
HAL Id: hal-00546742
https://hal.science/hal-00546742v1

Submitted on 14 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Method For Efficient Hardware
Implementation From RVC-CAL Dataflow: A LAR

Coder baseline Case Study
Khaled Jerbi, Matthieu Wipliez, Mickaël Raulet, Olivier Déforges, Marie

Babel, Mohamed Abid

To cite this version:
Khaled Jerbi, Matthieu Wipliez, Mickaël Raulet, Olivier Déforges, Marie Babel, et al.. Automatic
Method For Efficient Hardware Implementation From RVC-CAL Dataflow: A LAR Coder baseline
Case Study. ”Section E: Consumer Electronics” of the Journal of Convergence, 2010, pp.85-92. �hal-
00546742�

https://hal.science/hal-00546742v1
https://hal.archives-ouvertes.fr

Automatic Method For Efficient Hardware
Implementation From RVC-CAL Dataflow: A LAR

Coder baseline Case Study
Khaled Jerbi∗†, Matthieu Wipliez∗, Mickaël Raulet∗, Olivier Déforges∗, Marie Babel∗ and Mohamed Abid†

∗IETR/INSA. UMR CNRS 6164, F-35043 Rennes, France, mail: Firstname.Name@insa-rennes.fr
†CES Lab. National Engineering school of Sfax, Tunisia, mail: Firstname.Name@enis.rnu.tn

Abstract—Implementing an algorithm to hardware platforms
is generally not an easy task. The algorithm, typically described
in a high-level specification language, must be translated to
a low-level HDL language. The difference between models of
computation (sequential versus fine-grained parallel) limits the
efficiency of automatic translation. On the other hand, manual
implementation is time-consuming, because the designer must
take care of low-level details, and write test benches to test the
implementation’s behavior. This paper presents a global design
method going from high level description to implementation.
The first step consists of the description of an algorithm as a
dataflow program with the RVC-CAL language. Next step is
the functional verification of this description using a software
framework. The final step consists of an automatic generation of
an efficient hardware implementation from the dataflow program.
The objective was to spend the most part of the conception time
in an open source software platform. We used this method to
quickly prototype and generate hardware implementation of a
baseline part of the LAR coder, from an RVC-CAL description.

I. INTRODUCTION

Signal processing algorithms are increasing in complexity.
This complexity involves a very long description code. For
designers this code is very hard to implement on hardware
platforms. Hardware implementation requires the description
of the process using an HDL language like VHDL or Ver-
ilog. These dataflow languages are not easy to develop and
especially to validate. The validation of a dataflow design
requires the development of stimulus code such as a VHDL
test bench in our case and the use of simulation tools.
This is what explains the elapsing gap between validating
and implementing a process. Therefore designers can hardly
satisfy the time to market constraints. To solve this problem,
designers are establishing solutions to describe the process in
a higher level way. In the video coding field, a new high level
description language for dataflow applications called RVC-
CAL [1] was normalized by the MPEG community through the
MPEG-RVC standard [2]. This standard provides a framework
to define different codecs by combining communicating blocks
developed in RVC-CAL.

The objective of our work is a hardware implementation
generated from a high level description using RVC-CAL
programing language. [3]. In this paper, we introduce an
original global approach to fasten the validation of an RVC-
CAL design and consequently the dataflow generation. This
approach was applied on the LAR (Locally Adaptive Reso-

lution) image coder [4]. The actual design does not contain
the full LAR coder, but we already achieved some main parts
with an RVC-CAL description. This is why, in the following,
we are going to speak about a LAR coder baseline.

In section II, we present the approach and the used lan-
guages and frameworks. In section III, the LAR coding
principle is detailed. Section IV shows an application of the
method on the LAR coder baseline and also provides some
implementation results. Finally in section V some related
works will be presented.

