member, IEEE Micky Rakotondrabe 
  
member, IEEE Ioan Alexandru Ivan 
  
Development and dynamic modeling of a new hybrid thermo-piezoelectric micro-actuator

Keywords: Hybrid micro-actuator, piezoelectricity, thermal bimorph, unimorph cantilever, dynamic model, thermal network, Prandtl-Ishlinskii hysteresis, nonlinearity

This paper presents a new hybrid micro-actuator based on the combination of piezoelectric and thermal effects. The proposed actuator can perform both a high stroke coarse positioning through the thermal actuation, and a high resolution fine positioning through the piezoelectric actuation.

The micro-actuator structure is a unimorph piezoelectric cantilever, which also constitutes a thermal bimorph that is very sensitive to temperature variation. While electrical voltage is used to control the piezoelectric actuation, we use a Peltier module to provide the temperature variation and to control the thermal functioning. In order to understand the behavior of the hybrid actuator, a model is developped. For better precision but at the same time for model simplicity, the thermal part is modeled with the thermal network whereas the Prandtl-Ishlinskii hysteresis approach is used to model the nonlinearity of the piezoelectric part. Finally, a series of experimental results validate the developed model.

I. INTRODUCTION

T He micromanipulation and microassembly concern is the manipulation and assembly of functionnal and structured products whose dimensions are less than 1mm. Nowadays, the degree of miniaturization of many systems and products leads laboratories and industry to use micromanipulation and microassembly tasks. For instance, the assembly of watch microcomponents, 3D MEMS and MOEMS (Micro Opto Electro Mechanical Systems) needs flexible microassembly stations [START_REF] Lin | Fiber assembly of MEMS optical switches with U-groove channels[END_REF] [START_REF] Clévy | Flexible Micro-Assembly System Equiped with an Automated Tool Changer[END_REF]. The aligning of microspectrometer fibers [START_REF] Das | On the Precision Alignment and Hybrid Assembly Aspects in Manufacturing of a Microspectrometer[END_REF] and the manipulation of biological cells [START_REF] Lu Zhe | A Micromanipulation System for Automatic Batch Microinjection[END_REF] [5] also recover from the micromanipulation. Either micromanipulation or microassembly tasks need micromanipulators and microrobots with very high performances: high accuracy, high resolution, high range of positioning and sometimes high response time. This is why these systems are based on smart material actuators instead of actuators with hinges.

One of the most prized smart materials for designing microactuators are ceramic piezoelectric materials, especially the PZT family (Lead Zirconate Titanate). They have proved their efficiency in piezogrippers [START_REF] Capparelli | Design of a PZT bimorph actuator using a metamodel-based approach[END_REF] [START_REF] Xinhan | A piezoelectric bimorph micro-gripper with micro-force sensing[END_REF], stick-slip micro-actuators [START_REF] Bergander | Mobile cm 3 -microrobots with tools for nanoscale imaging and micromanipulation[END_REF] [9], and Atomic Force Microscopes (AFM). In fact, piezoelectric materials offer a very high resolution, a high force density and a small response time. In addition, the fact FEMTO-ST Institute, UMR CNRS 6174 -UFC / ENSMM / UTBM Automatic Control and Micro-Mechatronic Systems depart., AS2M 24, rue Alain Savary 25000 Besançon -France {mrakoton,alex.ivan}@femto-st.fr that its input energy is electrical makes it easy to control. As examples, in improved AFMs, piezoelectric actuators can offer subnanometric resolution [START_REF] Mokaberi | Compensation of scanner creep and hysteresis for AFM nanomanipulation[END_REF] while in some piezogrippers and piezocantilevers, their settling time is less than 10ms [START_REF] Rakotondrabe | Quadrilateral modelling and robust control of a nonlinear piezoelectric cantilever[END_REF]. Although they are quick and accurate, the range of deformation of piezoelectric actuators is very limited. In fact, the coupling coefficient of piezoelectric material is weak relative to that of other types of smart materials. The solution of maximizing the output deformation by supplying higher voltage is not convenient as it may cause the material depolarization.

