I C Lo

Patricia Besnard
email: loic.besnard@irisa.fr

Thierry Bournai

Gautier

Nicolas Halbwachs
email: nicolas.halbwachs@imag.fr

Simin Nadjm-Tehrani

Annie Ressouche
email: annie.ressouche@sophia.inria.fr

DESIGN OF A MULTI-FORMALISM APPLICATION AND DISTRIBUTION IN A DATA-FLOW CONTEXT: AN EXAMPLE

This paper describes a multi-formalism experiment design in the domain of realtime control systems. It uses several synchronous languages on a case study which is a realistic industrial example. Co-simulation is provided through the use of a common format, and automatic distributed code generation is experimented in the context of the graphical environment of the data-ow language Signal.

Introduction

In industrial projects, multi-formalism development is very often an issue, especially when several teams, with possibly di erent cultures, collaborate, but also when di erent parts of the application require di erent formalisms, which can be better adapted for some of the encountered problems.

In the eld of embedded control systems, in particular safety critical systems, another very important issue is to signi cantly reduce the risk of design errors (and also to shorten overall design times). This can be achieved through the use of the maximum degree of automation, especially with respect to verication, and also sequential or distributed code generation, entirely replacing the manual coding phase still employed in current industrial design ows [START_REF] Benveniste | \Safety Critical Embedded Systems Design: the SACRES approach[END_REF] . A requirement for that is, at the front-end level, the use of speci cation tools that are based on a formal semantical model.

The synchronous languages 4;14 have been precisely introduced for that islip99: submitted to World Scienti c on September 9, 1999 1

purpose. All of them rely on a precise semantics, which allows not only automatic code generation through formal transformations, but also veri cation of properties on the programs (by model checking, for instance). Some of them are based on a declarative, data-ow style: this is the case for Lustre [START_REF] Halbwachs | \The synchronous data ow programming language Lustre[END_REF] and Signal [START_REF] Le Guernic | \Programming real-time applications with Signal[END_REF] , that mainly di er in the more intricate notion of clock in the latter, which aims at a more direct handling of control-dominated applications. Other have an imperative style, like Esterel 9 , but also the graphical formalisms of mode automata [START_REF] Maraninchi | -automata: About modes and states for reactive systems[END_REF] or Statecharts [START_REF] Harel | \Statecharts: A visual formalism for complex systems[END_REF] .

In addition, joint e orts have been made to propose a common format, relying itself on a formal semantics, to represent programs expressed in a synchronous language. Then this family of synchronous languages becomes naturally a candidate to develop multi-formalism designs, including formal veri cation and automatic code generation.

In this paper, we present such an experiment of multi-formalism design, on a relatively small case study which is part of the control of a climatic chamber. In section 2, we rst present the common format of synchronous languages, which is called DC+. Then, the case study and its programming using Lustre, Esterel and Signal are described in section 3. Finally, the application of a distribution methodology provided by the Signal graphical environment is shown in section 4 for that case study. 2 Multi-formalism through a common semantic and syntactic format: DC-DC+ When multi-formalism designs are considered, using together for example both state-based and data-ow speci cation styles, a common representation is in some way mandatory. One such common representation is the DC+ format. This format implements the paradigm of synchronous programming in its full generality [START_REF]The Declarative Code DC+, Version 1.4, Esprit project EP 20897[END_REF] . The Declarative Code DC+ is a high-level format dedicated to both the representation of declarative or data-ow synchronous programs, and to the equational representation of imperative programs. It is a parallel, structured format, where programs are considered as a network of operators. Although very close in its syntax to the synchronized data-ow model advocated by the Signal language, it constitutes a model for the semantic integration of Signal, Lustre, Esterel and Statecharts speci cations.

The semantical basis of the DC+ format is that of Symbolic Transition Systems 21 . This model includes in particular scheduling speci cations, which are used to represent causality relations, schedulings, and communications 8 . islip99: submitted to World Scienti c on September 9, 1999 2

2.1 A brief overview of DC+ DC+ allows to handle behavioural as well as structural or mixed descriptions. The basic object in DC+ is the ow (also called signal in some contexts). A ow is a sequence of values synchronized with a clock: it is a typed object which holds a value at each instant of its clock. A program receives input ows and computes output ows, possibly using local ows which are not visible from the environment.

Flows can be related via de nitions and dependencies.

