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DESIGN IN DYNAMICS OF PLANAR FRAME STRUCTURES UNDER LARGE DISPLACEMENTS AND ROTATIONS
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Size, shape, and drive optimization procedures are combined with an energy-conserving time integration scheme for the dynamic analysis of planar geometrically non-linear frame structures undergoing large overall motions. The solution method is based on the finite element formulation employing the classical displacement-based planar beam finite elements described in an inertial frame. Finite axial, bending and shear strains are taken into account. If the system is conservative, the energy and momenta conservation in the discrete system during motion is guaranteed. Size, shape, and drive design variables are introduced into the model. Shape parameterization is achieved by the design element technique, utilizing Bezier patches. The sensitivity analysis is performed by the discrete approach and the analytical

INTRODUCTION

Shape or control optimization of flexible dynamic systems is a developing field of science. Lighter, faster and more flexible robot manipulators, which use less power to operate, and tall buildings and towers which are more resistant to dynamic loads such as wind or earthquake, are just a few among many areas of application.

Comprehensive studies on optimization of structural systems with transient dynamic response began in the 1970s. A thorough review of the subject, focusing on the optimization of structures modeled by linearized equations, combined with gradient-based optimization algorithms, is given in a recent report by [START_REF] Kang | A review of optimization of structures subjected to transient loads[END_REF]. In contrast, non-linear models are rather rarely addressed in optimization. This is due to a complicated structure of non-linear governing equations which require reliable numerical algorithms and a rather large computational effort for both the response analysis and the sensitivity analysis. This gave the push to improve gradient-based optimization methods and sensitivity analyses, see, e.g. (Cardoso and[START_REF] Cardoso | Design sensitivity analysis of nonlinear dynamic response of structural and mechanical systems[END_REF][START_REF] Arora | Explicit and implicit methods for design sensitivity analysis of nonlinear structures under dynamic loads[END_REF]. [START_REF] Kulkarni | Sensitivity analysis of the nonlinear dynamic viscoplastic response of 2-D structures with respect to material parameters[END_REF] 3 sensitivity calculation of 2D viscoplastic structures with respect to material parameters. The calculation of approximate sensitivities in explicit time-integration scheme of dynamics is addressed by [START_REF] Stupkiewicz | Approximate response sensitivities for nonlinear problems in explicit dynamic formulation[END_REF]. The design sensitivity analysis and the gradient-based optimization of transient dynamics of elastoplastic structures is addressed by Cho andChoi (2000a, 2000b) for the case of size and configuration design variables. These works employ a continuum-based design sensitivity, which simplifies the implementation of the sensitivity in existing FEA software packages. Utilization of a mesh-free analysis method was proposed by Kim and Choi (2001) in order to perform the response and shape sensitivity analysis for the optimization of elastoplastic structures under impact with a rigid surface. A further insight into optimization of elastoplastic structures is given in [START_REF] Sousa | Optimal cross-section and configuration design of elastic-plastic structures subject to dynamic cyclic loading[END_REF]) and [START_REF] Pedersen | Crashworthiness design of transient frame structures using topology optimization[END_REF]). The latter addresses topology optimization of elastoplastic 2D frames. Non-linear elastic models are frequently employed in the optimization of flexible manipulators. The article by [START_REF] Okubo | Control of nonlinear, continuous, dynamic systems via finite elements, sensitivity analysis and optimization[END_REF] describes a general methodology to design open loop controllers for non-linear dynamic systems. This methodology employs the displacementbased finite elements, and the Newmark time integration scheme.

The reduction of material generally leads to more flexible systems possibly deforming far out of the linear regime; consequently, geometrically non-linear models are required. The present work employs the geometrically exact theory of [START_REF] Reissner | On one-dimensional finite-strain beam theory: The plane problem[END_REF]. Optimization of the shape and/or drive of a mechanism/structure may be done quite efficiently, if adequate shape parameterization is employed; in this work Bezier patches are used. In contrast to Cho and Choi (2000a) and Kim and Choi (2001), the design sensitivity is here performed on the discrete equations. This enables the use of software packages for the automatic analytical differentiation and code generation, which substantially speeds up the determination of both the sensitivity coefficients and the tangent stiffness matrices. A similar approach to 4 optimization of elastic manipulators was also adopted by [START_REF] Vohar | Implementation of an ANCF beam finite element for dynamic response optimization of elastic manipulators[END_REF]. However, in contrast to this work, in [START_REF] Vohar | Implementation of an ANCF beam finite element for dynamic response optimization of elastic manipulators[END_REF] the focus was on the implementation of an ANCF beam finite element in a gradient-based optimization process. ANCF finite elements are quite different from standard finite element types and require special implementation procedures.