II. DATAFLOW PROGRAMMING FOR HARDWARE
IMPLEMENTATION

The purpose of this work is to obtain a dataflow descrip-
tion directly from an RVC-CAL design. Presently, the only
hardware generator from CAL is a tool called Cal2HDL [5],
[6]. It uses an intermediate representation of the OpenDF
project [7]. Nevertheless, this tool is still unable to treat
with all the RVC-CAL structures. It cannot handle with
loops and repeats. Therefore, the existing development method
consists of developing an RVC-CAL code synthesizable with
Cal2HDL. Then this code is validated through the OpenDF
simulator and finally synthesized into Verilog/VHDL using
Cal2HDL. The limitation is the fact that a synthesizable code
is very long and accordingly so difficult to manage and to
correct. In addition, the feedback of the OpenDF simulator
and the HDL generator are not accurate enough. They just
mention an error without localizing it in the code’s lines. So
the errors correction is therefore relatively a hard task if the
code is long.

In the following, we present a new approach for functional
verification of an RVC-CAL code. As presented in figure 1,
the design is described with a high level RVC-CAL. Then a
software platform is used for functional validation and FIFO
sizing. Once the code is correct, it undergoes a modification
to be synthesizable with Cal2HDL by unrolling the loops and
the repeat structures. The validation of this code is realized
with the same software platform. Before implementing the
design, Cal2HDL provides an important feedback about the
delay of every action in every actor. The implementation is
finally insured using a hardware synthesis and prototyping
platform.

High level
RVC-CAL

Low level
RVC-CAL

C

Orcc

C Compiler

Debug
Errors

High level OK

Code
modification

Cal2HDL

VHDL/ Verilog

Hardware
sythesis tool

Results

Software validation Hardware synthesis

Low level OK

Cal2HDL feedback

Fig. 1. Method overview

A. Dataflow programming with RVC-CAL language

MPEG RVC is under development as part of the MPEG-B
standard [3], which defines the framework and the language
used to describe components. RVC-CAL [3] is a textual and
domain specific language for writing dataflow models (figure
2), more precisely for defining actors of a dataflow model at
a high level description. An actor represents an autonomous
entity and a composition of actors explicitly describes the
concurrency of an application. The RVC-CAL Actor Language
has been defined to be platform independent and retargetable
to a rich variety of platforms.

An RVC-CAL actor is a computational entity with input
ports, output ports, states and parameters. An actor communi-
cates with other actors by sending and receiving tokens (atomic
pieces of data) through its ports. An actor can contain several
actions. An action defines a computation, which consumes se-
quences of tokens from input ports and produces sequences of
tokens to output ports. Actions have data-dependent conditions
for their execution. The execution of an action may change the
actor internal state, so that the produced output sequences are
functions of the consumed input sequences and of the current
actor state. RVC-CAL supports higher-level constructs such as
multiple-token reads/writes, and list generators.

FIFO Actor

Consume/produce tokens

FIFO

Consume/produce tokens

and modify internal states

FIFO

Actions

State

ActorActor

Actions are implemented

sequentially and they can

be sequenced

FIFO

Actor

be sequenced

FIFO

Fig. 2. CAL dataflow model

B. Functional verification on a software platform

CAL code validation is usually based on the OpenDF sim-
ulator. It has to be stimulated with manually given tokens via
data generation and data display actors. The result is a set of
values that have to be verified. The originality of our approach
is to realize the CAL validation step using Open RVC-CAL
Compiler (Orcc) [8]. Orcc Compiler is an opensource software
(http://sourceforge.net/projects/Orcc/) developed at the IETR
laboratory of the INSA of Rennes. The Orcc Compiler is a
source-to-source compiler that compiles RVC-CAL dataflow
programs to a target language. Available languages include
C, C++ and Java. This compilation is obtained through in-
termediate transformations. First the CAL code is parsed for
syntactic and semantic analysis. Then this analysis leads to
an intermediate representation. Finally the analysis of the
representation results in the target language. In our work, we
use the C backend of Orcc. This choice is explained by the
fact that C language is the most used language in software
programming. After compilation, we can easily assign a video
or an image as an input and visualize the output.

It is very important to mention that Orcc compilation, video
processing and display using the C compiler are very fast
steps. In addition, the software debug is very fast and efficient.
Consequently, the CAL errors are easier detected and faster
corrected. Moreover, we can use Orcc to define the optimal
FIFO sizes for a lower memory consumption in the hardware
implementation. To adjust FIFO sizes, we have to start by
computing the minimum size by considering the data rate sent
by the previous actor. Then this size is incremented until a
correct video display is obtained.