Flow de nitions. A DC+ equation equ: x y at: w de nes the ow

x to be equal to the expression y, when the boolean activation condition w is true. Such an equation relates both the values and the clocks of the ows x, y and w: in particular, x, y and w must have the same clock (when w is false, x keeps its preceding value, at the instants at which it is de ned).

A special kind of de nition, called a memorization, de nes the value of its left-hand ow at the next instant of its clock: memo: x y at: w.

Flow expressions are built from basic terms and operators. A number of operators are available via prede ned functions which are standard operators on prede ned types, or polychronous operators to relate ows with di erent clocks.

A system of ow de nitions can also be seen as a network of operators, or as a generalized circuit, the \wires" of which can carry values of arbitrary types.

Dependencies. Basically, the ow de nitions must be evaluated according to their dependency order. These dependencies can be conditional.

A ow x depends on a ow y \at" a boolean condition w (noted y w ! x) if, at each instant for which w is present and true, the event setting a value to x cannot precede the event setting a value to y.

The dependencies can be those induced by the de nitions, or explicitly added ones.

Assertions. Through the assertions, DC+ o ers a way of expressing properties stating that a boolean ow is invariantly true. This allows to express either known properties of the environment | for optimization purposes |, or desired properties of the program | to be proved by veri cation tools, or dynamically checked by the target code.

Nodes, clocks. DC+ allows complex systems of ow de nitions to be structured into nodes. A node is an encapsulated system of de nitions, assertions and dependencies, relating input ows and output ows of the node, possibly using its own local ows. In a node, the ows can be associated with their clocks through a table of clocks. Clocks are represented by boolean ows islip99: submitted to World Scienti c on September 9, 1999 which are true if and only if the clock is present, otherwise they can be false or absent (a particular case is the representation of a clock by a pure ow, which is always true when it is present). A node can be instantiated (in another node) by a special kind of de nition (node call), by providing it with actual input parameters. The de nitions of a given node can be composed of ow equations, or of ow equations together with node calls, or exclusively of node calls (so giving a structural description of the node).

For a DC+ code to be used as input of a code generator, every output or local ow of a node has to be de ned. However, when a DC+ code is used, for instance, to express and check properties, some of them can be unde ned, or partially de ned. To this purpose, two tables of de nitions are distinguished in a node:

{ the de nition table contains explicit de nitions; { the de nitions of the assertion de nition table are considered as an implicit equational system de ning a relation (with possible non determinism) on the concerned ows.

Pragmas. DC+ o ers the notion of pragma: a pragma is an \executable comment", used to represent any sort of speci c information which is not directly representable in the syntax. This information is considered as \documentation" by the parser. However, speci c tools are able to handle some of these speci c informations (which can have a particular syntax). Pragmas can be associated with any object.

Modularity in DC+

External and imported objects; packages. Some objects are de ned within the format, while others are \external", i.e., possibly de ned in another language, and used in a DC+ program. Types, constants, functions, procedures and nodes can be external. For example, an external node does not contain a de nition table; however, it may contain an assertion de nition table and a table of dependencies, allowing to specify properties (clock relations, dependency relations, etc.) on input and output ows of the node. Besides this possibility, a DC+ program can consist of several packages, and a package may explicitly import objects from other packages.

The DC+ architecture

Di erent levels of DC+, or sub-formats, have been identi ed (see gure 1). The objective of the characterization of these di erent levels, and of the interlevel (or inter-format) transformations, is to adapt a given representation to islip99: submitted to World Scienti c on September 9, 1999 DC+ itself is the most general level.

In the bDC+ (for \boolean DC+") sub-format, all the ows have an explicit clock, which is represented by a boolean ow. The clocks are organized in a hierarchy for which there exists a master clock, tick (tick is the single clock represented by a boolean ow which is always true when it is present). The bDC+ sub-format is the right entry point for tools based on the clock hierarchy, such as for example, code generators.

The STS (for \Symbolic Transition Systems") sub-format of bDC+, in which the hierarchy of clocks is at (the present/absent status of any ow is de ned at any instant by some Boolean which is present at tick), is used as an input for veri cation tools.

The DC sub-format is the single-clocked sub-format of DC+: all the ows are always present, no clock is used. The control is totally encoded via Booleans and dependencies.

Inter-format transformations, DC+ ! bDC+, bDC+ ! STS, STS ! DC, are de ned between the di erent levels of DC+ [START_REF]The Declarative Code DC+, Version 1.4, Esprit project EP 20897[END_REF] .

