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Deriving Labels and Bisimilarity

for Concurrent Constraint Programming

Andrés Aristizábal, Filippo Bonchi, Catuscia Palamidessi, Luis Pino, Frank Valencia

Comète, LIX, Laboratoire de l‘Ecole Polytechnique associé à l‘INRIA

Abstract. Concurrent constraint programming (ccp) is a well-established model

for concurrency that builds upon operational and algebraic notions from process

calculi and first-order logic. Bisimilarity is one of the central reasoning tech-

niques in concurrency. The standard definition of bisimilarity, however, is not

completely satisfactory for ccp since it yields an equivalence that is too fine

grained. By building upon recent foundational investigations, we introduce a la-

belled transition semantics and a novel notion of bisimilarity that is fully abstract

w.r.t. the typical observational equivalence in ccp. This way we provide ccp with

a new proof technique for ccp coherent with existing ones.

Introduction

Concurrency is concerned with systems of multiple computing agents, usually called

processes, that interact with each other. Process calculi treat processes much like the λ-

calculus treats computable functions. They provide a language in which processes are

represented by terms, and computational steps are represented as transitions between

them. These formalisms are equipped with equivalence relations that determine what

processes are deemed indistinguishable.

Bisimilarity is one of the main representative of these process equivalences. It cap-

tures our intuitive notion of process equivalence; two processes are equivalent if they

can match each other’s moves. Furthermore, it provides an elegant co-inductive proof

technique based on Park’s notion of bisimulation.

Concurrent Constraint Programming (ccp) [25] is a well-established formalism that

combines the traditional algebraic and operational view of process calculi with a declar-

ative one based upon first-order logic. In ccp, processes interact by adding (or telling)

and asking information (namely, constraints) in a medium (the store). Ccp is paramet-

ric in a constraint system indicating interdependencies (entailment) between constraints

and providing for the specification of data types and other rich structures. The above fea-

tures have recently attracted a renewed attention as witnessed by the works [22,7,4,3]

on calculi exhibiting data-types, logic assertions as well as tell and ask operations.

Despite the relevance of bisimilarity, there have been few attempts to define a no-

tion of bisimilarity for ccp. The ones we are aware of are those in [25] and [18] upon

which we build. These equivalences are not completely satisfactory: We shall see that

the first one may tell apart processes with identical observable behaviour, while the sec-

ond quantifies over all possible inputs from the environment, and hence it is not clear

whether it can lead to a feasible proof technique.



The goal of this paper is to define a notion of bisimilarity for ccp which will al-

low to benefit of the feasible proof and verification techniques typically associated with

bisimilarity. Furthermore, we aim at studying the relationship between this equivalence

and other existing semantic notions for ccp. In particular, its elegant denotational char-

acterization based on closure operators [26] and the connection with logic [18].

Labels and Bisimilarity from Reductions. Bisimilarity relies on labelled transitions:

each evolution step of a system is tagged by some information aimed at capturing

the possible interactions of a process with the environment. Nowadays process calculi

tend to adopt reduction semantics based on unlabelled transitions and barbed congru-

ence [20]. The main drawback of this approach is that to verify barbed congruences it

is often necessary to analyze the behaviour of processes under every context.

This scenario has motivated a novel stream of research [28,17,10,27,6,24,12,5]

aimed at defining techniques for “deriving labels and bisimilarity” from unlabeled re-

duction semantics. The main intuition is that labels should represent the “minimal con-

texts allowing a process to reduce”. The theory of reactive systems by Leifer and Milner

[17] provides a formal characterization (by means of a categorical construction) of such

“minimal contexts” and it focuses on the bisimilarity over transition systems labeled as:

P
C
−→ P ′ iff C[P ] −→ P ′ and C is the minimal context allowing such reduction.

In [6,5], it is argued that the above bisimilarity is often too fine grained and an

alternative, coarser, notion of bisimilarity is provided. Intuitively, in the bisimulation

game, each move (transition) P
C
−→ P ′, has to be matched it with a move C[Q] −→ Q′.

Labels and Bisimilarity for ccp. The operational semantics of ccp is expressed by re-

ductions between configurations of the form 〈P, d〉 −→ 〈P ′, d′〉 meaning that the pro-

cess P with store d may reduce to P ′ with store d′. From this semantics we shall derive

a labeled transition system for ccp by exploiting the intuition of [28,17]. The transition

〈P, d〉
e

−→ 〈P ′, d′〉 means that e is a “minimal constraint” (from the environment) that

needs to be added to d to reduce from 〈P, d〉 into 〈P ′, d′〉.

Similar ideas were already proposed in [25] but, the recent developments in [5] en-

lighten the way for obtaining a fully abstract equivalence. Indeed, the standard notion

of bisimilarity defined on our labeled semantics can be seen as an instance of the one

proposed in [17]. As for the bisimilarity in [25], it is too fine grained, i.e., it separates

processes which are indistinguishable. Instead, the notion of bisimulation from [5] (in-

stantiated to the case of ccp) is fully abstract with respect to the standard observational

equivalence given in [26]. Our work can therefore be also regarded as a compelling

application of the theory of reactive systems.

Contributions. We provide a labelled transition semantics and a novel notion of la-

belled bisimilarity for ccp by building upon the work in [25,5]. We also establish a

strong correspondence with existing ccp notions by providing a fully-abstract charac-

terization of a standard observable behaviour for infinite ccp processes: The limits of

fair computations. From [26] this implies a fully-abstract correspondence with the clo-

sure operator denotational semantics of ccp. Therefore, this work provides ccp with a

new co-inductive proof technique, coherent with the existing ones, for reasoning about

process equivalence. We shall confine ourselves to the summation free-fragment of ccp

[26]. Our notion of bisimilarity is orthogonal to this issue, however this restriction al-

lows us to obtain the fully-abstract characterization mentioned above.



1 Background

In this section we recall the syntax, the operational semantics and the observational

equivalence of concurrent constraint programming (ccp). We begin with the notion of

constraint system. We presuppose some basic knowledge of domain theory (see [1]).

1.1 Constraint Systems

The ccp model is parametric in a constraint system specifying the structure and inter-

dependencies of the information that processes can ask and tell. Following [26,9], we

regard a constraint system as a complete algebraic lattice structure in which the or-

dering ⊑ is the reverse of an entailment relation (c ⊑ d means that d contains “more

information” than c, hence c can be derived from d). The top element false represents

inconsistency, the bottom element true is the empty constraint, and the least upper

bound (lub) ⊔ represents the join of information.

Definition 1. A constraint system C is a complete algebraic lattice (Con,Con0,⊑
,⊔, true, false) where Con (the set of constraints) is a partially ordered set w.r.t. ⊑,

Con0 is the subset of finite elements of Con , ⊔ is the lub operation, and true, false are

the least and greatest elements of Con , respectively.

Recall that C is a complete lattice iff every subset of Con has a least upper bound in

Con . An element c ∈ Con is finite iff for any directed subset D of Con , c ⊑
⊔

D
implies c ⊑ d for some d ∈ D. C is algebraic iff each element c ∈ Con is the least

upper bound of the finite elements below c.

In order to model hiding of local variables and parameter passing, in [26] the notion

of constraint system is enriched with cylindrification operators and diagonal elements,

concepts borrowed from the theory of cylindric algebras (see [16]).

Let us consider a (denumerable) set of variables Var with typical elements x, y, z, . . .
Define ∃Var as the family of operators ∃Var = {∃x | x ∈ Var} (cylindric operators)

and DVar as the set DVar = {dxy | x, y ∈ Var} (diagonal elements).

A cylindric constraint system over a set of variables Var is a constraint system

whose support set Con ⊇ DVar is closed under the cylindric operators ∃Var and sat-

isfying the axioms in Def. 11 in Appendix A.1. For our purposes, it is enough to think

the operator ∃x as existential quantifier and the constraint dxy as the equality x = y.

Different notions of free variables and variables substitution for constraints have

been given in literature (see e.g. [30]). Here, we do not rely on any specific defini-

tion, but we just assume that they satisfy the following conditions, where c[y/x] is the

constraint obtained by substituting x by y in c and fv(c) is the set of free variables of

c: (1) if y /∈ fv(c) then (c[y/x])[x/y] = c; (2) (c ⊔ d)[y/x] = c[y/x] ⊔ d[y/x]; (3)

x /∈ fv(c[y/x]); (4) fv(c ⊔ d) = fv(c) ∪ fv(d).
We now define the cylindric constraint system that will be used in all the examples.