C. HDL generation

Dataflow generation is done with a tool called Cal2HDL.
This tool parses the CAL code, generates an XML representa-
tion for each actor and synthesizes the static single assignment
(SSA) threads into circuits based on basic operators. The final
description is made up of a verilog file for each actor and a
VHDL file for the top. The connection between the actors is
insured by synchronous or asynchronous FIFO buffers.

Currently, Cal2HDL does not support all the structures used
in RVC-CAL description such as repeats and loops. These
structures have to be manually modified into several actions
managed by finite state machine. Figure 3 shows an exeample
of an action writing the 16 values of a buffer named ”tab”
in the output port called ”OUT”. The instruction ”repeat 16”
enables the access to the 16 first values of the buffer ”tab”.

write: action ==> OUT:[tab] repeat 16
end

Fig. 3. High level RVC-CAL example

This action has to be modified into the code presented in
figure 4. The modifications consist of deleting the ”repeat”
structure to have an action that produces only one token and
repeats the basic action 16 times. The repetition process starts

by executing the ”write” action until the ”write done” action
is validated. Everything has to be managed by a finite state
machine defined by the structure ”schedule fsm” in figure 4.

write: action ==> OUT:[out]
do
counter := counter + 1;

end

write_done: action ==>
guard
counter = 16

do
counter := 0;

end

schedule fsm write:
write (write) --> write;
write (write_done) --> nextstate;

...
end

Fig. 4. Low level RVC-CAL example

After this transformation we obtain a synthesizable code and
Cal2HDL can generate the adequate hardware description.

III. THE LAR CODER

The LAR coder is developed at the IETR/ INSA of Rennes
laboratory. It is based on the idea that the spatial coding can
be locally dependent on the activity in the image. Thus, the
higher the activity the lower the resolution is. This activity
is dependant from the variation or the uniformity of the
local luminance which can be detected using a morphological
gradient that will be farther explained. Another aspect of
the LAR coding is based on considering that an image is
a superposition of a global information image (mean blocks
image), and the local texture image, which is given by the
difference between the original image and the global one. This
principle is explained by:

I = I’ + (I-I’) where I is the original image, I’ is the global
information image and (I-I’) is the error image. The dynamic
range of the error image is consequently dependent on the
local activity. In uniform regions, I’ values are close or equal
to I consequently (I-I’) values are around zero with a low
dynamic range.

Considering these principles, the LAR coder concept (figure
5) is composed of two parts: the FLAT LAR [9] which is the
part insuring the global information coding and the spectral
part which is the error spectral coder.

The mecanisms of these parts are detailed in the following.

A. FLAT LAR

The Flat LAR is composed of 3 main parts: the partitioning,
the block mean value and the DPCM (Differential Pulse
Coding Modulation). In our work, only the DPCM is not yet
developped with RVC-CAL.

1) Partitioning: In this part, a Quad-Tree partitioning is
applied on the image pixels. The principle is to consider the
lowest block size (2x2) then to compare the difference between
the maximum (MAX) and the minimum (MIN) values of the

Original

image

Low

resolution

image

FLAT

decoder

FLAT

coder

transmission

Spectral

decoder

Spectral

coder

Middle/high

resolution

image

transmission

Fig. 5. LAR concept

block with a threshold (THD) defined as a generic variable
for the design. If (MAX - MIN) < THD then the actual block
size is considered. In the other case, the (Nx2) x (Nx2) size
block is adapted. This process is recursively applied on the
whole image blocks. The output is the block size image.

2) Block mean values: This process is based on the Quad-
Tree output image. For each block of the variable size image,
a mean value is put in the block as presented in the example
of figure 6.

11 10 . . 25 25 29 30

10 9 . . 26 27 36 40

. . . . 39 39 41 40

. . . . 25 20 28 30

.

.

.

.

2 2 2 2 4 4 4 4

2 2 2 2 4 4 4 4

2 2 2 2 4 4 4 4

2 2 2 2 4 4 4 4

4 4 4 4 2 2 2 2

4 4 4 4 2 2 2 2

4 4 4 4 2 2 2 2

4 4 4 4 2 2 2 2

Original image Block size image

Quad-Tree

10 10 . . 31 31 31 31

10 10 . . 31 31 31 31

. . . . 31 31 31 31

. . . . 31 31 31 31

.