In non-linear dynamics, stability of the numerical time integration is still a key issue [START_REF] Crisfield | Dynamics of 3-D co-rotational beams[END_REF][START_REF] Gams | Energy conserving integration scheme for geometrically exact beam[END_REF][START_REF] Ibrahimbegovic | Energy conserving/decaying implicit timestepping scheme for three-dimensional beams undergoing finite rotations[END_REF][START_REF] Kuhl | Constraint energy momentum algorithm and its application to non-linear dynamics of shells[END_REF][START_REF] Kuhl | Energy-conserving and decaying algorithms in non-linear structural dynamics[END_REF][START_REF] Sansour | On the design of energy-momentum integration schemes for arbitrary continuum formulations. Applications to classical and chaotic motion of shells[END_REF][START_REF] Simo | Non-linear dynamics of three-dimensional rods: exact energy and momentum conserving algorithms[END_REF]. Stability is particularly problematic, when the governing system of differential equations is stiff, a situation which is very often met in structural and mechanism analyses, where axial and bending stiffnesses are very different or if there are sudden changes in loads or drives. Due to the unpredictable solution path during the iteration process, very different stiffnesses might be encountered in every iteration of the optimization; that is why the time integration scheme should be unconditionally stable.

The stable implicit algorithms for the non-linear dynamics must satisfy the stability criterion of energy conservation/decay. Roughly three main-stream groups of algorithms exist aiming to do so [START_REF] Kuhl | Energy-conserving and decaying algorithms in non-linear structural dynamics[END_REF]. The first group deals with the numerical dissipation algorithms. These algorithms do not always guarantee dissipation of energy in the non-linear regime, and energy in a time step can sometimes be created instead of dissipated [START_REF] Crisfield | Dynamics of 3-D co-rotational beams[END_REF]), hence they are not well suited for the stiff problems. The second group of algorithms uses enforced constraint methodology, where energy and momenta conservation requirements are introduced via the Lagrange multiplier method. The approach exactly satisfies the requirements and hence guarantees perfect conservation, but problems with stability may still emerge [START_REF] Kuhl | Constraint energy momentum algorithm and its application to non-linear dynamics of shells[END_REF]. The third group of algorithms, termed the Energy Momentum Methods (EMM), is based on algorithmic conservation, i.e. the solution [START_REF] Simo | Non-linear dynamics of three-dimensional rods: exact energy and momentum conserving algorithms[END_REF]. Stability of the EMM algorithms is generally better than the one of the previously mentioned algorithms [START_REF] Ibrahimbegovic | Nonlinear dynamics of flexible beams in planar motion: formulation and time-stepping scheme for stiff problems[END_REF].

In the present article, a newly developed variant of EMM method [START_REF] Gams | Energy conserving integration scheme for geometrically exact beam[END_REF]) is used in optimization problems. This method, described in detail in [START_REF] Gams | Energy conserving integration scheme for geometrically exact beam[END_REF]) and briefly in Section 2, assumes the incremental form of the kinematic equations in calculating the update of strains.

The outline of the article is as follows. Section 2 shortly describes the finite-element formulation and the energy-conserving time-integration scheme. Section 3 sets the optimization problem and the concepts of an efficient shape design. In Section 4 the solution process is described; special attention is paid to the implementation of the time integration scheme [START_REF] Gams | Energy conserving integration scheme for geometrically exact beam[END_REF]) into the optimization algorithm. Four numerical examples, demonstrating the applicability and the efficiency of the presented approach, are analyzed in Section 5.

GEOMETRICALLY EXACT BEAM FORMULATION AND ENERGY CONSERVING TIME-INTEGRATION SCHEME

The planar Reissner beam [START_REF] Reissner | On one-dimensional finite-strain beam theory: The plane problem[END_REF]). An initially straight planar elastic beam is considered. The hypothesis of planar cross-sections holds, with the axial, shear and bending strains being taken into account. The plane sections remain plane but not necessarily perpendicular to the axis of the deformed beam.