We assume the reader is familiar with basic concepts of Model Theory [8].

Example 1 (The S Constraint System). Let S = (ω + 1, 0,∞,=, <, succ) be a first-

order structure whose domain of interpretation is ω + 1
def

= ω ∪ {∞}, i.e., the natural



numbers extended with a top element ∞. The constant symbols 0 and ∞ are interpreted

as zero and infinity, respectively. The symbols =, < and succ are all binary predicates

on ω + 1. The symbol = is interpreted as the identity relation. The symbol < is inter-

preted as the set of pairs (n, m) s.t., n ∈ ω, m ∈ ω + 1 and n strictly smaller than m.

The symbol succ is interpreted as the set of pairs (n, m) s.t., n, m ∈ ω and m = n + 1.

Let Var be an infinite set of variables. Let L be the logic whose formulae φ are:

φ ::= t | φ1 ∧ φ2 | ∃xφ t ::= e1 = e2 | e1 < e2 | succ(e1, e2)

where e1 and e2 are either 0 or ∞ or variables in V ar. Note that formulas like x = n
or x < n (for n = 1, 2, . . . ) do not belong to L. A useful abbreviation to express them

is succn(x, y)
def

= ∃y0 . . .∃yn(
∧

0<i≤n succ(yi−1, yi) ∧ x = y0 ∧ y = yn). We use

x = n as shorthand for succn(0, x) and x < n as shorthand for ∃y(x < y ∧ y = n).
A variable assignment is a function µ : Var −→ ω + 1. We use A to denote the set

of all assignments; P(X) to denote the powerset of a set X , ∅ the empty set and ∩ the

intersection of sets. We use M(φ) to denote the set of all assignments that satisfy the

formula φ, where the definition of satisfaction is as expected.

We can now introduce a constraint system as follows: the set of constraints is P(A),
and define c ⊑ d iff c ⊇ d. The constraint false is ∅, while true is A. Given two

constraints c and d, c⊔d is the intersection c∩d. By abusing the notation, we will often

use a formula φ to denote the corresponding constraint, i.e., the set of all assignments

satisfying φ. E.g. we use 1 < x ⊑ 5 < x to mean M(1 < x) ⊑ M(5 < x).
From this structure, let us now define the cylindric constraint system S as follows.

We say that an assignment µ′ is an x-variant of µ if ∀y 6= x, µ(y) = µ′(y). Given

x ∈ Var and c ∈ P(A), the constraint ∃xc is the set of assignments µ such that exists

µ′ ∈ c that is an x-variant of µ. The diagonal element dxy is x = y. ⊓⊔

Before introducing the syntax of ccp, we need to make an extra-assumption that will

be pivotal in Section 2. Given a partial order (C,⊑), we say that c is strictly smaller

than d (written c ⊏ d) if c ⊑ d and c 6= d. We say that (C,⊑) is well-founded if there

exists no infinite descending chains · · · ⊏ cn ⊏ · · · ⊏ c1 ⊏ c0. For a set A ⊆ C, we say

that an element m ∈ A is minimal in A if for all a ∈ A, a 6⊏ m. We shall use min(A) to

denote the set of all minimal elements of A. Well-founded order and minimal elements

are related by the following result.

Lemma 1. Let (C,⊑) be a well-founded order and A ⊆ C. If a ∈ A, then ∃m ∈
min(A) s.t., m ⊑ a.

In spite of its being a reasonable assumption, well-foundedness of (Con,⊑) is not

usually required in the standard theory of ccp. We require it because the above lemma

is fundamental for proving the completeness of labeled semantics (Lemma 5).

1.2 Syntax

Concurrent constraint programming (ccp) was proposed in [29] and then refined in

[25,26]. We restrict ourselves to the summation-free fragment of ccp. The distinctive

confluent nature of this fragment is necessary for showing that our notion of bisimilarity

coincides with the observational equivalence for infinite ccp processes given in [26].



Definition 2. Assume a cylindric constraint system C = (Con,Con0,⊑,⊔, true, false)
over a set of variables Var . The ccp processes are given by the following syntax:

P,Q . . . ::= tell(c) | ask(c) → P | P ‖ Q | ∃xP | p(z)

where c ∈ Con0, x ∈ Var , z ∈ Var∗. We use Proc to denote the set of all processes.

Finite processes. Intuitively, the tell process tell(c) adds c to the global store. The

addition is performed regardless the generation of inconsistent information. The ask

process ask(c) → P may execute P if c is entailed from the information in the store.

The process P ‖ Q stands for the parallel execution of P and Q; ∃x is a hiding opera-

tor, namely it indicates that in ∃xP the variable x is local to P . The occurrences of x
in ∃xP are said to be bound. The bound variables of P , bv(P ), are those with a bound

occurrence in P , and its free variables, fv(P ), are those with an unbound occurrence.

Infinite processes. To specify infinite behaviour, ccp provides parametric process def-

initions. A process p(z) is said to be a procedure call with identifier p and actual

parameters z. We presuppose that for each procedure call p(z1 . . . zm) there exists a

unique procedure definition possibly recursive, of the form p(x1 . . . xm)
def

= P where

fv(P ) ⊆ {x1 . . . xm}. Furthermore we require recursion to be guarded: I.e., each pro-

cedure call within P must occur within an ask process. The behaviour of p(z1 . . . zm)
is that of P [z1 . . . zm/x1 . . . xm], i.e., P with each xi replaced with zi (applying α-

conversion to avoid clashes). We shall use D to denote the set of all process definitions.

Although we have not defined yet the semantics of processes, we find it instructive

to illustrate the above operators with the following example. Recall that we shall use S
in Ex. 1 as the underlying constraint system in all examples.

Example 2. Consider the following (family of) process definitions.

upn(x)
def

= ∃y(tell(y = n) ‖ ask (y = n) → up(x, y))

up(x, y)
def

= ∃y′(tell(y < x∧succ2(y, y′)) ‖ ask(y < x∧succ2(y, y′)) → up(x, y′))

Intuitively, upn(x), where n is a natural number, specifies that x should be greater than

any natural number (i.e., x = ∞ since x ∈ ω +1) by telling (adding to the global store)

the constraints yi+1 = yi + 2 and yi < x for some y0, y1, . . . with y0 = n. The process

up0 (x) ‖ ask(42 < x) → tell(z = 0), can set z = 0 when it infers from the global

store that 42 < x. (This inference is only possible after the 22nd call to up.) ⊓⊔

1.3 Reduction semantics

To describe the evolution of processes, we extend the syntax by introducing a process

stop representing successful termination, and a process ∃
e
xP representing the evolution

of a process of the form ∃xQ, where e is the local information (local store) produced

during this evolution. The process ∃xP can be seen as a particular case of ∃
e
xP : it

represents the situation in which the local store is empty. Namely, ∃xP = ∃
true
x P .



R1 〈tell(c), d〉 −→ 〈stop, d ⊔ c〉 R2
c ⊑ d

〈ask (c) → P, d〉 −→ 〈P, d〉

R3
〈P, d〉 −→ 〈P ′, d′〉

〈P ‖ Q, d〉 −→ 〈P ′ ‖ Q, d′〉
R4

〈P, e ⊔ ∃xd〉 −→ 〈P ′, e′ ⊔ ∃xd〉

〈∃e
xP, d〉 −→ 〈∃e′

x P ′, d ⊔ ∃xe′〉

R5
〈P [z/x], d〉 −→ γ′

〈p(z), d〉 −→ γ′

where p(x)
def

= P is a process definition in D

Table 1. Reduction semantics for ccp (The symmetric Rule for R3 is omitted)

A configuration is a pair 〈P, d〉 representing the state of a system; d is a constraint

representing the global store, and P is a process in the extended syntax. We use Conf

with typical elements γ, γ′, . . . to denote the set of configurations. The operational

model of ccp can be described formally in the SOS style by means of the transition

relation between configurations −→ ⊆ Conf × Conf defined in Table 1.

Rules R1-R3 and R5 are easily seen to realize the above process intuitions. Rule R4

is somewhat more involved. Here, we show an instructive example of its use, a detailed

description of this standard ccp rule is in Appendix A.2.

