
HAL Id: hal-00546857
https://hal.science/hal-00546857v1

Submitted on 15 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bisimilarity in Concurrent Constraint Programming
Andrés Aristizábal

To cite this version:
Andrés Aristizábal. Bisimilarity in Concurrent Constraint Programming. 26th International Con-
ference on Logic Programming, ICLP 2010, Jul 2010, Edinburgh, United Kingdom. pp.236-240.
�hal-00546857�

https://hal.science/hal-00546857v1
https://hal.archives-ouvertes.fr

Bisimilarity in Concurrent Constraint

Programming

Andrés A. Aristizábal P.

CNRS, LIX École Polytechnique and INRIA Team COMÈTE

Route de Saclay 91128 Palaiseu Cedex, France.

andresaristi@lix.polytechnique.fr

http://www.lix.polytechnique.fr/~andresaristi/

December 14, 2010

Abstract

In this doctoral work we aim at developing a new approach to labelled
semantics and equivalences for the Concurrent Constraint Programming
(CCP) which will enable a broader capture of processes behavioural equiv-
alence. Moreover, we work towards exploiting the strong connection be-
tween first order logic and CCP. Something which will allow us to represent
logical formulae in terms of CCP processes and verify its logical equiva-
lence by means of our notion of bisimilarity. Finally, following the lines
of the Concurrecy Workbench we plan to implement a CCP Workbench
based on our theoretical structure.

Motivations

Concurrency is concerned with the fundamental aspects of systems consisting
of multiple computing agents, usually called processes, that interact among each
other. Bisimilarity is a central behavioural equivalence in concurrency theory as
it elegantly captures our intuitive notion of process equivalence; two processes
are equivalent if they can match each other’s moves. In fact, several concur-
rent formalisms such as CCS [Mil80] and the π-calculus [Mil99] are equipped
with semantic, axiomatic, verification and, in general, reasoning techniques for
bisimilarity.

Concurrent Constraint Programming (CCP) [SR90] is a well-established
declarative formalism for concurrency. Its basic intuitions arise mostly from
first-order logic. In CCP processes can interact by adding (or telling) partial
information in a medium, a so-called store. Partial information is represented
by constraints (e.g., x > 42) on the shared variables of the system. The other
way in which processes can interact is by asking partial information to the store.
This provides the synchronization mechanism of the model; asking agents are
suspended until there is enough information in the store to answer their query.

Despite the relevance of bisimilarity on the behavioural theory of processes,
there have been few attempts to define a proper notion of bisimilarity equiv-
alence for CCP. Apart from the rich reasoning techniques that are typically

1

http://www.lix.polytechnique.fr/~andresaristi/

derived from this equivalence, the close ties between CCP and logic may pro-
vide with a novel characterization of logic equivalence in terms of bisimilarity.

1 Goals

We aim to provide CCP with an appropriate notion of bisimilarity and its de-
rived reasoning techniques. Furthermore, we plan to use the close connection
between CCP and first order logic to give a characterization of logical equiva-
lence in terms of bisimilarity. Finally, we plan to implement an automated tool
for verifying bisimilarity equivalence of CCP processes along the lines of the
Concurrency Workbench [CPS93] .

2 Current Work

Like in other process algebras, in CCP processes are represented as syntactic
terms reflecting their structure. For example, tell(c) represents the process that
adds the constraint c to the store and ask(c).P is a process that asks if c can
be derived from the information in the store and if so, it executes the process
P . The composite term P ‖ Q represents the execution of the processes P and
Q in parallel.

In [SRP91] the authors gave an operational semantics for CCP which we will
refer to as reduction semantics. Intuitively, a reduction 〈P, S〉 → 〈P ′, S′〉 repre-
sents a one-step evolution of the process-store configuration 〈P, S〉 to 〈P ′, S′〉.

We use |= to denote an entailment relation specifying interdependencies be-
tween constraints (e.g. x > 10 |= x > 5). We follow the well-established notion
of barbed bisimilarity for the π-calculus [Mil99] and introduce the corresponding
notion for CCP:

Definition 1. (Barbed bisimilarity) A barbed bisimulation is a symmetric re-
lation R s.t., 〈P, Sp〉 R 〈Q, Sq〉 implies that:

(i) if 〈P, Sp〉 → 〈P ′, S′

p〉 then ∃〈Q′, S′

q〉 : 〈Q, Sq〉 → 〈Q′, S′

q〉 and 〈P ′, S′

p〉 R

〈Q′, S′

q〉, and

(ii) Sp |= Sq.

We say that 〈P, Sp〉 and 〈Q, Sq〉 are barbed bisimilar, written 〈P, Sp〉∼̇B〈Q, Sq〉,
if there is a barbed bisimulation R s.t. 〈P, Sp〉 R 〈Q, Sq〉.