Kinematics. The kinematic equations of the beam are given by 1 (

)
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where ε ε ε ε is the strain vector, u the displacement vector and x the initial position vector of the centroid axis. Λ is the rotation matrix and 1 c is a given vector constant:
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ε , γ and κ are axial, shear and bending strain along the beam axis, respectively; u and v are the x and y components of the displacement vector of the axis, while ϕ is the rotation of the cross-section. The prime ( ') denotes the differentiation with respect to s .

Time integration and energy conservation. Energy conservation of the time-integration scheme is possible only in conservative systems and is here achieved by employing midpoint approximation rules [START_REF] Ibrahimbegovic | Nonlinear dynamics of flexible beams in planar motion: formulation and time-stepping scheme for stiff problems[END_REF], 2002[START_REF] Simo | Non-linear dynamics of three-dimensional rods: exact energy and momentum conserving algorithms[END_REF] in conjunction with the kinematic relations in the rate form. For details, please refer to [START_REF] Gams | Energy conserving integration scheme for geometrically exact beam[END_REF] or for general continuum formulations to [START_REF] Sansour | On the design of energy-momentum integration schemes for arbitrary continuum formulations. Applications to classical and chaotic motion of shells[END_REF]. The rate form implies that strains at t n+1 are calculated in additive manner:
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Here the subscript m denotes the midpoint time configuration at / 2

m n t t t = + ∆
. W is a constant matrix, described in the sequel.

The algorithmic midpoint values of displacements and strains are calculated by the trapezoidal rule:

1 1 ( ) / 2, ( ) / 2. m n n m n n + + = + = + ε ε ε u u u (4)
The governing equations. 
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Here N is the vector of the cross-sectional stress resultants in the local basis ( n e , t e , z e ) (Figure 1), p is the vector of external distributed loads (given per unit length of the undeformed axis), ρ c is the diagonal matrix of the cross-sectional inertia properties, P is the vector of the generalized boundary loads and Ψ is the vector of the generalized boundary displacements:
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When material is elastic and homogenous, N takes the form:

( ) diag ,
, .

E S

EA GA EI = = N c ε ε E and G are elastic and shear moduli, A and S A are the area and the shear area of the crosssection of the beam, and I is its moment of inertia; ρ is density of material; δ denotes the variation; a superposed dot denotes the differentiation with respect to time.

Spatial discretization. The spatial discretization employs Lagrangian polynomials ( ) i P s of an arbitrary order K to interpolate the displacements and rotations and their variations:
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is the vector of discrete nodal displacements. Upon the discretization of the variations δ m u in Equation ( 5), one obtains (subscript m at the discrete variations is omitted for brevity reasons) ( ) 
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the matrices are assembled into a global mass matrix M. After considering the arbitrariness of the variations, Equation ( 7) can be written in the form of the ordinary differential equation of the 2 nd order in time
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where G is a global force vector, assembled from the element force vectors i G :
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is a scalar and that the generalized boundary loads m P and/or the degrees of freedom could be prescribed at nodes 
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Problem formulation

Optimization of dynamic systems can loosely be described as seeking a combination of geometrical, material and loading data from within an allowed set, so that some specific property of the system at some specific time is minimized or maximized, usually in the presence of time-dependent constraints. Geometrical, material and loading data are made dependent on a group of variables, assembled in the vector b , termed the design variables. A non-linear mathematical programming problem now reads
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Here 0 f is a scalar objective function at an arbitrary time station; , 1, , 

i f i C = K are constraints,

Types of the design variables employed in the formulation

Size design variables. In this work, the cross-sectional dimensions (such as flange width or thickness) are assumed to vary linearly along the beam element. Let (

( ) ( ) b b b I I A A A A s s = = = , , . ) 
Across the element boundaries, the 0 C continuity of the cross-sectional dimensions can easily be achieved by making the corresponding end-values dependent on the same design variable.

Shape design variables. To enable efficient shape variation description, the design element technique is utilized in the way as presented in [START_REF] Kegl | Shape optimal design of structures: an efficient shape representation concept[END_REF][START_REF] Kegl | Parameterization based shape optimization: theory and practical implementation aspects[END_REF] and [START_REF] Kegl | Shape optimization of truss-stiffened shell structures with variable thickness[END_REF].