.

.

.

Original image Block size image

Block mean value image

Block mean value

process

Fig. 6. Block mean value process example

3) The DPCM: The DPCM process is based on the predic-
tion of neighbor values and the quantization of the block mean
value image. The observation that a pixel value is mostly equal
to a neighbor one led to the following estimation algorithm. If
we consider the pixels in figure 7, X value is estimated with
the algorithm: If |B-C| < |A-B| then X = A else X = C

B. Spectral coder: The Hadamard transform

The spectral coder, also called the texture coder, is com-
posed of a variable block size Hadamard transform [10] and

B C

A XA X

Fig. 7. DPCM prediction of neighbor pixels

the Golomb-Rice [11] [12] enthropic coder. The Golomb-Rice
coder is still in development with the RVC-CAL specifications.

The Hadamard transform derives from a generalized class
of the Fourier transform. It consists of a multiplication of a
2mx2m matrix by an Hadamard matrix (Hm) that has the same
size. The transform is defined as:

H0 is the identity so H0 = 1. For any m>0, Hm is then
deducted recursively by:

Hm = 1√
2

∣∣∣∣ Hm−1 Hm−1
Hm−1 -Hm−1

∣∣∣∣
Here are examples of Hadarmard matrices:

H0 = 1 ,

H1 = 1√
2

∣∣∣∣ 1 1
1 -1

∣∣∣∣ ,

H2 = 1√
2

∣∣∣∣∣∣∣∣
1 1 1 1
1 -1 1 -1
1 1 -1 -1
1 -1 -1 1

∣∣∣∣∣∣∣∣ , etc ...

IV. HARDWARE IMPLEMENTATION OF THE LAR CODER
BASELINE

Some parts of the Flat LAR have already been developed
with RVC-CAL and implemented in a previous work [13].
Therefore, from this preliminary implementation we would
almost achieve the implementation of the whole LAR codec
following the MPEG-RVC standard recommandations.

This section explains the mechanisms of the Hadamard
transform and the Quad-Tree used in the implementation.
Dataflow implementation and synthesis results are presented
and discussed.

A. Hardware implementation

The LAR coding is dependent from the content of the
image. It applies in the Quad-Tree a morphological gradient to
extract information about the local activity on the image. The
output is the block size image represented by variable size
blocks: 2x2, 4x4 or 8x8. The higher the activity, the lower
the block size is. Using the block size image, the Hadamard
transform applies the adequate transform on the corresponding
block. It means that if we have a block size of 2X2 in the
size image this block will undergo a 2X2 Hadamard (H1)

and a normalization specific to the 2X2 blocks, idem for 4X4
and 8X8. A size specific contization step is applied on the
Hadamard output image. For each block size, a quantization
matrix is predefine. Practically, the normalization during the
Hadamard transform is postponed to be achieved with the
quantization step to decrease the noise due to successive
divisions.

The implemented LAR is presented in figure 8.

H1 H2 H3

Quad tree

Memory
management

Block size

Image

2x2
blocks

Norm.
&

Quant.

H2 input
Memory

Management

H1 H1
H2 output
Memory

management

H3 output
Memory

management

H3 input
Memory

management

Fig. 8. LAR baseline developed model

As a first step, the memory management block stores the
pixels values of the original image line by line. Once an 8x8
block is obtained, the actor divides it into sixteen 2x2 blocks
and sends them in a specific order as presented in figure 10.

This order is very important to improve the performance
of remaining actors. In fact, considering the figure 10, when
the tokens are so ordered the first 4 tokens are the first
2x2 block, the first 16 tokens are the first 4x4 block etc ...
Consequently, and as presented in figure 8, the output of the
H1 is automatically the input of the H2 and the output of the
H2 is automatically the input of the H3.

In the Quad-Tree, this order is also crucial. As presented
in figure 9, the superposition of the same actor (max for
example) three times provides in the output of the first actor
the maximums of 2x2 blocks, in the output of the second actor
the maximums of 4x4 block and finally the maximums of 8x8
blocks in the output of the third one. Using the maximums
and the minimums the morphological gradient in the Gradstep
actors can process to extract the block size image. The same
tip is used to calculate the block sums with three superposed
sum actors. The block mean value actor considers the sums
and the sizes to build the block mean value image.