Compared to piezoelectric actuators, thermal actuators are characterized by higher range of deformation. Most designs employ the thermal bimorph cantilever principle which is made up of two different metallic layers. When submitted to a temperature variation, the difference in thermal expansions of the two layers will result in a bending of the cantilever. Provided the resulting large deflection, thermal bimorph actuators are employed to design microgrippers and micropositionning devices [START_REF] Popa | Dynamic Modeling and Input Shaping of Thermal Bimorph MEMS Actuators[END_REF] [START_REF] Jain | A thermal bimorph micromirror with large bi-directional and vertical actuation[END_REF]. Thermal actuators also include cooling phases, instead of heating ones, such as in [START_REF] Lopez-Walle | Principle of a submerged freeze gripper for microassembly[END_REF] where the actuator freezes and creates ice in order to manipulate objects in water media. Unfortunately, thermal actuators are slow and inaccurate. This inaccuracy is especially due to the high sensitivity to small environmental thermal drifts.

In many applications, the thermal effect on piezoelectric actuators has been considered as unwanted disturbance that drastically decreases the accuracy. Therefore, the literature proposes suitable controllers for rejecting it [START_REF] Mokaberi | Drift compensation for automatic nanomanipulation with scanning probe microscopes[END_REF] [START_REF] Rakotondrabe | H-inf deflection control of a unimorph piezoelectric cantilever under thermal disturbance[END_REF]. In this paper, we propose to combine the thermal effect and the piezoelectricity to develop a new actuation concept, called hybrid thermo-piezoelectric. The aim is to benefit from the high resolution and high speed performances of the piezoelectric effect and from the high range of deformation of the thermal actuation. In order to understand the behavior of the actuator, a dynamic model is proposed. The developed model can be used for behavior analysis, design improvement and control design.

The paper is organized as follows. In section-II, we present the new hybrid actuator. Section-III is dedicated to the modeling of the thermal part while section-IV the modeling of the piezoelectric part. Finally, additional experiments and discussions conclude the paper.

II. PRESENTATION OF THE NEW HYBRID THERMO-PIEZOELECTRIC ACTUATOR

This section presents the principle of the proposed actuator.

A. Principle

The principal actuator is a unimorph piezoelectric cantilever (piezocantilever) which is made up of one PZT-layer (Lead-Zirconnate-Titanate piezoceramic) and one passive layer (Copper) (Fig. 1-a). When an electrical voltage is applied, the PZT-layer expands/contracts resulting a bending δ of the whole cantilever (Fig. 1-b). Furthermore, when a temperature variation is applied, the two layers expands/contracts with different amplitudes as they do not have the same thermal expansion coefficients and a bending is also obtained (Fig. 1c). This bending represents the output of the actuator. To provide the temperature variation, we propose to use a Peltier module, also called Thermo-Electric-Cooler device (TEC-device). It transforms the electrical current at its input into a heat flux and therefore a temperature change at its surface. Its main advantage is the easiness of control: use of electrical excitation and possibility to reverse heating into cooling. Therefore, by providing either positive or negative current, we can obtain a positive or negative direction of the cantilever deflection. The TEC-device has two sides that will be called "actuator" face and "cooler" face. The piezocantilever is in contact with the actuator face and a cooling block is connected to the cooler face. Fig. 2 presents the CAD drawing of the designed hybrid actuator. The different geometrical characteristics are listed in Table I. 

C. Block diagram of the micro-actuator

The output of the hybrid actuator is the deflection δ of the piezocantilever. There are two input control signals: the voltage U directly applied to the piezoactuator and the current i applied to the TEC-device. Let T act0 denote the temperature at the actuator face of the TEC-device, i.e. at the clamped end x = 0 of the piezocantilever. Furthermore, let T actL denote the temperature at the tip of the cantilever (at x = L). The temperature T act0 , and therefore the temperature T actL , changes when the current i is applied. The temperature inside the piezocantilever also changes and according to the thermal bimorph principle the deflection is obtained. first we will model the electrothermal functioning, i.e. from the current i to the temperatures T act0 and T actL . Afterwards, we will model the mechanical part, i.e. the deflection versus the input voltage U and versus the temperatures. Finally, we will provide the complete governing equations of the hybrid micro-actuator.

