systems,Aroceedings of
priorities, it needs to be combined with existing analysis the 9th ICDCN 2008, pp. 215-226.

based on worst-case execution time inflation to achieve good 7] S. Baruah and J. Goossens, “The EDF scheduling of sjmorad
performance at all priority levels. task systems on uniform multiprocessors,”Rroceedings of

It remains an open question how to apply the intuition the 29th RTSS2008, pp. 367-374.

. . . . [18] R. Davis and A. Burns, “Priority assignment for globalefil
behind this work to resource sharing protocols that comblné priority pre-emptive scheduling in multiprocessor reede

gueue locks and suspension-based locks (EMj.P). An- systems,” inProceedings of RTSR009, pp. 398—409.
other issue we intend to solve is nested resource access¢®] B. Andersson and J. Jonsson, “Fixed-priority preewspti
So far, they are either disallowed in the proposed analyses multiprocessor scheduling: to partition or not to partitfo

or assumed to share a common lock. in Proceedings of the RTCS2000.

	Introduction
	Related Work
	Multiprocessor Resource Sharing
	Schedulability Analysis for Independent Tasks

	Model, Terminology and Notation
	Impact of Queue Locks
	Pessimism in Current Approaches
	A Less Pessimistic Modeling of Spinning Time

	Schedulability Analysis lp-CDW
	Total Workload in the Problem Window
	k --- non-preemptively blocked
	k --- unlinked
	k --- busy waiting

	Evaluations
	Methodology
	WIA vs lp-CDW vs m-CDW

	Conclusions and Future Work
	References

