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Abstract

In Manufacturing Planning and Control Systems, the Master Production Schedule (MPS) makes a link between
tactical and operational levels, taking into account information provided by end items, demand forecast as well
as Sales and Operations Planning (S&OP) suggestions. Therefore, MPS plays an important role to maintain
an adequate customers service level and an efficient production system. In a rolling planning horizon, MPS is
periodically computed over whole operational horizon. The differences between scheduled quantities obtained by
this process are related to MPS instability. This feature of MPS has negative effects, both, at tactical level and
also at operational one. In this paper, a Mixed Integer Programming model is proposed for MPS instability. The
proposed model considers instability minimization in addition to inventory costs and set up. Simulation is used
to take into account stochastic demand. Computation experiments are presented in order to show the efficiency
of this approach by finding stable MPS without a considerably increase in the total cost.

Key words: Production, Manufacturing, Integer Programming, Instability, Nervousness.

1 Introduction

In Manufacturing Planning and Control Systems, the Master Production Schedule (MPS) is the link be-
tween tactical and operational levels taking into account information provided by demand forecast as well
as Sales and Operations Planning (S&OP) suggestions [3,14]. Moreover, the MPS considers availabilities
of critical resources, management policies and goals. The main objective of the MPS is to obtain produc-
tion quantities in each period, minimizing the cost and maximizing bottleneck utilization. Therefore, the
MPS is important to maintain an adequate customers service level and an efficient production system
through well managed constraints.

The most common way to compute a MPS is to consider a rolling planning horizon. This means, MPS is
constantly computed with a specific periodicity ∆t (cycles), over whole operational horizon. Hence, this
methodology regularly reschedules the production quantities by periods.

The differences in the planned quantities obtained by this rescheduling process, are related to MPS
stability. If these differences are not significant, MPS is said to be stable, on the contrary, whenever
these differences are more significant, the MPS becomes more unstable. This results of MPS instability,
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leads to negative effects at both, tactical and operational levels. Some effects at tactical level are: high
transaction costs, temporary employee subcontracting and unexpected changes in outsourcing contracts.
At operational level it is mainly related to MPS nervousness [2].

MPS nervousness refers to, minor changes in the MPS produce significant changes in MRP plans. This
changes in the MPS are caused mainly by: end-item forecast, lot-sizing rules and scheduled receipts
changes [18].

When a stability criterion is considered for a MPS, it is necessary to find a trade-off between stability
and cost performance [7], i.e., when the MPS is computed excluding stability, the plan can present huge
differences between scheduled quantities in successive cycles. Moreover, this situation makes difficult to
apply the plan in practice and leads to huge work in process (WIP), and also, more difficult scheduling
(shop floor level).

The most commonly used methods to obtain stable plans are: frozen intervals, and safety stock. Basically,
frozen intervals consist in fixing periods in the planning horizon, in which, changes hoped for later
reschedules are not allowed. On the other hand, safety stock fits inventory levels to absorb uncertainty
demand. The ideas behind these methods are very simple and they have demonstrated good results for
specific cases [18]. Moreover, the simplicity of these methods, makes them very useful in practice.

Nevertheless, these methods have a strong static component, because they are based on the idea of fixing
some variables. On the contrary, the approach presented in this paper, searches to reduce the instability
by a dynamic process. For this, a mixed integer programming (MIP) model is proposed to compute the
MPS, which considers the instability minimization directly in its formulation.

Moreover, the nervousness minimization is considered as an implicit target. We consider for that the
following proposition: the minimization of the instability reduces the nervousness.

The rest of this paper is organized as follows. In section 2, we describe the problem and present a litera-
ture review of some contributions related to MPS stabilization. Section 3 defines formally the proposed
formulation. In section 4, a simulation to show the efficiency of this approach is provided. Finally, section
5 presents conclusions and future directions.

2 Problem description and literature review

2.1 Problem description

In a rolling horizon, MPS computes quantities to produce for a given planning horizon (n), with a specific
periodicity ∆t (cycles). Table 1 shows an example of scheduled quantities given by a MPS, where quantity
qkt represents the scheduled quantity of one item, for period t obtained by the MPS computed in the
cycle k. In this example the paremeters are: n = 4 and ∆t = 1.