Translations of languages to DC+

A translator from Signal to DC+ is available in the Signal compiler. Besides that, the Signal compiler has been restructured so that the internal graph representation is now the same one for Signal programs and for D-C+ ones (however, windows and arrays are not yet implemented in this DC+ version). This gives access to the same functionalities for DC+ and for Signal programs: clock calculus, graph calculus, inter-format transformations, interface calculus, code generation, access to proof systems, etc.

A rst version of the Lustre-V5 front-end, called lus2dc, is available. It performs static veri cations (types, clocks, unique de nition, absence of dependence loops) and translates a Lustre program into DC (this rst version does not deal with arrays).

The Esterel translation to DC goes rst through an intermediate proprietary format called SC. Esterel, which is a control-dominated imperative language, has an interpretation in boolean equation system for its control part. In the SC format, there are speci c instructions so that other data operations are triggered exactly when the control demands. So, the Esterel translation to DC via SC requires a scdc translator, which reintroduces data variables and values in the equation system.

There exists also translations to DC or DC+ for other formalisms: modeautomata for example have a translation to DC, and in the SACRES project, a translation from Statecharts to DC+ has been de ned 1;2 . In another context, the DC+ representation of languages of the IEC 1131 standard concerning industrial automatisms is under study.

A case study: climatic chamber

The case study we consider consists of a climatic chamber with a control system which regulates and monitors the ow and the temperature of air which is circulating in the chamber. This is a demo system which exhibits some of the problems typically appearing in system development for aircraft air control systems e.g. JAS Gripen. The chamber is to be ventilated through the inlet and outlet and has a given volume. It has two sensors for measuring the internal air temperature and the air ow. The external interface primarily consists of an on-o button, two analog knobs for setting the values for required temperature and ow (reference values), as well as warning signals in terms of a light and a sound. It also includes lights for showing some of its internal modes of operation.

The controller has three modes while it is on. It has an initialising \wait" mode in which the heater and the fan are used to bring the chamber temperature and ow within a given scope. It also has an \active" mode in which more accurate regulation is achieved. This mode in itself consists of two modes, the \solution" mode in which the actual temperature and ow values are brought to levels close to the reference values, and the \work" mode in which the actual values are maintained in the required region (within of the reference values). The shut-down mode, denoted as \block" mode, is devoted to abnormal situations. It is brought about when the earlier sound and light warnings have not led to changes in the reference values by the operator, or when the actual values fall outside the allowed scope despite manual intervention (for example due to unforeseen changes in unmodelled inputs, e.g. the incoming air temperature).

The overall requirement of the system is to keep the chamber's temperature and ow within given values, and to warn the operators if this goal is islip99: submitted to World Scienti c on September 9, 1999 not achievable due to problems encountered.

The functional speci cation can be described as follows.

Temperature control:

{ At start up, a requested temperature optreq is selected and the heater is turned on. It is possible to choose optreq in the interval treqmin; treqmax], where treqmin is greater than the (lowest) outside air temperature envtemp. Any other chosen values outside the above interval are automatically adjusted up (down) to the lower (upper) limit respectively. { Let Tmin = optreq 2 temp and Tmax = optreq + 2 temp. Then the system is considered to be in the wait mode while the actual temperature (chamtact) is not within those limits. { The system will be in the sol mode (read solution mode) from the time the temperature hits the region Tmin chamtact Tmax until it leaves the mode. The system makes a transition to the work mode when j chamtact optreq j temp is full lled. The time taken for the system to enter and leave the sol mode is expected to be within a given xed bound called solution time.

Ventilation control:

{ The ventilation or the mass ow rate is measured by the time it takes to exchange one volume of air. { At start up, a requested ow time optvent is selected and the fan is turned on. This chosen time for the rate of air change should be in the interval tventmin; tventmax]. Other chosen values are automatically adjusted upwards (downwards) to these limits respectively. { Ventilation is regulated so that the air in the chamber is changed at least once every optvent. { The observed rate of change owtime is based on a measure of the air ow cham ow delivered by the sensor.

Monitoring:

{ The continuously measured values of chamtact and cham ow are to be displayed on the control panel. { Three lamps indicate being in the system modes wait, work and block respectively. { A warning by light and sound shall be activated whenever j chamtact optreq j > temp after being in the sol mode for a duration of solution time. { The warning light is activated if owtime > X optvent for some xed ratio X .