Planar Bezier patches are employed as design elements. Thus, each design element is defined by I J × control points, whose positions are defined by the vectors ij q . Points in the design element are related to their global position in the global coordinate system by the mapping 1 1

I J I J i j ij i j B B = = = ∑∑ r q .
r is the position vector with respect to the global coordinate system, I i B and J j B are the i th and j th univariate Bernstein blending polynomials defined in unit space. By defining the position of the beam element in the domain of the design element and by making the control point positions ij q design-dependent, one gets a design-dependent shape of the finite element mesh. Thus, the position vector x of a point on the centroid axis of the beam becomes designdependent, i.e.

( )
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Actuation design variables. By introducing the design variables into the actuating functions, it is possible to determine optimal actuating conditions [START_REF] Ibrahimbegovic | Optimal design and optimal control of elastic structures undergoing finite rotations and deformations[END_REF]), e.g. with 11 the aim to minimize oscillations or maneuver time of a flexible robot. For the reasons given in [START_REF] Vohar | Implementation of an ANCF beam finite element for dynamic response optimization of elastic manipulators[END_REF], a Bezier function is selected as a general actuating function. In contrast to [START_REF] Vohar | Implementation of an ANCF beam finite element for dynamic response optimization of elastic manipulators[END_REF], however, a 5th order function χ is adopted here, so that one has
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where i B is the corresponding Bernstein blending polynomial. Since its parameterization is not very convenient for practical optimization tasks, special mappings are introduced as follows: at first, the defining interval [ ]
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where ϑ ∈ [0,1] represents a shape parameter, introduced to improve the adaptability of the curve during optimization. It shifts the 'interior' of the function to the left or right, without influencing any of its end points. Secondly, the 'control values' i q are defined as follows ( ) ( ) 
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To further increase flexibility, several curves may easily be combined into a single curve, exhibiting 1 C continuity. This can be achieved by making the corresponding boundary parameters dependent on the same design variable.

SOLUTION PROCESS

Response and sensitivity analysis

The response analysis involves solving the governing equations of the mechanical problem, in our case Equation ( 9), and evaluating

C i f i , , 0 , K =
of the optimization problem, see [START_REF] Michaleris | Tangent operators and design sensitivity formulations for transient nonlinear coupled problems with applications to elastoplasticity[END_REF]. The most difficult part is the solution of Equation ( 9), which has to be discretized in time. After the implementation of the midpoint scheme has been performed, the only unknown variables are the discrete displacements 1 n+ U . Newton's method is used to solve the corresponding equations.

For the evaluation of the governing equations, the known values of n U , n U & and n ε from the previous time station are needed. As discussed in Section 2, the specialty of the present approach is the use of the rate form of the kinematic equations, Equation (3). This fact has to be taken into account in deriving the linearization of the governing equations.

Once the unknowns 1 n+ U are calculated, the corresponding velocities

1 + n U &
are obtained by the midpoint rules, i.e.
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The most difficult part of the sensitivity analysis is the computation of the derivatives of 9) with respect to b . By taking into account the design variable types and the dependencies ( 14), ( 15) and ( 16), it follows from Equation ( 9)
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Similarly, according to Equation ( 10), the derivatives

U G ∂ ∂ and b G ∂ ∂ are assembled from ( ) ( ) ( ) dz P P P P P i m m i m m i m T m i m m i m T m i                   + ∂ ∂ + + ∂ ∂ + ∂ ∂ +    + + ∂ ∂ = ∂ ∂ ∫ 2 ' 2 ' ' 1 0 2 ' ' c x U u W c x u U W U N c x u W U N U G Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ (20) and ( ) ( ) ( ) dz P d d P P d dL P P P i m m i m m i m T m i T m i m m i m T m i                   + + + ∂ ∂ + ∂ ∂ +    - + + ∂ ∂ = ∂ ∂ ∫ 2 ' 2 ' ' 1 0 2 ' ' c b x u W c x u b W b N b p c x u W b N b G Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ . ( 21 
)
After the midpoint rules and its derivatives are inserted into Equations ( 20)-( 21), the sensitivity Equation ( 18) represents a linear system of equations with the unknown displacement derivatives Due to the incremental-type of the strain update, the strain derivative with respect to the design variables is calculated as
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Here, d d n ε b is given from the previous time station, while the remaining terms still have to be computed.