Example 3. We obtain the following reduction of P = ∃
e
x(ask (y > 1) → Q) where

the local store is e = x < 1, and the global store d′ = d ⊔ α with d = y > x,

α = x > 1.

R2

R4

(y > 1) ⊑ e ⊔ ∃xd′

〈ask (y > 1) → Q, e ⊔ ∃xd′〉 −→ 〈Q, e ⊔ ∃xd′〉

〈P, d′〉 −→ 〈∃e
xQ, d′ ⊔ ∃xe〉

Note that the x in d′ is hidden, by using existential quantification in the reduction

obtained by Rule R2. This expresses that the x in d′ is different from the one bound by

the local process. Otherwise an inconsistency would be generated (i.e., (e⊔d′) = false).
Rule R2 applies since (y > 1) ⊑ e ⊔ ∃xd′. Note that the free x in e ⊔ ∃xd′ is hidden in

the global store to indicate that is different from the global x. ⊓⊔

1.4 Observational equivalence

The notion of fairness is central to the definition of observational equivalence for ccp.

To define fair computations, we introduce the notions of enabled and active processes,

following [11]. Observe that any transition is generated either by a tell(c) or by an

ask (c) → P . We say that a process is active in a transition, if it generates such



transition. Moreover, we say that a process is enabled in a configuration γ if it is active

in a transition γ −→ γ′.

Definition 3. A computation γ0 −→ γ1 −→ . . . −→ γn . . . is said to be fair if for each

process enabled in some γi there exists j ≥ i such that the process is active in γj .

Note that a finite fair computation is guaranteed to be maximal, namely no outgoing

transitions are possible from its last configuration.

The standard notion of observables for ccp are the results computed by a process for

a given initial store. The result of a computation is defined as the least upper bound of

all the stores occurring in the computation, which, due to the monotonic properties of

ccp, form an increasing chain. More formally, given a finite or infinite computation ξ of

the form 〈Q0, d0〉 −→ 〈Q1, d1〉 −→ ... −→ 〈Qi, di〉 −→ ..., the result of ξ, denoted by

Result(ξ), is the constraint
⊔

i di. Note that for a finite computation the result coincides

with the store of the last configuration.

The following theorem from [26] states that all the fair computations of a configu-

ration have the same result (due to fact that summation-free ccp is confluent).

Theorem 1 (from [26]). Let γ be a configuration and let ξ1 and ξ2 be two computations

of γ. If ξ1 and ξ2 are fair, then Result(ξ1) = Result(ξ2).

This allows us to set Result(γ)
def

= Result(ξ) for any fair computation ξ of γ.

Definition 4. (Observational equivalence) Let O : Proc → Con0 → Con be given

by O(P )(d) = Result(〈P, d〉). We say that P and Q are observational equivalent,

written P ∼o Q, iff O(P ) = O(Q).

Example 4. Consider the processes P = up0(x) ‖ up1(y) and Q = ∃z(tell(z = 0) ‖

ask(z = 0) → fairup(x, y, z)) with up0 and up1 as in Ex. 2 and fairup(x, y, z)
def

=

∃z′(tell(z < x ∧ succ(z, z′)) ‖ ask ((z < x) ∧ succ(z, z′)) → fairup(y, x, z′)))

Let s(γ) denote the store in the configuration γ. For every infinite computation ξ :
〈P, true〉 = γ0 −→ γ1 −→ . . . with (1 < y) 6⊑ s(γi) for each i ≥ 0, ξ is not fair and

Result(ξ) = (x = ∞). In contrast, every infinite computation ξ : 〈Q, true〉 = γ0 −→
γ1 −→ . . . is fair and Result(ξ) = (x = ∞ ∧ y = ∞). Nevertheless, under our fair

observations, P and Q are indistinguishable, i.e., O(P ) = O(Q). ⊓⊔

2 Saturated Bisimilarity for ccp

We introduce a notion of bisimilarity in terms of (unlabelled) reductions and barbs and

we prove that this equivalence is fully abstract w.r.t. observational equivalence.

2.1 Saturated Barbed Bisimilarity

Barbed equivalences have been introduced in [20] for CCS, and have become the stan-

dard behavioural equivalences for formalisms equipped with unlabeled reduction se-

mantics. Intuitively, barbs are basic observations (predicates) on the states of a system.



The choice of the “right” barbs is a crucial step in the barbed approach, and it is

usually not a trivial task. For example, in synchronous languages like CCS or π-calculus

both the inputs and the outputs are considered as barbs, (see e.g. [20,19]), while in the

asynchronous variants only the outputs (see e.g. [2]). Even several works (e.g. [23,13])

have proposed abstract criteria for defining “good” barbs.

We shall take as barbs all the finite constraints in Con0. This choice allows us to

introduce a barbed equivalence (Def. 7) that coincides with the standard observational

equivalence (Def. 4). It is worth to note that in ∼o, the observables are all the constraints

in Con and not just the finite ones.

We say that γ = 〈P, d〉 satisfies the barb c, written γ ↓c, iff c ⊑ d; γ weakly satisfies

the barb c, written γ ⇓c, iff γ −→∗ γ′ and γ′ ↓c.1

Definition 5. (Barbed bisimilarity) A barbed bisimulation is a symmetric relation R
on configurations such that whenever (γ1, γ2) ∈ R:

(i) if γ1 ↓c then γ2 ↓c,
(ii) if γ1 −→ γ′

1 then there exists γ′
2 such that γ2 −→ γ′

2 and (γ′
1, γ

′
2) ∈ R.

We say that γ1 and γ2 are barbed bisimilar, written γ1 ∼̇b γ2, if there exists a barbed

bisimulation R s.t. (γ1, γ2) ∈ R. We write P ∼̇b Q iff 〈P, true〉 ∼̇b 〈Q, true〉.

Congruence characterization. One can verify that ∼̇b is an equivalence. However, it

is not a congruence; i.e., it is not preserved under arbitrary contexts. A context C is a

term with a hole [−] s.t., replacing it with a process P yields a process term C[P ]. E.g.,

C = tell(c) ‖ [−] and C[tell(d)] = tell(c) ‖ tell(d).

Example 5. Let us consider the context C = tell(a) ‖ [−] and the processes P =
ask (b) → tell(d) and Q = ask (c) → tell(d) with a, b, c, d 6= true, b ⊑ a and

c 6⊑ a. We have 〈P, true〉∼̇b〈Q, true〉 because both configurations cannot move and

they only satisfy the barb true . But 〈C[P ], true〉6∼̇b〈C[Q], true〉, because the former

can perform three transitions (in sequence), while the latter only one. ⊓⊔

An elegant solution to modify bisimilarity for obtaining a congruence has been

introduced in [21] for the case of weak bisimilarity in CCS. This work has inspired

the introduction of saturated bisimilarity [6] (and its extension to the barbed approach

[5]). The basic idea is simple: saturated bisimulations are closed w.r.t. all the possible

contexts of the language. In the case of ccp, it is enough to require that bisimulations

are upward closed as in condition (iii) below.

Definition 6. (Saturated barbed bisimilarity). A saturated barbed bisimulation is a

symmetric relation R on configurations such that whenever (γ1, γ2) ∈ R with γ1 =
〈P, d〉 and γ2 = 〈Q, e〉:

(i) if γ1 ↓c then γ2 ↓c,
(ii) if γ1 −→ γ′

1 then there exists γ′
2 such that γ2 −→ γ′

2 and (γ′
1, γ

′
2) ∈ R,

(iii) for every a ∈ Con0, (〈P, d ⊔ a〉, 〈Q, e ⊔ a〉) ∈ R.

We say that γ1 and γ2 are saturated barbed bisimilar, written γ1 ∼̇sb γ2, if there

exists a saturated barbed bisimulation R s.t. (γ1, γ2) ∈ R. We write P ∼̇sb Q iff

〈P, true〉∼̇sb〈Q, true〉.

1 As usual, −→∗ denotes the reflexive and transitive closure of −→.



Definition 7. (Weak saturated barbed bisimilarity). Weak saturated barbed bisimilarity

(≈̇sb) is obtained from Def. 6 by replacing −→ with −→∗ and ↓c with ⇓c.

Since ∼̇sb is itself a saturated barbed bisimulation, it is obvious that it is upward closed.