We also notice that an (H2) transform can be achieved
using the (H1) results of the four 2X2 blocks constituting the
4X4 block. Idem for the (H3) one. This ascertainment is very
important for decreasing the complexity of the process. In fact,
the Hadamard transform of the LAR applies an (H1) transform
for the whole image then it applies the (H2) transform only for
the 4X4 and 8X8 blocks and the (H3) transform only for the

Max

2x2

Max

8x8

Max

4x4

Min

2x2

Min

8x8

Min

4x4

Gradstep

process

Input

image

Sum

2x2

Sum

8x8

Sum

4x4

Block mean

value process

Block mean

size image

Fig. 9. Quad-Tree design

8X8 blocks. The (H2) and the (H3) transforms are different
from the full transforms as they are much less complex.
Consequently, as shown in figure 8, we designed the H2 and
the H3 using H1 actors associated with memory management
units. They sort tokens in the adequate order and, considering
the block size, whether the block is going to undergo the
transform or not.

It is very important to mention that almost actors have
been developed with generic variables for memory sizes or
gradsteps which means that the design are flexible for easy
transformation from an image size to another or for adding
higher Hadamard process (H4, H5 ...).

1 2 5 6

3 4 7 8

2x2 Block

9 10 13 14

11 12 15 16

Fig. 10. Memory management unit output order

The different actors of the LAR baseline have been first
developped with a high level RVC-CAL description for a
352x288 image size. To optimize the transform, we added a
ping-pong data management algorithm. The principle of this
algorithm is to avoid the latency caused by data storage by
combining the tokens reading and writing in the same action.
The tip is to write the input data in the half of a memory size
then to use this data while writing in the other half. Finally

we just have to switch the reading and the writing pointers
in opposite from a half memory to the other. An example
of ping-pong memory management of a 4 buffers memory is
presented in figure 11.

Data1

Data1 Data2

Data1 Data2 Data3

1st clock event

Storage of the 1st token in the 1st buffer

2nd clock event

Storage of the 2ond token in the 2nd buffer

3rd clock event

Data1 Data2 Data3 Data4

Storage of the 3rd token in the 3rd buffer & use of data1 and data2

4th clock event

Storage of the 4th token in the 4th buffer & use of data1 and data2

Data5 Data2 Data3 Data45th clock event

Storage of the 5th token in the 1st buffer & use of data3 and data4

Fig. 11. Ping pong example of a 4-buffer size memory management

Timing performances have considerably increased. Other
optimizations can be added by treatment anticipation but they
have not been added beacause in that case the design would
be a low level one.

A reverse Hadamard block was added for validation. The
whole design was compiled with Orcc to obtain the C code of
the actors. C codes were compiled with a C compiler. To test
the design we applied images and videos in the inputs. The
objective was to obtain an output exactly equal to the input as
presented in figure 12.

Fig. 12. Software validation

Once the required pixel values are obtained the design is
validated and consequently the RVC-CAL code. At this level,
the VHDL/Verilog generation is not possible since Cal2HDL
can not generate code from the high level RVC-CAL. It was
necessary to change the RVC-CAL code into another low level
code synthesizable with Cal2HDL as explained in Section II.
Figure 13 shows the example of a “max 2x2” actor in high
level description with the “repeat” and the “foreach” loops.
This actor is translated to low level one as presented in figure
14.

Thus, we obtained a dataflow implementation of the LAR
baseline.