The analytical, exact linearization is carried out symbolically by the computer employing the automatic differentiation software package AceGen [START_REF] Korelc | Automatic generation of finite-element code by simultaneous optimization of expressions[END_REF].

Optimization using adjustable approximation with an additive convex term

If the functions defined in Equations ( 11) and ( 12) are analytically differentiable with respect to b , the optimization problem can often be very efficiently solved by gradient-based methods of mathematical programming. This exactly agrees with the situation in the present case. Therefore, the gradient-based convex approximation optimization technique (Kegl andOblak 1997, Kegl et al. 2002) is here used to solve the problem, defined in Equations ( 11) and

(12).

The formulations utilize an optimizer based on adjustable approximation with an additive convex term. Whilst solving the optimization problem, the arbitrary functions of the optimization problem i f are approximated by their corresponding approximations

i k g at design points K , 2 , 1 , 0 , = k k b
, generated during the optimization process. The left hand superscript k denotes the iteration number of the optimization loop.

The optimizer employed the following form for the approximate functions ( )

1 max 1 , k k k ij ij ij α β α β α ε - = + - % ,
where ε% is a small numerical positive value, which assures that 0

> ij k α , and [ ] 1 , 0 ∈ β is a
kind of a damping parameter, which assures that the gradient history (information from previous design points) is also taken into account. This additionally stabilizes the history of the conservativeness parameters ij k α .

NUMERICAL SIMULATIONS

In this section four numerical examples are analyzed to demonstrate the performance of the present optimization approach. The finite elements with the quadratic interpolation of displacements were used. In order to alleviate locking, reduced numerical integration is used for the stiffness terms and full integration for the inertia terms. The complete finite-element computer code was produced within the AceGen [START_REF] Korelc | Automatic generation of finite-element code by simultaneous optimization of expressions[END_REF]. Load moving robot arm simulations were inspired by articles by [START_REF] Moallem | uk Engineering Optimization improved vibration properties[END_REF] and [START_REF] Kane | Dynamics of a cantilever beam attached to a moving base[END_REF].

Load moving robot arm: geometry optimization

This example addresses the task of moving a mass using a flexible robot arm. The relevant data are presented in Figure 3 and Table 1. The 5 m long hollow rectangular steel robot arm is loaded with a 250 kg point mass at the free end. The arm is rotated about the outof-plane axis at the pinned end for an angle of π/2 in 1 0.5 s t = ; the motion is driven by the prescribed rotation ( ) t ϕ about the pinned end of the beam.

The robot arm is modeled by the finite-element mesh consisting of 8 elements of equal length. Each element has linearly varying width and height of the cross section along the element, whereas the wall thickness is constant. Hence, each element has five design variables, i.e. two for width and height at each of the two ends, and one for the wall thickness. The entire operation of moving the mass is performed in a horizontal plane on an imaginary frictionless surface. Hence the gravity acts only perpendicularly to the planar movement of the arm and has no effect on it. The mass of the beam and the mass of the weight act as inertial masses.

The optimization task is defined as: move the mass in such a way, that the remaining oscillations after 1 0.5 s t = , when the arm is in the final position, are minimal and use the least amount of material possible.

The first issue is the choice of the objective function. The objective function could be the amount of material or the mechanical energy (sum of kinetic and potential energy) of the arm at time t 1 ; the latter would result in the robot arm standing still at t 1 . Alternatively, the problem could be treated as a multi-objective one and have a little bit of both. Since the main objective is that the system stops at 1 t , the mechanical energy has been chosen to be a minimum at 1 t . Any multi-objective approach would be a compromise between enforcing stopping and minimizing the volume, and would thus leave us with a more oscillating arm at 1 t .

This seemingly leaves the demand regarding the minimal amount of material unaddressed. By choosing the mechanical energy to be the objective function, yet setting no constraint regarding the volume, the cross-section could expand uncontrollably. In order to prevent this, a constraint on volume of the material is set.

In addition to the volume constraint, two further constraining criteria are imposed. They limit the maximal offsets of the tip of the beam at 1 t to be less than 0.01 m and 0.001 m for the x and y components of displacement, respectively. These criteria might seem redundant; yet they proved helpful in directing the iteration procedure to the desired solutions.