This fact also guarantees that it is a congruence w.r.t. all the contexts of ccp: a context

C can modify the behaviour of a configuration γ only by adding constraints to its store.

The same holds for ≈̇sb.

2.2 Correspondence with Observational Equivalence

We now show that ≈̇sb coincides with the observational equivalence ∼o. From [26] it

follows that ≈̇sb coincides with the standard denotational semantics for ccp.

First, we recall some basic facts from domain theory central to our proof. Two (pos-

sibly infinite) chains d0 ⊑ d1 ⊑ · · · ⊑ dn ⊑ . . . and e0 ⊑ e1 ⊑ · · · ⊑ en ⊑ . . . are

said to be cofinal if for all di there exists an ej such that di ⊑ ej and, viceversa, for all

ei there exists a dj such that ei ⊑ dj .

Lemma 2. Let d0 ⊑ d1 ⊑ · · · ⊑ dn ⊑ . . . and e0 ⊑ e1 ⊑ · · · ⊑ en ⊑ . . . be two

chains. (1) If they are cofinal, then they have the same limit, i.e.,
⊔

di =
⊔

ei. (2) If the

elements of the chains are finite and
⊔

di =
⊔

ei, then the two chains are cofinal.

In the proof, we will show that the stores of any pairs of fair computations of equivalent

processes form pairs of cofinal chains. First, the following result relates weak barbs and

fair computations.

Lemma 3. Let 〈P0, d0〉 −→ 〈P1, d1〉 −→ . . . −→ 〈Pn, dn〉 −→ . . . be a (possi-

bly infinite) fair computation. If 〈P0, d0〉 ⇓c then there exist a store di (in the above

computation) such that c ⊑ di.

Proof. If 〈P0, d0〉 ⇓c, then 〈P0, d0〉 −→
∗ 〈P ′, d′〉 with c ⊑ d′ (by definition of barb).

If 〈P ′, d′〉 belongs to the above computation (i.e., there exists an i such that Pi = P ′

and di = d′) then the result follows immediately. If 〈P ′, d′〉 does not belong to the

computation, it holds that there exists 〈Pi, di〉 (in the computation above) such that

〈P ′, d′〉 −→∗ 〈Pi, di〉, because (summation-free) ccp is confluent and the computation

is fair. Since the store is preserved, d′ ⊑ di and then c ⊑ di. ⊓⊔

Theorem 2. P∼oQ if and only if P ≈̇sbQ.

Proof. The proof proceeds as follows:

– From ≈̇sb to ∼o. Suppose that 〈P, true〉 ≈̇sb 〈Q, true〉 and take a finite input

b ∈ Con0. Let

〈P, b〉 −→ 〈P0, d0〉 −→ 〈P1, d1〉 −→ . . . −→ 〈Pn, dn〉 −→ . . .

〈Q, b〉 −→ 〈Q0, e0〉 −→ 〈Q1, e1〉 −→ . . . −→ 〈Qn, en〉 −→ . . .

be two fair computations. Since ≈̇sb is upward closed, 〈P, b〉 ≈̇sb 〈Q, b〉 and thus,

for all di, 〈Q, b〉 ⇓di
. By Lemma 3, it follows that there exists an ej (in the above

computation) such that di ⊑ ej . Analogously, for all ei there exists a dj such

that ei ⊑ dj . Then the two chains are cofinal and by Lemma 2.1, it holds that⊔
di =

⊔
ei, that means O(P )(b) = O(Q)(b).



– From ∼o to ≈̇sb. Suppose that P ∼o Q. We first show that for all b ∈ Con0, 〈P, b〉
and 〈Q, b〉 satisfy the same weak barbs. Let

〈P, b〉 −→ 〈P0, d0〉 −→ 〈P1, d1〉 −→ . . . −→ 〈Pn, dn〉 −→ . . .

〈Q, b〉 −→ 〈Q0, e0〉 −→ 〈Q1, e1〉 −→ . . . −→ 〈Qn, en〉 −→ . . .

be two (possibly infinite) fair computations. Since P ∼o Q, then
⊔

di =
⊔

ei.

Since all the stores of computations are finite constraints, then by Lemma 2.2, it

holds that for all di there exists an ej such that di ⊑ ej . Now suppose that 〈P, b〉 ⇓c.

By Lemma 3, it holds that there exists a di (in the above computation) such that

c ⊑ di. Thus c ⊑ di ⊑ ej that means 〈Q, b〉 ⇓c.

With this observation it is easy to prove that

R = {(γ1, γ2) | ∃b s.t. 〈P, b〉 −→∗ γ1, 〈Q, b〉 −→∗ γ2}

is a weak saturated barbed bisimulation (Def. 7). Take (γ1, γ2) ∈ R.

If γ1 ⇓c then 〈P, b〉 ⇓c and, by the above observation, 〈Q, b〉 ⇓c. Since ccp is

confluent, also γ2 ⇓c.

The fact that R is closed under −→∗ is evident from the definition of R. While for

proving that R is upward-closed take γ1 = 〈P ′, d′〉 and γ2 = 〈Q′, e′〉. It is easy

to see that for all a ∈ Con0, 〈P, b ⊔ a〉 −→∗ 〈P ′, d′ ⊔ a〉 and 〈Q, b ⊔ a〉 −→∗

〈Q′, e′ ⊔ a〉. Thus, by definition of R, (〈P ′, d′ ⊔ a〉, 〈Q′, e′ ⊔ a〉) ∈ R. ⊓⊔

3 Labeled Semantics

Although ∼̇sb is fully abstract, it is at some extent unsatisfactory because of the upward-

closure (namely, the quantification over all possible a ∈ Con0 in condition (iii)) of

Def. 6. We shall deal with this by refining the notion of transition by adding to it a label

that carries additional information about the constraints that cause the reduction.

Labelled Transitions. Intuitively, we will use transitions of the form

〈P, d〉
α

−→ 〈P ′, d′〉

where label α represents a minimal information (from the environment) that needs to

be added to the store d to evolve from 〈P, d〉 into 〈P ′, d′〉, i.e., 〈P, d ⊔ α〉 −→ 〈P ′, d′〉.
From a more abstract perspective, our labeled semantic accords with the proposal of

[28,17] of looking at “labels as the minimal contexts allowing a reduction”. In our

setting we take as contexts only the constraints that can be added to the store.

The Rules. The labelled transition −→ ⊆ Conf ×Con0×Conf is defined by the rules

in Table 3. We shall only explain rules LR2 and LR4 as the other rules are easily seen

to realize the above intuition and follow closely the corresponding ones in Table 1.

The rule LR2 says that 〈ask (c) → P, d〉 can evolve to 〈P, d⊔α〉 if the environment

provides a minimal constraint α that added to the store d entails c, i.e., α ∈ min{a ∈



LR1 〈tell(c), d〉
true
−→ 〈stop, d ⊔ c〉

LR2
α ∈ min{a ∈ Con0 | c ⊑ d ⊔ a }

〈ask (c) → P, d〉
α

−→ 〈P, d ⊔ α〉
LR3

〈P, d〉
α

−→ 〈P ′, d′〉

〈P ‖ Q, d〉
α

−→ 〈P ′ ‖ Q, d′〉

LR4
〈P, e ⊔ d[z/x]〉

α
−→ 〈P ′, α ⊔ e′ ⊔ d[z/x]〉

〈∃e
xP, d〉

α[x/z]
−→ 〈∃e′

x P ′, α[x/z] ⊔ (∃xe′) ⊔ d〉
with x 6∈ fv(α), z 6∈ fv(P ) ∪ fv(e ⊔ d)

LR5
〈P [z/x], d〉

α
−→ γ′

〈p(z), d〉
α

−→ γ′

where p(x)
def

= P is a process definition in D

Table 2. Labelled Transitions. (The symmetric Rule for LR3 is omitted)

Con0 | c ⊑ d ⊔ a }. Note the assuming (Con,⊑) to be well-founded (Sec. 1.1) is

necessary to guarantee that α exists whenever {a ∈ Con0 | c ⊑ d ⊔ a } is not empty.