Table 1
Example of MPS in a rolling horizon.

k / t 1 2 3 4 5 6 7 8

1 q11 q12 q13 q14

2 q22 q23 q24 q25

3 q33 q34 q35 q36

4 q44 q45 q46 q47

5 q55 q56 q57 q58

To analyze the stability, we make the difference between MPS instability and nervousness. We define
MPS instability, as the differences between quantities scheduled by a MPS in a cycle (e.g., in Table 1 for
the cycle k = 2, differences between q22, q23, q24, q25). On the other hand, we define nervousness as the
difference between quantities scheduled by the MPS in different cycles, for a given period of the planning
horizon (i.e. in Table 1, for the period n = 5, differences between q25, q35, q45, q55).
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For MPS instability we define two measures, Mean Instability (MEI) and Maximum Instability (MAI).
Mean Instability is defined as:

MEIi
k :=

2

n(n− 1)

k+n−1
∑

t=k

k+n
∑

t′=k+1

|xi
t − xi

t′ |, ∀i, ∀k. (1)

This measure represents, the average of the differences of scheduled quantities, between each period and
the next periods, by item i and by cycle k.

Maximum Instability can be defined as:

MAIi
k := max

t
{

1

n− t

k+n
∑

t′=k+t

|xi
k+t−1 − xi

t′ |, t = 1 . . . , n− 1}, ∀i, ∀k. (2)

This measure represents the maximum of the differences of scheduled quantities, between each period
and the next periods, by item i and by cycle k.

Now, let Ωkt the set of overlap periods in the cycle k for the period t (this means, all scheduled quantities
for period t, obtained in the precedent cycles). And let,

Ωk =

n+k
∑

t=k

|Ωkt|, ∀k, (3)

the set of all overlap periods for the MPS computed in the cycle k, where |Ω| is the cardinality of the set
Ω. Hence,

NAi
k =

1

|Ωk|

k+n−1
∑

t=k

∑

h∈Ωkt

|xi
t − xi

h|, ∀i, ∀k, (4)

represents the nervousness computed as the average of the differences of scheduled quantities, between
all periods in the cycle k (t = k, k + 1, . . . , k + n− 1) and all its quantities scheduled in precedent cycles
(the last period are not overlap periods), by item i and by cycle k. This measure will be referred as
Nervousness All Periods (NA).

Another measure defined, is the nervousness for the first period. This measure represents the nervousness
computed of similar form as above, but, only considering the first period. This is considered because
finally, if ∆t = 1, the implemented period is only the first period. This measure is defined as:

NF i
k =

1

|Ωkf |

∑

h∈Ωkf

|xi
k − xi

h|, ∀i, ∀k, (5)

where Ωkf represent the set of overlap periods in the cycle k only for the first period in the MPS. This
measure will be referred as Nervousness First Period (NF).

MPS instability can be viewed as a static effect, since it refers to the differences between the quantities
computed for a fixed horizon. This can affect for example, at tactical level, outsourcing, hiring/lay-off or
part-time contracts. On the other hand, nervousness has a dynamic character, because it takes place when
the differences of the computed quantities in different cycles are obtained. These successive adjustments
can produce huge changes at the operational level.

2.2 Literature review

Many works study MPS instability and nervousness effects and their impact on production planning and
control systems. In the following, some recent contributions related to MPS stabilization are presented.

In [4], the author studies the nervousness effect for stochastic inventory control. For that, he defines
a measure of nervousness taking into account exclusively the setup variable. The results show that,
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nervousness is affected by the control rules. Following this work, the instability measures defined in the
previous subsection, can be classified as long-term stability and quantity-oriented. This means that, we
consider the whole planning horizon for the computations of the differences between production quantities.

In the work presented in [5], the following strategies to reduce nervousness are studied: freezing the MPS,
end-item safety stock and lot-for-lot lotsizing rule for components. Some factors considered are: item cost
structure, items structure, level of demand uncertainty and lot-sizing method. Decision variables are:
cost, instability, and customer service level. The main result is that, frozen periods strategy, presents the
best performance under stochastic demand multilevel environment.

In [18], the effects on the stability of the plans, produced by the interaction between several lot-sizing
rules and frozen interval selection are studied. The study is performed with a simulation and a completely
randomized full factorial design, in order to test the different hypotheses. The results show a strong
dependency between MPS instability and lot-sizing rules as well as frozen interval selection. Some works
make a similar study for different lot-sizing problems [17,16].

From the perspective of production planning models, [7] explains the impact of the stability in three
problems of production planning. Also, some approaches are proposed to measure stability, applying
them to the MPS. The effects for different cost structures are simulated and analyzed. Finally, an iterative
method is proposed to solve MPS.