The strategy of the solution is (i) to set some relatively large value for the maximal bisection-like method is used to determine the minimal amount of material at which the optimization is successful. The optimization was considered to be successful, if all the constraints were met and the value of the objective function was less than 1 J.

As the total mechanical energy of the system is the sum of energies of the beam, beam Π , and the point mass, mass Π , it could be adopted as the objective function (approach A in Figure 4). This was not the approach employed here, however. Instead, the mechanical energy of the beam and the point mass are treated separately, as if each would be an objective function by itself. The minimization of the two functions was carried out by constraining both of them to a new design variable new b , which assumed the role of the objective function (approach B in Figure 4).

The volume of the material and the mechanical energy of the initial design at time 1 t are 3 0.01638 m and 4 1.79 10 J × , respectively. On the other hand, the corresponding values for the optimized design are 3 0.01251428 m and 0.0516 J. The shape of the optimized design in 2D view is shown in Figure 5. The width and height of the cross-section of the optimized robot arm are the largest at the pinned end, and decrease to the minimal allowed dimensions near the free end. The optimal wall thickness of the cross-section is found to be the minimal allowed value (5 mm). A true-scale 3D axonometric view of the optimized arm is shown in Figure 6.

The optimized system's energy comes to a minimum value at 1 t and remains unchanged for the rest of the analysis, which lasts 0.75 s . This is to be contrasted to the initial design, which oscillates violently about the anticipated final position, as can clearly be seen in Figure 7. The driving torque of the initial and the optimized design solutions, corresponding to the prescribed rotation of the pinned end, is shown in Figure 8.

The results for the mechanical energy, shown in Figure 9, confirm theoretical deductions of energy conservation. The energy of the system is conserved after nonconservative loads are removed from the system.

Load moving robot arm: drive optimization

This time the cross-section of the arm is taken to be constant along the entire length of the robot arm ( / / 0.1/ 0.2 / 0.005 w h t = m), and not subjected to optimization. A driving function is sought that results in the arm stopping dead at t 1 . The prescribed time-function of the rotation of the drive is now a six point Bezier curve. The first two and the last two points of the curve are fixed to assure zero angular velocity at 0 t = s and at 1 0.5 t = s. The remaining two points are the design variables. The objective function is the mechanical energy at time 1 0.5 t = s, with the constraining criteria remaining as in Section 4.1. The energy of the optimized system at 1 t is about 2 J, i.e. very much less than the maximal energy of the system, which is roughly 5 1.9 10 × J at 0.25 t = s.

Load moving robot arm: time optimization

This numerical example attempts to find the driving function that minimizes the time needed to move the mass. Thus the objective function is the lifting time. In addition, a constraint is added, which sets the upper limit for mechanical energy at the final position to be Note that the rigid arm is a possible solution for a dead-stop type of a robot arm. Initially the flexible arm lags behind the rigid-arm solution but the situation reverses for t > 0.224 s, as the flexible bar overtakes the rigid-arm. The two solutions agree completely for 1 t t > .

Jerk resistant elastic steel frame

The purpose of this numerical example is to show the application of the design element strategy in the structural analysis. The structure under investigation is a seven storey, three bay steel frame (Figure 12). The height of the upper storeys is 3 m, and is not subjected to optimization. The initial design height of the first storey is 6 m, but can be reduced to 3 m during optimization. Masses 1 M = 20 tons and 2 M = 5 tons are placed at inner and outer column-beam intersections, respectively (Figure 12).

The properties of steel are the same as in example 4.1. All members of the frame have a hollow rectangular cross-section with dimensions / / 0.4/0.4/0.006 w h t = m. The frame is subjected to a sudden movement at its base, which imitates a single, highly idealized jerk. The base of the structure moves 0.5 m to the right, peaks at 1 0.5 t = s, and returns to the initial position at 2 1 t = s. The base displacement history is shown in Figure 13. The time step 0.02 s t ∆ = is used in the analysis.

Each beam or column of the frame is modeled by a single quadratic finite element. Two design elements with four control points along the height of the structure are introduced to In the second phase of the solution procedure, these oscillations are removed by setting the mechanical energy of the structure to be the objective function. A substantial improvement compared to the initial design is obvious from Figure 14.