{ When in work mode, if j chamtact optreq j > 2 temp, or the derivative of the temperature, based on chamtact exceeds a maximum value tgrad, then the mode shall change to the block mode. { When in block mode, the heater is immediately turned o , the warning light islip99: submitted to World Scienti c on September 9, 1999 and the light indicating the block mode are activated, and the fan is active for another tblock seconds before it is turned o . It shall not be possible to in uence the system by changing optreq or optvent. The system must be turned o before restart. { If optreq is changed such that optreq > chamtact + temp the system makes a transition to the wait mode, and the heater is turned on. { If optreq is changed such that optreq < chamtact temp, the system is changed to wait mode, the heater is turned o and the fan will continue to work.

Goals of veri cation:

The functional description above has a prescriptive nature. It describes how a controller should be implemented, giving some details about what should happen in each mode. However, both to help programming and to focus the formal veri cation work, we had to deduce the overall goals of the control system: those requirements which are to be enforced by the suggested design.

We have identi ed the following global requirements:

{ Keeping the reference values constant, the work light will be lit within a time bound from the start of the system, and the system will be stable in the work mode. { Chamber temperature never exceeds a given (hazardous) limit T H . { Whenever the reference values are (re)set, the system will (re)stabilize within a time bound or warnings are issued. Note that these are not properties of the controller on its own. Rather they arise as an interaction with the physical environment not modelled here. However, to prove these it is necessary to prove certain subsidiary requirements on the controller, for example:

{ the system is deterministic (can be at most in one mode at a time for any combination of variable values), { treqmax + 2 < T H , { when the system is in wait, sol, or work mode, chambtact < T H .

Multi-formalism programming

The application is split in three sub-parts, plus a main calling them: 1. One component computes the current mode of the system according to various temporal conditions. Each time a mode is reached, a lamp (Panwait, Panoper or Panblock) is highlighted on the control panel. There is also a Panaudio warning to be emitted when the temperature overpasses its allowed boundaries. This component (modeselect) will be detailed islip99: submitted to World Scienti c on September 9, 1999 below.

2. A second component regulates the actual temperature of the chamber (Conheat signal) inside the prescribed interval.

3. A third component similarly regulates the ventilation of the chamber as required from the sensors of the air ow (Confan signal).

The main module will be presented below too. The three parts above can be viewed as nite state machines and their behavourial steps form the control part of the application.

Since multi-formalism design was the main purpose of the study, it has been decided to use the three synchronous languages Esterel, Lustre and Signal, to describe the application. The control part has been encoded using Esterel, while the data-ow computation of boundary conditions from sensor values, which is purely combinational, was encoded in Lustre. In addition, the main module was described using the Signal graphical environment to take advantage of this environment for code distribution.

Note that other design choices could have been made. In particular, although they are often naively associated, an imperative style is not always the best way to describe control parts. Especially when it is combined with the notion of clock, the data-ow style is a valuable alternative.

To illustrate the combination of formalisms, we consider the part 1 above, the purpose of which is to compute the current mode of the system. The desired mode automaton is shown in gure 3. The following data are needed to update ow and temperature: constants deltatemp (temperature variation allowed), solution time (maximal time to stay in sol mode), and tgrad (limit for temperature derivative); and variable parameters chamtact (actual chamber temperature), pantreq (requested chamber temperature|computed from operator request and temperature upper and lower bounds), and con ono (on-o switch). The conditions useful to determine the next mode use the following boolean conditions: { In2DeltaTemp = jchamtact pantreqj 2 ? deltatemp { OutDeltaTemp = jchamtact pantreqj > deltatemp { TempLess5Tgrad = true while the two last values of chamtact di er from less than 5 ? tgrad { newpanreq = true when a new pantreq occurs { ten solution time con ono = true each 10 ? solution time of con ono

The Lustre and Esterel code corresponding to this part are given in an extended version of this paper 7 . The Esterel module, which describes the nite state machine, is called as an imported node from the Lustre node. The main module of the application is described as a Signal program which mainly computes pantreq and pantvent (respectively the requested chamber temperature|computed from operator request and temperature upper and lower bounds|and the requested chamber ventilation|also computed from operator request and upper and lower bounds), and calls the three sub-parts described above. Each sub-part is de ned just like the modeselect component, as a Lustre node calling itself an Esterel module. In the Signal program, they are represented as external processes. The Signal program is given in the appendix. A graphical view of this program is shown in gure 4.