In [6], three methods are proposed to reduce MPS instability. The first two methods correspond to
modified versions of classic Wagner-Within and Silver-Meal methods. Finally, a method based on MIP,
that takes in consideration previous schedules periods to solve MPS is proposed. The results are analyzed
by simulation, where, the model based on mixed integer programming, obtains good stability results in
some cases.

For a scheduling problem, in [11], the tackled problem considers jointly the optimization of efficiency and
stability measures. In the first part, the inclusion of the stability as a variable to be optimized is justified.
To solve the problem, an approach of genetic algorithm is proposed. Finally, the results are analyzed
by statistical methods, concluding that, the stability does not affect drastically the production system
efficiency.

Analyzing the effects of the system structure on the stability, in the context of the supply chain, [8] studies
a model for lot-sizing multi-level multi-item problem and considers structural variables as: setup cost,
relationships between components and capacity. The statistical results show a strong relation between the
considered variables and stability. The results of this work highlight that, it is possible to take emphasize
in the following fact: “fewer production orders and capacity increase, have stabilizing effects on the plans”.
Following this line, [15] studies the impact of material coordination concepts in supply chain stability,
with a more practical approach. Its results, identify three variables that affect strongly the stability,
theses are: lot-sizes, level of uncertainty in demand and items structure. Its results are very similar to
the results obtained by [8].

The works in [12,13], express the importance of considering stability in MRP systems, in the context of
remanufacturing process and MPS frozen interval selection respectively.

Finally, in [14], a mathematical programming method to obtain a stable MPS is proposed. This approach
is developed with a two steps model at tactical level. In the aggregated plan (S&OP), is proposed a
procedure called reference plan, that considers compromises between successive planning periods to reduce
changes. At detailed plans level (MPS), a heuristic procedure is proposed to obtain a stable MPS. The
main result of this work is to improve the stability of the detailed plan.

3 Less Master Production Schedule instability formulation

In the first part of this section, we present the classic MIP formulation for a MPS (F1) and our proposed
formulation (F2). In the second part, we provide an algorithm to computate the solution of F2.
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3.1 Formulation

Formally, a mixed integer programming formulation for a MPS, considering m items, n periods and r
resources, can be stated as follows:

3.1.1 Variables

xi
t : production of item i in period t.

si
t : inventory of item i in period t.

yi
t : setup of item i in period t, where

yi
t =







1 if xi
t > 0

0 if xi
t = 0

3.1.2 Parameters

di
t : demand of item i in period t.

p̄i
t : production cost of item i in period t.

hi
t : inventory cost of item i in period t.

qi
t : setup cost of item i in period t.

Lr
t : available capacity of resource r in period t.

αir : unitary consumption of resource r by production of item i.

βir : setup time for item i on resource r.

M i
t =

n
∑

t=1
di

t, ∀i, upper bound of production of item i in period t.

3.1.3 Formulation F1

min

m
∑

i=1

n
∑

t=1

(p̄i
tx

i
t + hi

ts
i
t + qi

ty
i
t) (6)

si
t−1 + xi

t = di
t + si

t, ∀i, t (7)

xi
t ≤M i

ty
i
t, ∀i, t (8)

m
∑

i=1

(αirxi
t + βiryi

t) ≤ Lr
t , ∀r, t (9)

x ∈ R
mn
+ , s ∈ R

m(n+1)
+ , y ∈ {0, 1}mn. (10)

The objective function (6), searches to minimize the costs of production, inventory and setup. Constraint
(7), represents the inventory balance and constraint (8), the relationship between production and setup.
The constraint (9), represents the available capacity of resources by period. This formulation can be found
in [9]. This formulation will be referred as F1.

3.1.4 Formulation F2

Without loss of generality, we assume s0 = 0, and using (11),

si
n =

n
∑

t=1

(xi
t − di

t), ∀i, (11)
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it is possible to eliminate the inventory variable in the formulation. In [1], this formulation is showed for
the single-item lot-sizing problem (SILSP). In our case, the above formulation is applied to capacitate
multi-item lot-sizing problem (CMILSP). A new formulation, without inventory variables, considering
stabilization of the MPS, can be expressed as follows:

min

m
∑

i=1

n
∑

t=1

(pi
tx

i
t + qi

ty
i
t) +

m
∑

i=1

n−1
∑

t=1

(λiωi
t) (12)

t
∑

j=1

xi
j ≥ Di

t, ∀i, ∀t, (auxiliary index j = 1, . . . , t) (13)