To give an intuition about LR4, it may be convenient to first explain why a naive

adaptation of the analogous reduction rule R4 in Table 1 would not work. One may be

tempted to define the rule for the local case, by analogy to the labelled local rules in

other process calculi (e.g., the π-calculus) and R4, as follows:

(*)
〈P, e ⊔ ∃xd〉

α
−→ 〈Q, e′ ⊔ ∃xd〉

〈∃e
xP, d〉

α
−→ 〈∃e′

x Q, d ⊔ ∃xe′〉
where x 6∈ fv(α)

This rule however is not “complete” (in the sense of Lemma 5 above) as it does not

derive all the transitions we wish to have.

Example 6. Let P as in Ex. 3, i.e., P = ∃
x<1
x (ask (y > 1) → Q) and d = y > x.

Note that α = x > 1 is a minimal constraint that added to d enables a reduction from P .

In Ex. 3 we obtained the transition: 〈P, d⊔α〉 −→ 〈∃x<1
x Q, d⊔α⊔ ∃x(x < 1)〉 Thus,

we would like to have a transition from 〈P, d〉 labelled with α. But such a transition

cannot be derived with Rule (*) above since x ∈ fv(α). ⊓⊔

Now, besides the side condition, another related problem with Rule (*) arises from

the existential quantification ∃xd in the antecedent transition 〈P, e⊔∃xd〉
α

−→ 〈Q, e′ ⊔
∃xd〉. This quantification hides the effect of d on x and thus is not possible to identify

the x in α with the x in d. The information from the environment α needs to be added

to the global store d, hence the occurrences of x in both d and α must be identified.

Notice that dropping the existential quantification of x in d in the antecedent transition

does identify the occurrences of x in d with those in α but also with those in the local

store e thus possibly generating variable clashes.



The rule LR4 in Table 2 solves the above-mentioned issues by using in the an-

tecedent derivation a fresh variable z that acts as a substitute for the free occurrences

of x in d and α. (Recall that c[z/x] represents c with x replaced with z). This way we

identify with z the free occurrences of x in d and α and avoid clashes with those in e.

E.g., for the process defined in the Ex.6, using LR4 (and LR2) one can derive

〈ask (y > 1) → Q, x < 1 ⊔ y > z〉
z>1
−→ 〈Q, x < 1 ⊔ y > z ⊔ z > 1〉

〈∃x<1
x (ask (y > 1) → Q), y > x〉

x>1
−→ 〈∃x<1

x Q,∃x(x < 1) ⊔ y > x ⊔ x > 1〉

The labeled semantics is sound and complete w.r.t. the unlabeled one. Soundness

states that 〈P, d〉
α

−→ 〈P ′, d′〉 corresponds to our intuition that if α is added to d, P can

reach 〈P ′, d′〉. Completeness states that if we add a to (the store in) 〈P, d〉 and reduce

to 〈P ′, d′〉, it exists a minimal information α ⊑ a such that 〈P, d〉
α

−→ 〈P ′, d′′〉 with

d′′ ⊑ d′. The following lemmata are proved in Appendix A.3.

Lemma 4. (Soundness). If 〈P, d〉
α

−→ 〈P ′, d′〉 then 〈P, d ⊔ α〉 −→ 〈P ′, d′〉.

Lemma 5. (Completeness). If 〈P, d⊔a〉 −→ 〈P ′, d′〉 then ∃α, b s.t. 〈P, d〉
α

−→ 〈P ′, d′′〉
and α ⊔ b = a, d′′ ⊔ b = d′.

Corollary 1. 〈P, d〉
true
−→ 〈P ′, d′〉 if and only if 〈P, d〉 −→ 〈P ′, d′〉.

4 Strong and Weak Bisimilarity

Having defined our labelled transitions for ccp, we now proceed to define an equiva-

lence that characterizes ∼̇sb without the upward closure condition.

When defining bisimilarity over a labeled transition system, barbs are not usually

needed because they can be somehow inferred by the labels of the transitions. For ex-

ample in CCS, P ↓a iff P
a

−→. The case off ccp is different: barbs cannot be removed

from the definition of bisimilarity because they cannot be inferred by the transitions.

In order to remove barbs from ccp, we could have inserted labels showing the store of

processes (as in [25]) but this would have betrayed the philosophy of “labels as minimal

contexts”. Then, we have to define bisimilarity as follows.

Definition 8. (Syntactic bisimilarity). A syntactic bisimulation is a symmetric relation

R on configurations such that whenever (γ1, γ2) ∈ R:

(i) if γ1 ↓c then γ2 ↓c,

(ii) if γ1
α

−→ γ′
1 then ∃γ′

2 such that γ2
α

−→ γ′
2 and (γ′

1, γ
′
2) ∈ R.

We say that γ1 and γ2 are syntactically bisimilar, written γ1 ∼S γ2, if there exists a

syntactic bisimulation R such that (γ1, γ2) ∈ R.

We called the above bisimilarity “syntactic”, because it does not take into account

the “real meaning” of the labels. This equivalence coincides with the one in [25] (apart

from the fact that in the latter, barbs are implicitly observed by the transitions) and,

from a more general point of view can be seen as an instance of bisimilarity in [17]. In

[6], it is argued that the equivalence in [17] is often over-discriminating. This is also the

case of ccp, as illustrated by the following example.



Example 7. Let P = ask (x < 10) → tell(y = 0) and Q = ask (x < 5) →
tell(y = 0). The configurations γ1 = 〈P ‖ Q, true〉 and γ2 = 〈P ‖ P, true〉 are

not equivalent according to ∼S . Indeed γ1
x<10
−→ γ′

1
x<5
−→ γ′′

1 , while γ2 after performing

γ2
x<10
−→ γ′

2 can only perform γ′
2

true
−→ γ′′

2 . However γ1 ∼̇sb γ2. ⊓⊔

To obtain coarser equivalence (coinciding with ∼̇sb), we define the following.

Definition 9. (Strong bisimilarity). A strong bisimulation is a symmetric relation R on

configurations such that whenever (γ1, γ2) ∈ R with γ1 = 〈P, d〉 and γ2 = 〈Q, e〉 :

(i) if γ1 ↓c then γ2 ↓c,
(ii) if γ1

α
−→ γ′

1 then ∃γ′
2 s.t. 〈Q, e ⊔ α〉 −→ γ′

2 and (γ′
1, γ

′
2) ∈ R.

We say that γ1 and γ2 are strongly bisimilar, written γ1 ∼̇ γ2, if there exists a strong

bisimulation R such that (γ1, γ2) ∈ R.

To give some intuition about the above definition, let us recall that in 〈P, d〉
α

−→ γ′

the label α represents minimal information from the environment that needs to be added

to the store d to evolve from 〈P, d〉 into γ′. We do not require the transitions from 〈Q, e〉
to match α. Instead (ii) requires something weaker: If α is added to the store e, it should

be possible to reduce into some γ′′ that it is in bisimulation with γ′. This condition is

weaker because α may not be a minimal information allowing a transition from 〈Q, e〉
into a γ′′ in the bisimulation, as shown in the previous example.

Definition 10. (Weak bisimilarity). A weak bisimulation is a symmetric relation R on

configurations such that whenever (γ1, γ2) ∈ R with γ1 = 〈P, d〉 and γ2 = 〈Q, e〉 :

(i) if γ1 ↓c then γ2 ⇓c,
(ii) if γ1

α
−→ γ′

1 then ∃γ′
2 s.t. 〈Q, e ⊔ α〉 −→∗ γ′

2 and (γ′
1, γ

′
2) ∈ R.

We say that γ1 and γ2 are weakly bisimilar, written γ1 ≈̇ γ2, if there exists a weak

bisimulation R such that (γ1, γ2) ∈ R.

Example 8. We can show that tell(true) ≈̇ ask(c) → tell(d) when d ⊑ c. Intuitively,

this corresponds to the fact that the implication c ⇒ d is equivalent to true when c
entails d. Let us take γ1 = 〈tell(true), true〉 and γ2 = 〈ask(c) → tell(d), true〉.

Their labeled transition systems are the following: γ1
true
−→ 〈stop, true〉 and γ2

c
−→

〈tell(d), c〉
true
−→ 〈stop, c〉. It is now easy to see that the symmetric closure of the

relation R given below is a weak bisimulation.