The importance of our approach is to avoid the OpenDF
validation of the classic method. In a that method, we used to
develop the RVC-CAL codes and add actors for data gener-
ation and display. The actor of data generation is composed
of a table containing the input image pixel values and some

actor max2x2() uint(size=8) IN ==> uint(size=8) OUT:
max2x2: action IN:[input] repeat 4 ==> OUT:[out]
var
int out:= 0

do
foreach int i in Integers(0, 3) do

out:= if input[i]>out then input[i] else out end;
end

end

end

Fig. 13. High level RVC-CAL example

actor max2x2() int(size=9) IN ==> int(size=9) OUT:

int(size=5) cpt:= 0;
int(size=9) max:= 0;

init: action IN: [in0] ==>
do
max:= in0 ;
end

compare : action IN: [in0] ==>
do
if max < in0 then
max:=in0;

end
cpt:= cpt+1;
end

send : action ==> OUT: [max]
guard cpt = 3
do
cpt := 0 ;
end

schedule fsm init :
init (init) --> compare;
compare (compare) --> compare;
compare (send) --> init;

end

priority
send>compare ;

end

end

Fig. 14. High level RVC-CAL example

actions to consecutively put these values in the input port of
the design. The design output data can be displayed using the
“println()” function. Validation is consequently a tough and
relentless value comparison. The use of C compilers allows us
to use images and videos for the test and we can have more
information about an error when we have both data values and
image display.

B. Results

The HDL project manager environment used is Xilinx
ISE Foundation 11.1 and the hardware simulation tool is
ISE simulator (Full version). We developped the testbench
manually by initializing the different signals and generating
the stimulus values for the inputs.

After compilation, simulation, RTL synthesis and place
and route on an FPGA: family=virtex4; device=xc4vsx35;
Package=FF668; speed = -12, we obtain the area consumption
results presented in table I.

Criterion value
Slice Flip Flops 1.437/30.720 (4%)
Occupied Slices 2.027/15.360 (13%)
4 input LUTs 3.637/30.720 (11%)

FIFO16/RAMB16s 26/3192 (13%)
Bonded IOBs 99/448 (22%)

TABLE I
CONSUMPTION FOR 352X288 IMAGE SIZE

The time synthesis performances are mentioned in table II
Optimization solutions are in development to decrease the

Criterion 352x288
Output frequency(MHz) 22.4

maximum frequency(MHz) 81.4
Latency(µs) 79.4

processing time(ms) 4.5
Minimum input arrival
time before clock(ns) 12.134

Maximum output required
time after clock(ns) 8.188

Maximum combinational
path delay(ns) 5.083

TABLE II
TIMING RESULTS

latency and consequently increase the frequency. In terms
of development time, the whole design took about 70 days
to be achieved. It is very important to mention that over
90% of the conception time was achieved in the open source
software platform where the debug and the validation are
easier and faster. The most disturbing part of the flow was
the manual transformation of the RVC-CAL from high to
low level. This can be explained by the fact the the code
is longer and consequently harder to debug because of the
inaccurate feedback of Cal2HDL. We are currently looking
for solutions to automate this step. This task may be achieved
by improving Cal2HDL Java source code or by using the
intermediate representation of Orcc. The second case seems to
be more feasible. However, this global framework introducing
a software functional checking before the synthesis process
is significantly faster than a hardware implementation directly
from the RVC-CAL description.

V. RELATED WORKS

Ihab Amer, in [14], proposed multi-granular RVC tool
libraries to synthesize efficient software or hardware imple-
mentations from high-level specifications.

In [15], Jani Boutellier shows multiprocessor scheduling of
dataflow models within the RVC framework.

By mixing hardware and software generation from RVC-
CAL, Richard Thavot presents in [16] a methodology for co-
designing complex interfaces systems.

Using the intermediate representation of Orcc, Nicolas Siret
is performing an efficient VHDL backend for Orcc.

Johan Eker presents in [17] multicore scheduling issues for
Ericsson mobile platforms using RVC-CAL specifications.

VI. CONCLUSION

This paper presented a method to automatically generate an
efficient functional hardware implementation from an RVC-
CAL dataflow program. The presented method was used to
obtain a hardware implementation of a LAR coder baseline.
This transform implementation is a part of our work to achieve
the implementation of the whole LAR image codec. We
believe that frequency can be increased, and latency decreased,
by further optimization of memory management actors.

With our method, the design cycle of a hardware implemen-
tation consists of doing the functional verification in software,
and testing the hardware implementation once the program
is correct. We used the Orcc Compiler to generate C code
from RVC-CAL descriptions and to fix the optimal FIFO
sizes. The C code was then compiled and run to test the
program behavior. The hardware implementation was obtained
by automatically transforming the RVC-CAL descriptions with
Cal2HDL. Currently, high-level RVC-CAL descriptions must
be manually transformed to lower-level code for Cal2HDL to
be able to synthesize it. Automating this transformation will
further reduce design time and will be a direction of future
works.