CONCLUSIONS

The concepts of the recently developed energy-conserving time-integration scheme 22 [START_REF] Gams | Energy conserving integration scheme for geometrically exact beam[END_REF]) and the efficient optimal design approach (Kegl andOblak 1997, Kegl et al. 2002) 
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  energy and momenta. The earliest EMM schemes were proposed by

  The problem to be solved is one of finding nodal displacements U(t) satisfying Equation (9) and the initial conditions ( )

  generally each at its own arbitrary time station. L b and U b are the lower and the upper limit values of the design variables. Since the defining data of the problem depend explicitly on the design variables, any change of the design variables causes a change in the response of the structure. Hence, by taking into account Equation (9), the system response implicitly depends on the design variables

  values of a generic cross-sectional dimension, corresponding to both ends of the beam. Its value along the element is given by design variables b , one gets a linearly varying and design-dependent cross-section, i.e.

  with respect to the design variables. These are obtained by the differentiation of Equation (

  by the differentiation of the midpoint rule, i.e.

  a positive parameter, which influences the conservativeness of the approximation.Note that this form of i k g assures strict convexity and separability of the approximate problem. Even more, the Lagrange multipliers of its corresponding dual problem can be expressed explicitly from the Karush-Kuhn-Tucker conditions. This greatly simplifies the solution of the dual problem, from which the solution of the primal approximate problem can be extracted.Regardless of the values of ij k α , i k g is the first-order approximation of i f at b be determined in such a way that i k g is matched to i f even better. Their actual values are obtained by imposing the equality of design derivatives of i k stability, ij k α are not used directly. Instead, the parameters actually used for the approximation, are obtained from

  ii) fully optimize the design, and then (iii) reduce the allowed volume. A

Figure 10 ,

 10 Figure 10, left, compares the graphs of the optimized driving function and the wave up

  The geometry of the arm is the same as in Section 4.2.The optimized driving function completes the movement in 1 t = 0.4499 s, which is a 10% improvement with respect to the initial design. The optimized driving function is shown in Figure11, left. The tip x coordinate, which includes rigid body motion of the arm, is compared with the displacement of the rigid arm in Figure11, right, being equal to cos L ϕ .

A

  of the upper storeys. x coordinates of the design elements are adopted as design variables. The further design variable is the height of the first storey.The objective of the optimization is to minimize the oscillations of the frame after the base movement subsides. In other words, the frame should return to its initial position with a minimal residual velocity and post-jerk oscillations. Consequently, a series of subsequent equal jerks would also result in a non-oscillating frame. The width of the frame and the height of the first storey must remain within 12 to 24 m and 3 to 6 m, respectively. The span of the centre bay beams must remain within 4 to 10 m.The most suitable objective function for minimizing the oscillations of a structure at a given time is the mechanical energy. Unfortunately, this requirement alone failed to yield an acceptable result. In order to resolve the issue, the solution procedure is divided into two phases. The first phase of the procedure starts with choosing the horizontal displacement at the top of the frame at times 1 to the objective function, and the related optimum is found. With this optimum in hand, the time history of the top displacement, shown in Figure14, left, meets the optimization task criteria quite well, however the strong oscillations of the mid-height stories still remain.
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 2 Figure 2. Parameters of the curve, used for actuation of dynamic systems.

Figure 3 .

 3 Figure 3. Load moving robot arm: geometrical data.

Figure 4 .

 4 Figure 4. Two approaches to minimizing the mechanical energy of the structure.

Figure 5 .

 5 Figure 5. The width (left), and the height (right) of the optimized beam cross-section. x and y

Figure 6 .

 6 Figure 6. 3D view of the optimized shape of the robot arm.

Figure 4 .

 4 Figure 4. Tip x coordinate of the initial (dashed line) and the optimized design (solid line).

Figure 5 .

 5 Figure 5. Driving torque of the initial (dashed line) and the optimized design (solid line).

Figure 6 .

 6 Figure 6. Mechanical energy of the robot arm -point mass system. Oscillations of energy

Figure 7 .

 7 Figure 7. Rotation of the pinned end (left) and tip x coordinate (right) versus time. The solid

Figure 8 .

 8 Figure 8. Rotation of the pinned end versus time after optimization (left), and tip x coordinate

Figure 9 .