xi
t − xi

t+1 ≤ ωi
t, ∀i and 1 ≤ t ≤ n− 1 (14)

xi
t+1 − xi

t ≤ ωi
t, ∀i and 1 ≤ t ≤ n− 1 (15)

xi
t ≤M i

ty
i
t, ∀i, ∀t (16)

m
∑

i=1

(αirxi
t + βiryi

t) ≤ Lr
t , ∀r, t (17)

x ∈ R
mn
+ , ω ∈ R

m(n−1)
+ , y ∈ {0, 1}mn, (18)

where,

pi
t = p̄i

t +

n
∑

j=t

hi
j , ∀t, i. (19)

The objective function (12), searches to minimize the costs of production, inventory (of implicit way) and
setup, and also, the differences between consecutive production quantities. In this formulation constraint
(13) express that, cumulative production in any period for each item, must be equal or greater than the
cumulative demand Di

t, in the same period, backlog is not allowed. A constant term −
∑

i,t hi
td̄

i
t has been

eliminated of the objective function. This formulation will be referred as F2. The value of the original
objective function (6), can be obtained, computing the s variable from (11) substituting x∗, and later
evaluating in (6). The matrix variable x∗, is a m× n matrix of optimal solutions computed by F2, with
elements xi

t.

The variable ωi
t represents an auxiliary variable to minimize the quantity differences between consecutive

periods in whole planning horizon n. The parameter λi, represent a control parameter for instability
minimization by item. This formulation can be viewed as equivalent to minimize λi|xi

t+1 − xi
t|, ∀i and

1 ≤ t ≤ n− 1.

Note that, in the measures (1) and (2) it is necessary to compute the differences between all periods
in a specific cycle. This is equivalent to consider nC2 combinations. Nevertheless, considering the high
computational cost of this, the minimization is performed only in one step, i.e., for a given production
quantity, the model searches to minimize the difference only between its antecessor and successor values.

Moreover, no explicit measure for nervousness minimization have been considered in the model. The
reduction of nervousness is considered to be implicit in the instability reduction, under the proposition
expressed in the section 1.

In the next subsection a simple algorithm is proposed to find a suitable value to λi.

3.2 Finding λ parameter

For a sake of simplicity, we consider the same λ-value for all items i = 1, 2, . . . , m. Furthermore, we
suppose that, for all measures considered ME = {MEI, MAI, NA, NF}:

MEj(λ0) ≤MEj(λ1) ≤ . . . MEj(λK), ∀j ∈ME, (20)
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where, λl = l, l = 0, 1, . . . , K, K ∈ N.

Also, we suppose that, the allowed total cost growth (or equivalent, sub-optimal solution allowed) is
user-defined by a percentage deviation (δ) of the optimal total cost. Therefore, we are interested in to
find the maximum feasible λ-value, such that:

zF1
= zF2

(λ0) ≤ zF2
(λ) ≤ (1 + δ)zF2

(λ0) = (1 + δ)zF1
, (21)

where, zF2
(λ) is defined as the objective value (total cost) of the original problem F1, but, computed

with x∗ (note that, the optimal value of setup variable (yi
t) is implicit in x∗).

For that, we propose a simple algorithm (Algorithm 1) to find the best λ-value, such that λ ∈ N. The
variables λf and λe represent the first and the end value of the interval [λf , λe], where λf ≤ λ ≤ λe.

Algorithm 1. Find λ

Require: step, λf = 0
Ensure: λ

solve F2(λf )
zub ← (1 + δ)zF2

(λf )
λe ← step
while zF2

(λe) ≤ zub do

solve F2(λe)
λe ← λe+ step

end while

λe ← (λe− step)
while (λe − λf ) ≥ 1 do

λs ← ⌊(λf + λe)/2⌋
solve F2(λs)
if zF2

(λs) > zub then

λe ← λs

else

λf ← λs

λ← λf

end if

end while

The above algorithm first solves F2(λ0), that is similar to solve F1. Later, it solves F2 for some λ-value
defined by step. The parameter step, can be adjusted from some initial executions of F2. If the cost and
demand parameters have not significant differences between periods, parameter step can be fixed for all
operational horizon. The next step in the algorithm is to find the maximum feasible λ-value, such that
zF2

(λ) ≤ (1 + δ)zF2
(λ0). For this, the algorithm searches λ by a classic Golden Section Search.