Unfortunately, there are barbed bisimilar processes that when placed in a
given context are not longer equivalent. Roughly, a context C[·] is a process
term with a single hole · such that replacing · with a process gives a well-
formed process. E.g., by taking P = ask(x > 0).tell(y = 0) and Q = ask(x >

10).tell(y = 1) and C[·] = tell(x > 5) ‖ · we can verify that P ∼̇B Q but
C[P] ˙6∼B C[Q]. Thus, we define:

Definition 2. (Barbed Congruence) We say that P and Q are barbed congruent,
written P ∼B Q, if for all contexts C[·], 〈C[P], true〉∼̇B〈C[Q], true〉.

The above definition is rather unsatisfactory because of the quantification
over all possible contexts. To deal with this we define a labelled transition

2

semantics. Intuitively, a transition 〈P, S〉
α
−→ 〈P ′, S′〉 labelled with a constraint

α, represents the minimal constraint α that needs to be added to the store S to
evolve from 〈P, S〉 into 〈P ′, S′〉.

Our work builds on a similar CCP labelled semantics introduced in [SR90].
The notion of bisimilarity in [SR90] is, however, over-discriminating; e.g., it
distinguishes P = ask(x < 10).tell(y = 0) ‖ ask(x < 10).tell(y = 0) from Q =
ask(x < 5).tell(y = 0) ‖ ask(x < 10).tell(y = 0) which are clearly equivalent.
Our notion of bisimilarity is defined thus:

Definition 3. (Strong bisimilarity) A strong bisimulation is a symmetric rela-
tion R s.t., 〈P, Sp〉 R 〈Q, Sq〉 implies that:

(i) if 〈P, Sp〉
α
−→ 〈P ′, S′

p〉 then ∃〈Q′, S′

q〉 : 〈Q, Sq ∧ α〉 → 〈Q′, S′

q〉 and 〈P ′, S′

p〉
R 〈Q′, S′

q〉 and

(ii) Sp |= Sq.

We say that 〈P, Sp〉 and 〈Q, Sq〉 are strong bisimilar, written 〈P, Sp〉∼̇〈Q, Sq〉,
if there exists a strong bisimulation R such that 〈P, Sp〉 R 〈Q, Sq〉.

The main result we have obtained so far that the above notion fully captures
barbed congruence but without quantification over all possible contexts: I.e.,
we state:

Theorem 1. 〈P, Sp〉∼̇〈Q, Sq〉 if and only if 〈P, Sp〉 ∼B 〈Q, Sq〉.

Acknowledgement

This work is supervised by Catuscia Palamidessi and Frank Valencia in collab-
oration with Filippo Bonchi in the context of the INRIA project FORCES.

References

[Bon08] Filippo Bonchi. Abstract semantics by observable contexts. In ICGT
’08: Proceedings of the 4th international conference on Graph Trans-
formations, pages 478–480, Berlin, Heidelberg, 2008. Springer-Verlag.

[CPS93] Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The con-
currency workbench: A semantics-based tool for the verification of
concurrent systems. ACM Trans. Program. Lang. Syst., 15(1):36–72,
1993.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 of
Lecture Notes in Computer Science. Springer, 1980.

[Mil99] Robin Milner. Communicating and mobile systems: the π-calculus.
Cambridge University Press, New York, NY, USA, 1999.

[SR90] Vijay A. Saraswat and Martin C. Rinard. Concurrent constraint pro-
gramming. In POPL, pages 232–245, 1990.

[SRP91] Vijay A. Saraswat, Martin C. Rinard, and Prakash Panangaden. Se-
mantic foundations of concurrent constraint programming. In POPL,
pages 333–352, 1991.

3

A Proof of Theroem 1

Firstly we show out new definitions and lemmas to proof our main theorem.

Another alternative definition for the barbed congruence is what we will
name as a saturated barbed bisimilarity. This will be rather important since its
definition is a bit more specific towards CCP than a barbed congruece, therefore
is easier to relate with the strong bisimilarity we will define later on.

Definition 4. (Saturated barbed bisimilarity). A saturated barbed bisimulation
is a symmetric binary relation R on tuples of processes and stores satisfying the
following: 〈P, Sp〉 R 〈Q, Sq〉 implies that:

(i) if 〈P, Sp〉 → 〈P ′, S′

p〉 then ∃〈Q′, S′

q〉 : 〈Q, Sq〉 → 〈Q′, S′

q〉 and 〈P ′, S′

p〉 R

〈Q′, S′

q〉.

(ii) Sp |= Sq.

(iii) ∀S′〈P, Sp ∧ S′〉 R 〈Q, Sq ∧ S′〉.

We say that 〈P, Sp〉 and 〈Q, Sq〉 are saturated barbed bisimilar, written 〈P, Sp〉∼̇SB〈Q, Sq〉,
if there exists a saturated barbed bisimulation R such that 〈P, Sp〉 R 〈Q, Sq〉.

We did not report neither the reduction semantics nor the labelled semantics
for lack of space. In order to prove our main theorem we assume that the two
following lemmas hold.

Lemma 1. (Soundness of labelled semantics). If 〈P, Sp〉
α
−→ 〈P ′, S′

p〉, then
〈P, Sp ∧ α〉 → 〈P ′, S′

p〉.