R = {(γ2, γ1), (γ2, 〈stop, true〉), (〈tell(d), c〉, 〈stop, c〉), (〈stop, c〉, 〈stop, c〉)}

⊓⊔

The following theorem states that strong and weak bisimilarity coincide, resp., with

∼̇sb and ≈̇sb. Hence γ1 and γ2 in the above example are also in ≈̇sb (and, by Thm 2,

also in ∼o). It is worth noticing that any saturated barbed bisimulation (Def. 7) relating

γ1 and γ2 is infinite in dimension, since it has to relate 〈tell(true), a〉 and 〈ask(c) →
tell(d), a〉 for all constraints a ∈ Con0. Instead, the relation R above is finite and it

represents (by virtue of the following theorem) a proof also for γ1≈̇sbγ2.

Theorem 3. ∼̇sb = ∼̇ and ≈̇sb = ≈̇.

This is proved in Appendixes A.3 and A.4.



5 Conclusions, Related and Future Work

In this paper we introduced labeled semantics and bisimilarity for ccp. Our equivalence

characterizes the observational semantics introduced in [26] based on limits of infi-

nite computations, by means of a co-inductive definition. It follows from [26] that our

bisimilarity coincides with the equivalence induced by the standard closure operators

semantics of ccp. Therefore, our weak bisimulation approach represents a novel sound

and complete proof technique for observational equivalence in ccp.

Our work is also interesting for the research programme on “labels derivation”. Our

labeled semantics can be regarded as an instance of the one introduced at an abstract

level in [17]. Syntactical bisimulation (Def. 8) as an instance of the one in [17], while

strong and weak bisimulations (Def. 9 and Def. 10) as instances of those in [5]. Further-

more, syntactical bisimulation intuitively coincides with the one in [25], while saturated

barbed bisimulation (Def. 6) with the one in [18]. Recall that syntactical bisimilarity is

too fine grained, while saturated barbed bisimulation requires the relation to be upward

closed (and thus, infinite in dimension). Our weak bisimulation instead is fully abstract

and avoid the upward closure. Summarizing, the framework in [5] provides us an ab-

stract approach for deriving a novel interesting notion of bisimulation.

We chose not to employ the categorical machinery of [17], for two raisons. First,

the use of category theory would have restricted the audience of the paper. Second, the

techniques in [17] would have derived a transition system not defined in a SOS style.

It is worth noticing that the restriction to the summation-free fragment is only

needed for proving the coincidence with [26]. The theorem in Section 2.1 still holds

in the presence of summation. Analogously, we could extend all the definitions to infi-

nite constraints without invalidating these theorems.

Some recent works [7,15,14] have defined bisimilarity for novel languages featuring

the interaction paradigms of both ccp and the π-calculus. In these works, bisimilarity

is defined starting from transition systems whose labels represent communications in

the style of the π-calculus. Instead we employ barbs on a purely unlabeled semantics.

Preliminary attempts have shown that defining a correspondence with our semantics is

not trivial. We left this for an extended version of the paper.

As shown e.g. in [18] there are strong connections between ccp processes and logic

formulae. As future work we would like to investigate whether our present results can be

adapted to provide a novel characterization of logic equivalence in terms of bisimilarity.

Preliminary results show that at least the propositional fragment, without negation, can

be characterized in terms of bisimilarity.
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A Appendix

A.1 Cylindric Constraint System

Definition 11. A cylindric constraint system over a set of variables Var is a constraint

system whose support set Con ⊇ DVar is closed under the cylindric operators ∃Var

and quotiented by Axioms C1 − C4, and whose ordering ⊑ satisfies Axioms C5 − C7 :

C1. ∃x∃yc = ∃y∃xc,

C2. dxx = true ,

C3. if z 6= x, y then dxy = ∃z(dxz ⊔ dzy),
C4. ∃x(c ⊔ ∃xd) = ∃xc ⊔ ∃xd,

C5. ∃xc ⊑ c,

C6. if c ⊑ d then ∃xc ⊑ ∃xd,

C7. if x 6= y then c ⊑ dxy ⊔ ∃x(c ⊔ dxy).

where c, ci, d indicate finite constraints, and ∃xc ⊔ d stands for (∃xc) ⊔ d.

The axioms of cylindric constraint systems given above have been proposed in [26]

following the work of cylindric algebras. They give ∃x the flavour of an existential

quantifier, as the notation suggest. The constraint dxy can be viewed as the equality

x = y.

A.2 Description of the Local Rule

Here we shall describe the reduction rule for local processes give in Section 1.3, Table 1.

Rule R4 is given as follows:

R4
〈P, e ⊔ ∃xd〉 −→ 〈P ′, e′ ⊔ ∃xd〉

〈∃e
xP, d〉 −→ 〈∃e′

x P ′, d ⊔ ∃xe′〉

Intuitively, ∃
e
xP behaves like P , except that the variable x possibly present in P

must be considered local, and that the information present in e has to be taken into

account. It is convenient to distinguish between the external and the internal point of

view. From the internal point of view, the variable x possibly occurring in the global

store d is hidden.

This corresponds to the usual scoping rules: the x in d is global, hence “covered” by

the local x. Therefore, P has no access to the information on x in d, and this is achieved

by filtering d with ∃x. Furthermore, P can use the information (which may concern also

the local x) that has been produced locally and accumulated in e. In conclusion, if the

visible store at the external level is d2, then the store that is visible internally by P
is e ⊔ ∃xd. Now, if P is able to make a step, thus reducing to P ′ and transforming

the local store into e′, what we see from the external point of view is that the process

is transformed into ∃
e′

x P ′, and that the information ∃xe present in the global store is

transformed into ∃xe′.

2 Operationally ∃
e
xP can only derive from a ccp process of the form ∃xP ′′, which has produced

the local information e while evolving into ∃
e
xP . This local information is externally seen as

∃xe, that is, ∃xe ⊑ d



A.3 Proof of the strong case

In Section 2.1 we introduced ∼̇sb and its weak variant ≈̇sb. By relying on labeled transi-

tions, in Section 2 we introduced ∼̇ and ≈̇. This technical Appendix is devoted to show

that ∼̇sb = ∼̇ and ≈̇sb = ≈̇.

For technical reasons we shall use an equivalent formulation of Rule R4.

R4’
〈P, e ⊔ d[z/x]〉 −→ 〈P ′, e′ ⊔ d[z/x]〉

〈∃e
xP, d〉 −→ 〈∃e′

x P ′, d ⊔ ∃xe′〉
with z 6∈ fv(P ) ∪ fv(e) ∪ fv(d)

Lemma 4. (Soundness). If 〈P, d〉
α

−→ 〈P ′, d′〉 then 〈P, d ⊔ α〉 −→ 〈P ′, d′〉.

Proof. By induction on (the depth) of the inference of 〈P, d〉
α

−→ 〈P ′, d′〉. Here we

confine ourselves to considering two cases, the others are similar or easier to verify.

– Using LR2 then P = ask (c) → P ′, α ∈ min{a | c ⊑ d ⊔ a} and d′ = d ⊔ α.

Now the transition 〈P, d⊔α〉 −→ 〈P ′, d⊔α〉 = 〈P ′, d′〉 follows from the fact that

c ⊑ d ⊔ α and by applying Rule R2.

– Using LR4 then P = ∃
e
xQ,P ′ = ∃

e′

x Q′, α = α′[x/z] and d′ = d ⊔ (∃xe′) ⊔

α′[x/z] with 〈Q, e ⊔ d[z/x]〉
α′

−→ 〈Q′, e′ ⊔ d[z/x] ⊔ α′〉 by a shorter inference.

By appeal to induction then 〈Q, e ⊔ d[z/x] ⊔ α′〉 −→ 〈Q′, e′ ⊔ d[z/x] ⊔ α′〉. Note

that α′ = (α′[x/z])[z/x] = α[z/x]. Thus, the previous transition is equivalent

to 〈Q, e ⊔ (d ⊔ α)[z/x]〉 −→ 〈Q′, e′ ⊔ (d ⊔ α)[z/x]〉. Using this reduction, the

transition 〈∃e
xQ, d ⊔ α〉 −→ 〈∃e′

x Q′, d ⊔ (∃xe′) ⊔ α〉 follows from rule R4’. Hence

〈P, d ⊔ α〉 −→ 〈P ′, d′〉. ⊓⊔

Lemma 5. (Completeness). If 〈P, d⊔a〉 −→ 〈P ′, d′〉 then ∃α, b s.t. 〈P, d〉
α

−→ 〈P ′, d′′〉
and α ⊔ b = a, d′′ ⊔ b = d′.