4 Simulation

4.1 Experimental design

The simulation results are obtained for a simulation horizon of H = 52 weeks, with rescheduling interval
∆t = 1 and for a planning horizon n = 8.

The parameters pi
t, h

i
t, q

i
t are randomly generated and uniformly distributed. The demand for each period

is randomly generated as follows:

di
1j ∼ U(df i, dli), ∀i and 1 ≤ j ≤ n. (22)

This represents the demand for the first cycle, where U(df i, dli) is the uniform distribution between
parameters df i and dli, for each item i. The demand quantities for the following planning cycles are
obtained as,

di
kj = di

(k−1)j + ǫj , ∀i and k ≤ j ≤ k + n− 1, (23)
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where,

ǫj ∼ U [0, cj], k ≤ j ≤ k + n− 1, c ∈ N. (24)

Parameter ǫi
j represents a random error for period j and item i, and c is used to control the error variance.

The demand quantities for the new last periods are generated as:

di
k(k+n) ∼ U(df i, dli). (25)

The capacity parameter Lr
t must be consistent with constraint (7) and (13) for the formulations F1 and

F2 respectively, to insure feasibility (for the single-item case see [10]). Hence this parameter is randomly
generated such that the following condition holds,

m
∑

i=1

(αirdi
t + βir) ≤ Lr

t , ∀r, t. (26)

Furthermore, r = 1 is considered, supposing this resource as a fixed bottleneck of the system. Table 2
summarize the simulation parameters.

Table 2
Simulation parameters.

Parameter Value

Operational horizon 52

Planning horizon 8

Demand (d) U[100,140]

Production (p) U([95,105])

Inventory (h) U([95,105])

Setup (q) U([10000,20000])

r 1

α U[0.01,0.02]

β U[2,3]

c 1

Simulation code was developed in Python 2.5. 1 . The MIP programs were solved with Glpk 4.29 2 .

4.2 Results

The figures 1,2 and 3 show the difference between formulations F1 and F2 in terms of Total Cost, Maxi-
mum Instability (MAI) and Nervousness First Period (NF) respectively. These differences are computed
as a relative value of the measures obtained with F2 respect to F1 (continuous line). For example, if
MAIF represents the value of MAI obtained by the formulation F , the continuous line in Fig. 2 shows
the value of ((MAIF2

−MAIF1
)/MAIF1

). The dotted line represents, the mean value of the respectively
serie. Finally, the results are presented, only for the cycles with the same number of overlaps periods,
i.e., from the cycle k = n = 8. This last consideration is made, in order to compare the plans in the same
conditions.

In the figure 1, Total Cost remains approximately in the interval [0.033, 0.049], with a mean value near
to 0.043. This means that in average, F2 is approximately 4.3% more expensive that F1. The sudden
changes in the series, are as a result of changes in setup variable, and its huge associated costs.

Figure 2 shows the difference of MAI. We can see that in the worst case, the instability of F2 never
exceeds the instability of F1, and its mean of instability reduction is near to 60%.

1 http://www.python.org
2 http://www.gnu.org/software/glpk/
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Fig. 1. Difference of Total Cost between F1 and F2.
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Fig. 2. Difference of Maximum Instability (MAI) between F1 and F2, for each item.
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Fig. 3. Difference of Nervousness First Period (NF) between F1 and F2, for each item.
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Although, NF increases in some periods, in Figure 3 we can see that F2 leads to a mean of nervousness
reduction near to 40%. The importance of this, is the substantial reduction in terms of nervousness
reached for F2, and that, will increase considerably the stability of the plan.

5 Conclusions

In this paper a mixed integer programming model for Master Production Schedule is proposed , taking
into account directly the minimization of MPS instability and implicitly the minimization of nervousness.
Simulation results show that, this formulation leads to reduce MPS instability and nervousness without
a great difference in terms of total cost, compared with a classical formulation.

These results show that, direct inclusion of the minimization of the MPS instability can be considered to
be an alternative to the more extensively recognized methods as frozen periods or safety stock.

In future works, others measures to integrate directly stabilization criterion in the models will be studied,
leading to more robust solutions, decreasing instability and muffling nervousness, without a high impact
in the optimal objective function value and its computational complexity.

In this work, our target have been to validate the proposed formulation in terms of its effectiveness, with
no regard its computational efficiency. Nevertheless, the proposed algorithm solves in average 7 MIP by
plan, being near to 15 the entire number of possible evaluations. In a future work, we will tackle in detail
this aspect of the formulation.
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