 9 Figure 9. The initial geometry of the frame, with point masses, control points CP and design

Figure 10 .

 10 Figure 10. Prescribed base motion (functional relation, left, and its plot, right).

Figure 11 .

 11 Figure 11. x coordinate of the node at the top of the frame (solid line) and at mid-height

  

  

  

  

  

  

  

  

  

  

  

  The principle of virtual work proposed at midpoint time reads
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  The parameters α and β determine the shape of the curve. By adopting this setup, one gets a very convenient curve, parameterized by meaningful and convenient parameters:

	moments, m P . Thus, in general one has
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	where 0 χ and 1 χ are the required starting and end values, 0 t χ and 1 t w χ are the required starting and end velocities, while 0 t v and 1 t v represent the corresponding derivatives dt dv , χ and 1 χ , boundary slopes (velocities) 0 t χ and 1 t χ , start and O n l Figure 2. boundary values (positions) 0 y
	end times 0 t and 1

t , and 'interior' shape parameters α , β , and ϑ . Any of these parameters may become design-dependent for the purpose of optimization. In the present work, this curve is utilized to model actuating displacements and rotations, a U , or actuating forces and

  were briefly presented. They were employed in the size, shape, and drive optimization of dynamically loaded and geometrically exact planar frame structures. The unifying concept of design variables introduced here allows addressing a variety range of engineering problems, from the size/shape/drive optimization of very flexible manipulators to the size/shape optimization of structures in the transient dynamic response undergoing finite displacements and rotations. Efficient shape optimization is enabled by the utilization of the design element technique and the Bezier patches.Four numerical examples of the dynamic optimization are presented. The numerical results confirm the practical value of the proposed approach and indicate that optimization is still a task largely dependent on the experience of the analyst. The following issues require further attention. One can see, with no exception even from simplest examples, that the optimization problem in transient dynamics is essentially multi-objective. It is well known that there is no universal way of tackling multi-objective problems. Our solution was to introduce an additional design variable; this worked very well. It should be noted, though, that the choice of appropriate normalization constants (weights) is completely left to the judgment of an analyst. The second issue concerns handling the time-dependent constraint functions. ) regions of the design space, if the initial design points were far from the solution and/or corresponded to some violently oscillating structures. This might be a consequence of very rough or jagged design spaces. The displacement constraints and the two stage optimizations are hence both empirically motivated and very helpful in obtaining a nearoptimal design point at the first stage of optimization. Once in the vicinity of the optimum, the optimization typically progresses very quickly. The last issue, but not least important in developing computer tools for dynamics optimization, is the use of the symbolic, automatic analytical differentiation and computer code generating tools[START_REF] Korelc | Automatic generation of finite-element code by simultaneous optimization of expressions[END_REF]. Such a tool makes tedious and time consuming tasks of obtaining the tangent stiffness matrix and the sensitivity coefficients as well as coding computer subroutines much easier.

	F o r Table 1. Data for cross-section, material parameters and load. TABLES Cross-section (initial) w/h/t = 0.095 / 0.19 / 0.006 m Cross-section (minimal) w/h/t = 0.05 / 0.1 / 0.005 m Cross-section (maximal) w/h/t = 0.5 / 1 / 0.015 m Material properties E = 210 GPa, ν = 0.3, ρ = 7800 kg/m 3 point of viewF o r F o r F o r F o r F o r F r 1 ; 2 t t o Prescribed rotation ϕ (the wave up function) ( ) 1 1 1 cos ; 0 4 t π π t t t t ϕ
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	Often discussed fixed-point-wise treatment works very well for the present range of numerical examples. The numerical experimentations show that the number of time-points to impose the O n l O n l O n l O n l O n l O n l O n l
	time constraints needs to be rather small. Their choice can be efficiently introduced y y y y y y y
	interactively during the progress of the optimization procedure. The third issue deals with
	virtually redundant displacement constraints (Example 4.1) and the two-stage optimization
	procedures (Example 4.4). It was found that, in the iteration process, the gradient-based
	optimizer can get trapped into undesirable (either unfeasible or unacceptable from engineer's
	23 29

& & & &

ACKNOWLEDGEMENT

The work of M. Gams was financially supported by the Agency of research of the Republic of Slovenia under contract 8311-03-831622. The support is gratefully acknowledged.