Proof. The proof proceeds by induction on (the depth) of the inference of 〈P, d⊔a〉 −→
〈P ′, d′〉. Here we show only two cases, the rest are similar or easier to verify.

– Using the rule R2. Then P = ask (c) → P ′, d′ = d ⊔ a and c ⊑ d ⊔ a. Note that

a ∈ {a′ ∈ Con0|c ⊑ d ⊔ a′} and then, by Lemma 1, there exists α ∈ min{a′ ∈

Con0|c ⊑ d ⊔ a′} such that α ⊑ a. By rule LR2, 〈P, d〉
α

−→ 〈P ′, d ⊔ α〉. Let

d′′ = d ⊔ α and take b = a. We have that a = α ⊔ b and that d′ = d ⊔ a =
d ⊔ α ⊔ b = d′′ ⊔ b.

– Using the rule R4’. Then P = ∃
e
xQ,P ′ = ∃

e′

x Q′, and d′ = d⊔a⊔∃xe′ with 〈Q, e⊔
(d⊔a)[z/x]〉 −→ 〈Q′, e′⊔(d⊔a)[z/x]〉 where z 6∈ fv(Q)∪fv(e)∪fv(d)∪fv(a), by

a shorter inference. This transition is equivalent to 〈Q, (e⊔ d[z/x])⊔ a[z/x]〉 −→
〈Q′, (e′ ⊔ d[z/x]) ⊔ a[z/x]〉. By induction hypothesis, we have that there exist α
and b such that

〈Q, e ⊔ d[z/x]〉
α

−→ 〈Q′, d′′1〉

with a[z/x] = α ⊔ b and e′ ⊔ d[z/x] ⊔ a[z/x] = d′′1 ⊔ b.

Note that the active process generating this transition could be either an ask or a

tell. If it is generated by an ask then d′′1 = d[z/x]⊔e⊔α. If it is generated by a tell,



then α = true and d′′ = d[z/x] ⊔ e′ ⊔ α. Thus in both cases it is safe to assume

that d′′1 = d[z/x] ⊔ e′ ⊔ α. Now, note that x /∈ fv(a[z/x]) = fv(α ⊔ b), and thus

x /∈ fv(α) ∪ fv(b). By rule LR4, we have that

〈∃e
xQ, d〉

α[x/z]
−→ 〈∃e′

x Q′, d ⊔ ∃xe′ ⊔ α[x/z]〉.

From a[z/x] = α ⊔ b, we have that (a[z/x])[x/z] = (α ⊔ b)[x/z] that is a =
α[x/z] ⊔ b[x/z]. Now, take d′′ = d ⊔ ∃xe′ ⊔ α[x/z]. We have that d′′ ⊔ b[x/z] =
d⊔∃xe′⊔α[x/z]⊔b[x/z] that, by the previous equivalence is equal to d⊔∃xe′⊔a,

that is d′. ⊓⊔

Note that Lemma 1 is needed for the above proof in the case of rule R2. This actually

the reason why in Sec. 1.1 we have assumed (Con,⊑) to be well-founded.

Lemma 6. If 〈P, d〉∼̇〈Q, e〉, then ∀a ∈ Con0, 〈P, d ⊔ a〉∼̇〈Q, e ⊔ a〉.

Proof. Let R = {(〈P, d ⊔ a〉, 〈Q, e ⊔ a〉) s.t. 〈P, d〉∼̇〈Q, e〉}. We show that R is a

strong bisimulation. We take (〈P, d⊔a〉, 〈Q, e⊔a〉) ∈ R and we prove that they satisfy

conditions (i) and (ii) of Definition 9.

(i) By hypothesis 〈P, d〉∼̇〈Q, e〉. Since 〈P, d〉 ↓d then 〈Q, e〉 ↓d, that is, d ⊑ e. For the

same reason, d ⊑ e and thus d = e. So, trivially, 〈P, d ⊔ a〉 and 〈Q, e ⊔ a〉 satisfy

the same barbs.

(ii) Suppose that 〈P, d ⊔ a〉
α

−→ 〈P ′, d′〉. We need to prove that there exist Q′ and e′

such that 〈Q, e ⊔ a ⊔ α〉 −→ 〈Q′, e′〉 and (〈P ′, d′〉, 〈Q′, e′〉) ∈ R.

By Lemma 4, we have that 〈P, d ⊔ a ⊔ α〉 −→ 〈P ′, d′〉. From this, we can obtain

a labelled transition of 〈P, d〉 by using Lemma 5: 〈P, d〉
α′

−→ 〈P ′, d′′〉 and there

exists b′ such that (1) α′ ⊔ b′ = a ⊔ α and (2) d′′ ⊔ b′ = d′.
From the labelled transition of 〈P, d〉 and the hypothesis 〈P, d〉∼̇〈Q, e〉, we have

that 〈Q, e ⊔ α′〉 −→ 〈Q′, e′′〉 (matching the transition) with 〈P ′, d′′〉∼̇〈Q, e′′〉(3).

Note that by (1) 〈Q, e ⊔ a ⊔ α〉 = 〈Q, e ⊔ α′ ⊔ b′〉 and that 〈Q, e ⊔ α′ ⊔ b′〉 −→
〈Q, e′′ ⊔ b′〉, by monotonicity of the store. Finally, by the definition of R and (3) we

can conclude that (〈P ′, d′′ ⊔ b′〉, 〈Q′, e′′ ⊔ b′〉) ∈ R and, by (2), 〈P ′, d′′ ⊔ b′〉 =
〈P ′, d′〉. ⊓⊔

We have all the results to prove that ∼̇sb = ∼̇. We split the two directions of the

proof in two lemmas.

Lemma 7. ∼̇ ⊆ ∼̇sb

Proof. Let R = {(〈P, d〉, 〈Q, e〉) s.t 〈P, d〉 ∼̇ 〈Q, e〉}. We show that R is a saturated

barbed bisimulation. We take (〈P, d〉, 〈Q, e〉) ∈ R and we prove that they satisfy the

three conditions of Definition 6.

(i) Suppose 〈P, d〉 ↓c. Since 〈P, d〉 ∼̇ 〈Q, e〉 then 〈Q, e〉 ↓c.

(ii) Suppose that 〈P, d〉 −→ 〈P ′, d′〉. By Corollary 1 〈P, d〉
true
−→ 〈P ′, d′〉. Since

〈P, d〉 ∼̇ 〈Q, e〉 then 〈Q, e ⊔ true〉 −→ 〈Q′, e′〉 with 〈P ′, d′〉∼̇〈Q′, e′〉. Since

e = e ⊔ true we have 〈Q, e〉 −→ 〈Q′, e′〉 and (〈P ′, d′〉, 〈Q′, e′〉) ∈ R.



(iii) By 〈P, d〉 ∼̇ 〈Q, e〉 and Lemma 6, we have that ∀a ∈ Con0, (〈P, d ⊔ c′〉, 〈Q, e ⊔
c′〉) ∈ R. ⊓⊔

Lemma 8. ∼̇sb ⊆ ∼̇

Proof. Let R = {(〈P, d〉, 〈Q, e〉) s.t. 〈P, d〉 ∼̇sb 〈Q, e〉}. We show that R is a strong

bisimulation. We take (〈P, d〉, 〈Q, e〉) ∈ R and we prove that they satisfy the two con-

ditions of Definition 9.

(i) Suppose 〈P, d〉 ↓c. Since 〈P, d〉 ∼̇sb 〈Q, e〉 then 〈Q, e〉 ↓c.

(ii) Suppose that 〈P, d〉
α

−→ 〈P ′, d′〉. Then by Lemma 4 〈P, d⊔α〉 −→ 〈P ′, d′〉. Since

〈P, d〉 ∼̇sb 〈Q, e〉 then 〈Q, e ⊔ α〉 −→ 〈Q′, e′〉 with 〈P ′, d′〉 ∼̇sb 〈Q′, e′〉. Then

(〈P ′, d′〉, 〈Q′, e′〉) ∈ R. ⊓⊔

Theorem 4 (Theorem 3 in the Strong Case). ∼̇sb = ∼̇

A.4 Proof of the weak case

In order to prove that ≈̇ = ≈̇sb, we essentially use the same proof-scheme of the strong

case (∼̇ = ∼̇sb). The main difference concerns two technical lemmata (namely Lemma

9 and Lemma 11) stating that weak barbs are preserved by the addition of constraints

to the store (this was trivial for the strong case).