Compilation and simulation

The integration of the di erent parts of the application is obtained through the common DC+ format. First, each one of the Lustre nodes and Esterel modules is translated in a DC node, thanks to the corresponding translators. The Signal part could be translated as well in DC+, but this is in fact not islip99: submitted to World Scienti c on September 9, 1999 Then, the DC codes from Lustre and Esterel corresponding to one of the three sub-parts presented above are linked together in order to obtain one single DC code for each sub-part. Each one of the three resulting DC codes is then separately compiled with the DC+ compiler, with two results:

1. an abstraction of the corresponding DC node giving the existing clock relations and dependencies between the inputs and outputs of the node (in the case of a DC node, clock relations are simply equality, but the same algorithms apply to more general DC+ nodes); 2. a C code corresponding to the DC node. An example of clock and dependency relations calculated in this way is given in the extended version of the paper 7 for the modeselect component (it should be noticed that some internal ows, used for example as boolean conditions at which the dependencies are valid, can be made visible at the interface of the abstracted node). islip99: submitted to World Scienti c on September 9, 1999 The abstractions of the separately compiled modules are included in the main Signal program so as to get a \complete" view of the application. This program can then be compiled, cycles can be detected, C code can be generated.

Then, the C codes corresponding to the separately compiled modules are linked together and an executable is obtained. An example of simulation is given in gure 5 (the simulation environment has been described in Signal). The purpose is to obtain automatic distributed code generation from: { the software architecture of the application, islip99: submitted to World Scienti c on September 9, 1999 { a representation of the distributed target architecture, { a manual mapping of the software modules onto the hardware components. It is not our purpose to detail here the formal principles of the method: this has been done elsewhere 3;5;8;13 . Instead, we want to illustrate the method on our multi-formalism example.

Virtual mapping

Here, the software architecture of the application is that of gure 4, where external processes have been replaced by their abstraction. Then we consider a target architecture roughly composed of, say, two processors, represented by two boxes in the graphical editor. Thanks to the graphical environment, each one of the software components is mapped on a processor by simple clickand-point. Note that the idempotence property of the composition allows to duplicate some of the components.

The required connections are automatically established. This is shown in gure 6, where the two main boxes represent the two processors, on which software components have been mapped.

Traceable compilation

After the virtual mapping, the next step is a global compilation that will preserve the new structure of the application, so that each sub-graph (corresponding here to one processor) will be executed on one location. In the general case, it will be necessary to add some boolean clock de nitions to be communicated between the di erent locations to ensure that the semantics of synchronous communication will be preserved even though an asynchronous communication medium is used. This refers to properties of endocrony and isochrony 8 . In particular, each processor will have a local tree of boolean clocks (it can be represented by a bDC+ endochronous program). This is obtained automatically through the global compiling by using some heuristics (to complete the clock hierarchy and to transmit the Booleans used for communication).

The result of this global compiling is made available to the user, by replacing the contents of each box corresponding to one location by the compilation result viewed as a new Signal or DC+ program. In each box, the equations representing clock relations are separated from the de nitions of signals; these de nitions themselves are partitioned between boolean ones and non boolean ones; invariant equations are separated from the state evolution ones, etc. islip99: submitted to World Scienti c on September 9, 1999 The actual implementation of a module has to conform to the dependencies resulting from the causality analysis. In general, further sequentialization has still to be performed to generate code. Of course, this additional sequentialization can be the source of potential, otherwise unjusti ed, deadlock when the considered module is reused in the form of object code in some environment. Thus, the purpose is to be able to structure the code into pieces of sequential code and a scheduler, aiming at guaranteeing separate compilation and reuse. In addition, the cost of dynamic execution leads to reduce as much as possible dynamism. To do that, the nodes of a sub-graph will be gathered in such a way that they can be considered as atomic. In this case, the scheduler only has to manage sets of nodes instead of nodes themselves.

The rst level of atomicity which is automatically provided is obtained by building the classes of nodes transitively depending on the same subsets of input ows. For the sake of scheduling, such a class can be seen as a procedure call: it can be executed as an atomic action depending upon its set of inputs.

The abstraction of a class is thus a black box abstraction. Then to ensure a correct read-write sequencing of the classes of a module from the point of view of the environment of that module, the internal communications have also to be abstracted as dependency relations. We obtain what we call a grey box abstraction of a module (in the sense that we know more than just its interface: we have to know the internal classes|black box abstractions|and their dependencies).