Lemma 2. (Completeness of labelled semantics). If 〈P, Sp∧x〉 → 〈P ′, S′

p〉 then

∃y, z s.t. 〈P, Sp〉
y
−→ 〈P ′, S′′

p 〉 and (y ∧ z = x) ∧ (S′′

p ∧ z = S′

p).

Corollary 1. 〈P, Sp〉
true

−−→ 〈P ′, S′

p〉 if and only if 〈P, Sp〉 → 〈P ′, S′

p〉

Theorem 2. 〈P, Sp〉∼̇〈Q, Sq〉 ⇒ ∀S′〈P, Sp ∧ S′〉∼̇〈Q, Sq ∧ S′〉

Proof. We take a strong bisimulation R = {(〈P, Sp∧S′〉, 〈Q, Sq∧S′〉) s.t. 〈P, Sp〉∼̇〈Q, Sq〉}

(i) 〈P, Sp ∧ S′〉
α
−→ 〈P ′, S′

p〉
By Lemma 1 〈P, Sp ∧ S′ ∧ α〉 → 〈P ′, S′

p〉.

By Lemma 2 〈P, Sp〉
y
−→ 〈P ′, S′′

p 〉 and (y∧z = S′∧α)∧(S′′

p ∧z = S′

p). Since
〈P, Sp〉∼̇〈Q, Sq〉, then 〈Q, Sq ∧ y〉 → 〈Q′, S′′

q 〉 s.t. 〈P ′, S′′

p 〉∼̇〈Q′, S′′

q 〉. Note
that all reductions are preserved when adding constraints to the store,
therefore from 〈Q, Sq ∧ y〉 → 〈Q′, S′′

q 〉 we can derive that 〈Q, Sq ∧ y ∧ z〉 →
〈Q′, S′′

q ∧z〉. This means that 〈Q, Sq ∧S′∧α〉 → 〈Q′, S′′

q ∧ z〉. Now we have
that 〈P ′, S′

p〉 = 〈P ′, S′′

p ∧ z〉 R 〈Q′, S′′

q ∧ z〉, because 〈P ′, S′′

p 〉∼̇〈Q′, S′′

q 〉.

(ii) Sp ∧ S′ |= Sq ∧ S′ since Sp |= Sq by 〈P, Sp〉∼̇〈Q, Sq〉 and S′ = S′.

Now we state the lemmas which will enable us to prove our main theorem.

Lemma 3. 〈P, Sp〉∼̇〈Q, Sq〉 ⇒ 〈P, Sp〉∼̇SB〈Q, Sq〉.

4

Proof. There exists a saturated barbed bisimulation S s.t. S = {(〈P, Sp〉, 〈Q, Sq〉)
s.t.
〈P, Sp〉∼̇〈Q, Sq〉} if the following conditions are fulfilled:

(i) if 〈P, Sp〉 → 〈P ′, S′

p〉 then ∃〈Q′, S′

q〉 : 〈Q, Sq〉 → 〈Q′, S′

q〉 and 〈P ′, S′

p〉 S

〈Q′, S′

q〉. Suppose that 〈P, Sp〉 → 〈P ′, S′

p〉 then by Corollary 1 〈P, Sp〉
true

−−→
〈P ′, S′

p〉. Since 〈P, Sp〉∼̇〈Q, Sq〉 then 〈Q, Sq∧true〉 → 〈Q′, S′

q〉 then 〈Q, Sq〉 →
〈Q′, S′

q〉 and 〈P, Sp〉∼̇〈Q, Sq〉 then 〈P, Sp〉 S 〈Q, Sq〉

(ii) Sp |= Sq. Since P ∼̇Q (Condition (ii)).

(iii) ∀S′〈P, Sp ∧ S′〉 R 〈Q, Sq ∧ S′〉. By Theorem 2

Lemma 4. 〈P, Sp〉∼̇SB〈Q, Sq〉 ⇒ 〈P, Sp〉∼̇〈Q, Sq〉.

Proof. There exists a strong bisimulation R s.t. R = {(〈P, Sp〉, 〈Q, Sq〉) s.t.
〈P, Sp〉∼̇SB〈Q, Sq〉} and if the following conditions are fulfilled:

(i) if 〈P, Sp〉
α
−→ 〈P ′, S′′

p 〉 then ∃〈Q′, S′′

q 〉 : 〈Q, Sq ∧α〉 → 〈Q′, S′′

q 〉 and 〈P ′, S′′

p 〉

R 〈Q′, S′′

q 〉. Suppose that 〈P, Sp〉
α
−→ 〈P ′, S′

p〉 then by Lemma 1 〈P, Sp ∧
α〉 → 〈P ′, S′

p〉. Since 〈P, Sp〉∼̇SB〈Q, Sq〉 then 〈Q, Sq ∧ α〉 → 〈Q′, S′

q〉 s.t.
〈P ′, S′

p〉∼̇SB〈Q′, S′

q〉 then 〈P ′, S′

p〉 R 〈Q′, S′

q〉

(ii) Sp |= Sq. Since P ∼̇SBQ (Condition (ii)).

Theorem 1

Proof. By Lemma 3 and Lemma 4.

5

	Goals
	Current Work
	Proof of Theroem 1