Lemma 9. Given 〈P, d〉 and 〈Q, e〉 such that 〈P, d〉 ≈̇ 〈Q, e〉, if 〈P, d ⊔ a〉 ↓c then

〈Q, e ⊔ a〉 ⇓c.

Proof. If 〈P, d⊔a〉 ↓c, then c ⊑ d⊔a. Since 〈P, d〉 ≈̇ 〈Q, e〉, then there exists a 〈Q′, e′〉
such that 〈Q, e〉 −→∗ 〈Q′, e′〉 and d ⊑ e′. Moreover 〈Q, e ⊔ a〉 −→∗ 〈Q′, e′ ⊔ a〉,
because all reductions are preserved by the addition of constraints. Finally c ⊑ d⊔ a ⊑
e′ ⊔ a, that means 〈Q′, e′ ⊔ a〉 ↓c, i.e., 〈Q, e ⊔ a〉 ⇓c.

With the above lemma, we can use the same technique of Lemma 6 to prove that ≈̇
is a congruence.

Lemma 10. If 〈P, d〉 ≈̇ 〈Q, e〉 then ∀a ∈ Con0, 〈P, d ⊔ a〉 ≈̇ 〈Q, e ⊔ a〉.

Proof. We take the relation R = {(〈P, d⊔ c′〉, 〈Q, e⊔ c′〉) s.t. 〈P, d〉 ≈̇ 〈Q, e〉} and we

prove that it is a weak bisimulation.

(i) Suppose 〈P, d ⊔ a〉 ↓c. Since 〈P, d〉 ≈̇ 〈Q, e〉, by Lemma 9, then 〈Q, e ⊔ a〉 ⇓c.

(ii) Suppose 〈P, d ⊔ a〉
α

−→ 〈P ′, d′〉.
By Lemma 4 〈P, d ⊔ a ⊔ α〉 −→ 〈P ′, d′〉.

By Lemma 5 〈P, d〉
β

−→ 〈P ′, d′′〉 and exists b such that β⊔b = a⊔α and d′′⊔b =
d′. Since 〈P, d〉 ≈̇ 〈Q, e〉, then 〈Q, e⊔β〉 −→∗ 〈Q′, e′′〉 with 〈P ′, d′′〉 ≈̇ 〈Q′, e′′〉.
Note that all reductions are preserved when adding constraints to the store, there-

fore from 〈Q, e ⊔ β〉 −→∗ 〈Q′, e′′〉 we can derive that 〈Q, e ⊔ β ⊔ b〉 −→∗

〈Q′, e′′⊔b〉. This means that 〈Q, e⊔a⊔α〉 −→∗ 〈Q′, e′′⊔b〉. Now we have 〈P ′, d′〉
= 〈P ′, d′′ ⊔ b〉 and (〈P ′, d′′ ⊔ b〉, 〈Q′, e′′ ⊔ b〉) ∈ R, because 〈P ′, d′′〉 ≈̇ 〈Q′, e′′〉.



The following lemma extends Lemma 9 to the case of weak barbs.

Lemma 11. Given 〈P, d〉 and 〈Q, e〉 such that 〈P, d〉 ≈̇ 〈Q, e〉, if 〈P, d ⊔ a〉 ⇓c then

〈Q, e ⊔ a〉 ⇓c.

Proof. If 〈P, d ⊔ a〉 ⇓c, then there are two possibilities:

(i) 〈P, d ⊔ a〉 ↓c . The result follows by Lemma 9.

(ii) 〈P, d⊔ a〉 6↓c and 〈P, d⊔ a〉 −→ 〈P1, d1〉 −→
∗ 〈Pn, dn〉 ↓c. From 〈P, d⊔ a〉 −→

〈P1, d1〉 and by Lemma 5 we have a = β ⊔ b such that 〈P, d〉
β

−→ 〈P1, d
′
1〉

and d′1 ⊔ b = d1. Since 〈P, d〉 ≈̇ 〈Q, e〉, then 〈Q, e ⊔ β〉 −→∗ 〈Q1, e
′
1〉 with

〈P1, d
′
1〉 ≈̇ 〈Q1, e

′
1〉. By Lemma 10, 〈P1, d1〉 = 〈P1, d

′
1 ⊔ b〉 ≈̇ 〈Q1, e

′
1 ⊔ b〉 and

thus 〈Q1, e
′
1 ⊔ b〉 −→∗ 〈Qn, en〉 ↓c. By putting all our pieces together, we have

〈Q, e⊔a〉 = 〈Q, e⊔β⊔b〉 −→∗ 〈Q1, e
′
1⊔b〉 −→∗ 〈Qn, en〉 ↓c, i.e., 〈Q, e⊔a〉 ⇓c.

We have now all the ingredients to prove that ≈̇ = ≈̇sb.

Lemma 12. If 〈P, d〉 ≈̇ 〈Q, e〉, then 〈P, d〉 ≈̇sb 〈Q, e〉.

Proof. We take the relation S = {(〈P, d〉, 〈Q, e〉) | 〈P, d〉 ≈̇ 〈Q, e〉} and we prove that

S is a weak saturated barbed bisimulation (Definition 7).

(i) Suppose 〈P, d〉 ⇓c. Since 〈P, d〉 ≈̇ 〈Q, e〉 then, by Lemma 11, 〈Q, e〉 ⇓c.

(ii) Suppose 〈P, d〉 −→∗ 〈P ′, d′〉. By definition of −→∗, there exist 〈P1, d1〉, 〈P2, d2〉,
. . . , 〈Pn, dn〉 such that

〈P, d〉 −→ 〈P1, d1〉 −→ 〈P2, d2〉 −→ . . . −→ 〈Pn, dn〉 −→ 〈P ′, d′〉

which means that

〈P, d〉
true
−→ 〈P1, d1〉

true
−→ 〈P2, d2〉

true
−→ . . .

true
−→ 〈Pn, dn〉

true
−→ 〈P ′, d′〉.

Now, since 〈P, d〉 ≈̇ 〈Q, e〉, then 〈Q, e〉 = 〈Q, e ⊔ true〉 −→∗ 〈Q1, e1〉 and

〈P1, d1〉 ≈̇ 〈Q1, e1〉. By iterating this reasoning one have that

〈Q, e〉 −→∗ 〈Q1, e1〉 −→
∗ 〈Q2, e2〉 −→

∗ . . . −→∗ 〈Qn, en〉 −→
∗ 〈Q′, e′〉

with 〈P ′, d′〉 ≈̇ 〈Q′, e′〉.
Summarizing 〈Q, e〉 −→∗ 〈Q′, e′〉 and (〈P ′, d′〉, 〈Q′, e′〉) ∈ S.

(iii) ∀a ∈ Con0(〈P, d ⊔ a〉, 〈Q, e ⊔ a〉) ∈ S, by Lemma 10.

Lemma 13. If 〈P, d〉 ≈̇sb 〈Q, e〉 then 〈P, d〉 ≈̇ 〈Q, e〉.

Proof. We take the relation R = {(〈Q, e〉, 〈Q, e〉) s.t. 〈Q, e〉 ≈̇sb 〈Q, e〉} and we prove

that it is a weak bisimulation (Definiton 10).

(i) Suppose 〈P, d〉 ↓c. Then 〈P, d〉 ⇓c. Since 〈P, d〉 ≈̇sb 〈Q, e〉, then 〈Q, e〉 ⇓c.

(ii) Suppose that 〈P, d〉
α

−→ 〈P ′, d′〉. By Lemma 4 〈P, d ⊔ α〉 −→ 〈P ′, d′〉. By Defi-

nition of −→∗, we can say that 〈P, d ⊔ α〉 −→∗ 〈P ′, d′〉. Since 〈P, d〉 ≈̇sb 〈Q, e〉
we have 〈Q, e ⊔ α〉 −→∗ 〈Q′, e′〉 with 〈P ′, d′〉 ≈̇sb 〈Q

′, e′〉.

Theorem 5 (Theorem 3 in the Weak Case). ≈̇sb = ≈̇
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