On the example, we have to calculate the grey box abstractions of the two modules corresponding to the two processors.

Adding communications

Communication features, such as a shared memory, a fo, etc., can be described as some process abstraction. In gure 7, communications have been added between the two processors. Other ones should be added also between the processors and their environment. From this complete representation of Figure 7. Adding communications the application, including its virtual distribution on a targeted architecture, it islip99: submitted to World Scienti c on September 9, 1999 is possible to make a global compilation to be able to simulate the application on the considered architecture. It is also possible to study the cost of the implementation, to evaluate time consumption, etc. 6;17 .

On the other hand, each module corresponding to one processor can be compiled separately for embedded code generation. In this case, only the \send or receive" part of the communication channels is considered, and communications are generated by making calls to the corresponding OS primitives, provided by the user (for example).

Conclusion

Although relatively small, the experiment we have presented can be considered in several aspects as representative of multi-formalism designs using semantically well-founded languages, such as synchronous languages. Co-simulation of these languages has been experimented through the use of a common format and tools developed around this format. In particular, in this work there is evidence for possibility of mixing data-ow styles and control-ow styles. Moreover, a distribution methodology and tools for that are provided in the framework of the graphical Signal environment. The approach can be compared with the implementation of synchronous programs in POLIS [START_REF] Berry | Implementation of Constructive Synchronous Programs in POLIS[END_REF] , and with other distributed implementations 11;12 .

Other experiments, not described here, have been applied on the same case study: veri cation of some safety properties, for example (see section 3.1). On the other hand, a mathematical model of the physical environment has been given, so that we can handle some hybrid system, composed of a combination of discrete and continuous speci cations [START_REF] Nadjm-Tehrani | \Integration of Analog and Discrete Synchronous Design[END_REF] .

Finally, the same sort of experiments have been made, using Lustre and mode automata on one hand, and Signal and Statecharts on the other hand.

Figure 2 .

 2 Figure 2. The climatic chamber system

Figure 3 .

 3 Figure 3. Climatic chamber modes computation

Figure 4 .

 4 Figure 4. Signal graphical view of the main program

Figure 5 .

 5 Figure 5. Simulation panel

Figure 6 .

 6 Figure 6. The result of the mapping

|

 pantreq := if on_off then if (optreq>=treqmin) and (optreq<=treqmax) then optreq*10 else (if optreq<treqmin then treqmin*10 else (treqmax*10))else (pantreq$ init 200) | pantvent := if on_off then if (optvent>=tventmin) and (optvent<=tventmax) then optvent*60 else (if optvent<tventmin then tventmin*60 else (tventmax*60)) else (pantvent$ init 3000) | (Wait,Sol,Work,Block,Panaudio,Panwait,Panoper,Panblock,Warntemp) := modeselect(on_off,pantreq,chamtact) | Conheat := tempreg(pantreq,chamtact,Block,on_off) | Panwarn := if alpha then false else (if on_off then Panaudio else Panwarn$) | (Confan,Warwent) := flowreg(pantvent,chamflow,Block,on_off) | alpha := (not (^alpha))$ init true |) where integer pantvent, pantreq; boolean alpha, Warwent, Warntemp, Block, Work, Sol, Wait; constant integer treqmax:=300, treqmin:=100, tventmax:=30, tventmin:=5; process modeselect = ...; process tempreg = ...; process flowreg = ...; end;

Checks DC+ Procedural interface DC+ Procedural interface bDC+ STS DC DC+ Procedural interface interface DC+ Procedural sbDC+ Root adjunction Event conversion Flattening expansion Clock expansion Local scheduling

	Boolean or Pure clocks	Pure type
		Boolean or pure clock table
	Boolean clocks Boolean clock table
		Clock hierarchy
		Flat clock hierarchy
	Scheduled bDC+

DC+

Figure

1

. The DC+ architecture the functions that can be applied to it.

islip99: submitted to World Scienti c onSeptember 9, 1999

ftp://ftp.irisa.fr/local/signal/publis/articles/ISLIP-99: islip99: submitted to World Scienti c onSeptember 9, 1999

http://www.irisa.fr/ep-atr/Publis/Abstract/sacres-dc.html. islip99: submitted to World Scienti c onSeptember 9, 1999

Acknowledgments

This work was supported by the Esprit LTR project SYRF (EP 22703). Part of the results have been obtained from the Esprit R&D project SACRES (EP 20897).