REFERENCES

[1] J. Eker and J. Janneck, “CAL Language Report,” University of California
at Berkeley, Tech. Rep. ERL Technical Memo UCB/ERL M03/48, Dec.
2003.

[2] S. S. Bhattacharyya, J. Eker, J. W. Janneck, C. Lucarz, M. Mat-
tavelli, and M. Raulet, “Overview of the MPEG reconfigurable video
coding framework,” Journal of Signal Processing Systems, 2009,
dOI:10.1007/s11265-009-0399-3. To appear.

[3] ISO/IEC FDIS 23001-4: 2009, “Information Technology - MPEG sys-
tems technologies - Part 4: Codec Configuration Representation,” 2009.

[4] O. Déforges, M. Babel, L. Bédat, and J. Ronsin, “Color LAR Codec: A
Color Image Representation and Compression Scheme Based on Local
Resolution Adjustment and Self-Extracting Region Representation,”
IEEE Trans. Circuits Syst. Video Techn., vol. 17, no. 8, pp. 974–987,
2007.

[5] R. Gu, J. W. Janneck, S. S. Bhattacharyya, M. Raulet, M. Wipliez,
and W. Plishker, “Exploring the concurrency of an MPEG RVC
decoder based on dataflow program analysis,” Circuits and Systems
for Video Technology, IEEE Transactions on, vol. 19, no. 11, pp.
1646–1657, 11 2009. [Online]. Available: dx.doi.org/10.1109/{TCSVT}
.2009.2031517http://hal.archives-ouvertes.fr/hal-00440492/en/

[6] “Cal2hdl-openforge source : http://openforge.sourceforge.net.”
[7] S. Bhattacharyya, G. Brebner, J. Eker, J. Janneck, M. Mattavelli, C. von

Platen, and M. Raulet, “OpenDF - A Dataflow Toolset for Reconfig-
urable Hardware and Multicore Systems,” 2008, first Swedish Workshop
on Multi-Core Computing, MCC , Ronneby, Sweden, November 27-28,
2008.

[8] J. W. Janneck, M. Mattavelli, M. Raulet, and M. Wipliez, “Reconfig-
urable video coding: a stream programming approach to the specification
of new video coding standards,” in MMSys ’10: Proceedings of the first
annual ACM SIGMM conference on Multimedia systems. New York,
NY, USA: ACM, 2010, pp. 223–234.

[9] O. DEFORGES and M. BABEL, “Lar method: from algorithm to
synthesis for an embedded low complexity image coder,” IEEE 3rd
International Design and Test Workshop, 2008.

[10] J. PONCIN, “Utilisation de la transformation de hadamard pour le
codage et la compression de signaux d’images,” in Springer-Annals of
telecommunications, 1971, pp. 235–252.

[11] S. W. Golomb, “Run length codings,” IEEE Transactions on Information
Theory, pp. 12(7): 399–401, 1966.

[12] R. F. Rice, “Some practical universal noiseless coding techniques,”
Technical Report 79-22, 1979.

[13] K. Jerbi, M. Raulet, O. Déforges, and M. Abid, “Design of an Embedded
Low Complexity Image Coder using CAL language,” DASIP 2009
proceeding, September 2009.

[14] I. Amer, “Towards multi-granular rvc tool libraries: A case study of
cal transformations on the iso/iec mpeg fixed point idct,” DASIP 2009,
2009.

[15] J. Bouteillier, V. M. Gomez, O. Silven, C. Lucarz, and M. Mattavelli,
“Multiprocessor scheduling of dataflow models within the reconfigurable
video coding framework,” DASIP 2009, 2009.

[16] R. Thavot, R. Mosqueron, J. Dubois, and M. Mattavelli, “Hardware syn-
thesis of complex standard interfaces using cal dataflow descriptions.”

[17] J. Eker, “Multicore scheduling issues in ericsson mobile platforms,”
Parallel Processing Workshops, International Conference on, vol. 0, p. 1,
2009.