III. MODELING OF THE ELECTROTHERMAL FUNCTIONING

The aim of this section is to provide the dynamic modeling of the thermal behavior of the hybrid actuator. While the input is the current i of the TEC-device, the output will be the temperatures T act0 and T actL of the piezocantilever. For that, we propose to use the thermal network approach. Thermal network is a relatively simple but powerful tool for simulating thermal systems [START_REF] Holman | Heat transfer[END_REF]. It is simple and efficient to model several connected subsystems. Thermal network is based on the analogy between thermal and electrical models. A heat flow Q is equivalent to an electrical current, a temperature difference ∆T to a voltage, and a thermal resistance R th to an electrical resistance.

We first give the electrical equivalences of the cooling block, the TEC-device and the piezocantilever separately. Afterwards, we combine them and give the whole model of the electrothermal behavior.

A. The cooling block

To model the cooling block, we start from the network model of a beam structure with rectangular cross-section.

1) Thermal network model of a beam structure: consider a beam structure, with dimensions L b × l b × e b , along which the heat transfer involves a combination of conduction and convection effects (Fig. 5-a). In the figure, Q 1 and Q 2 are the heat flows through the two terminal surfaces, T 1 and T 2 are the respective temperatures, and a heat convection Q h takes place from all other surfaces in contact with the external fluid (air) whose temperature is T a . Lopez-Walle et al. [START_REF] Lopez-Walle | Dynamic modelling for thermal micro-actuators using thermal networks[END_REF] demonstrated that the dynamic thermal network of the beam structure is as shown in Fig. 5-b, where the conduction thermal resistance is R = L b kS b , the convection thermal resistance is

R v = 2 hairP b L b and the thermal capacitor is C = ρCpS b L b 2
. We have: P b = 2 (e b + l b ) as the lateral perimeter and S b = e b l b as the section of the beam. The physical parameters are the thermal conductivity k, the mass-specific heat capacity C p , the air heat transfer coefficient h air and the density ρ. 2) Thermal network model of the cooling block: the bottom surface of the cooling block is placed on a heat insulator (zero heat flow) (Fig. 6-a). At the second terminal surface (frontal surface), only a small area S p is connected to the TECdevice. In fact, there is a small adhesive (glue) thickness layer l c = 0.1mm between the cooler face of the cooling block and the TEC-device. Therefore, the heat flow Q r traverses this thin film. Two surfaces are submitted to a heat convection: the lateral surface submitted to Q vs and the frontal surface submitted to Q vsf . Applying the previous beam analysis, we We have:

v R v R R C C 1 Q h Q 1 Q 2 Q 2 Q a T a T 1 T 1 T 2 T 2 T b l b L b e (a) (b) 
R vs = 2 hairPsLs , R vsf = 2 hair(bsas-Sp) R s = Ls ksSs , R c = Lc ksSp , C s = ρsCpsSsLs 2 (1)
where k s is the thermal conductivity, C s is heat capacity and ρ s is the density of aluminium. S s = a s b s is the section and P s = 2 (e s + l s ) is the perimeter of the block.

B. The TEC-device

A TEC-device is characterized by the two following symmetrical equations:

Q c = -αT c i + Rp 2 i 2 + kp (T h -T c ) Q h = -αT h i + Rp 2 i 2 -kp (T h -T c ) (2) 
where: 

• Q c and Q h are

C. The piezocantilever

The piezocantilever consists of two materials: the PZT-layer and the copper-layer. The thickness of the interface (glue) between the two layers is considered to be negligible. To give the thermal network, we first remind the case of parallel and serial structures.

1) Thermal network of parallel and serial structures : consider a heat flow Q 1 that traverses two parallel materials m 1 and m 2 as pictured in Fig. 8-a. The equivalent thermal resistance is the shunt of the two elementary thermal resistances of the materials [START_REF] Holman | Heat transfer[END_REF] (Fig. 8-b). To account the dynamic part, we add the capacitors as preconized in Fig. 5-b. If we consider now two materials which appear in cascade face to a convection flow (Fig. 8-c), then their two resistances will also be in cascade [START_REF] Holman | Heat transfer[END_REF](Fig. 8-d).

1 T 1 T a T a T a T 1 Q 1 Q v Q v Q v Q 2 Q 2 Q 2 T 2 T m1 R v1 R v2 R m2 R m2 C m1 C m1 C m2 C m1 m2 m1 m2 (c) (d) (a) (b)
Fig. 8. Parallel and serial thermal structures.

2) Thermal network of the piezocantilever: Fig. 9-a pictures the piezocantilever under different heat flows. The flow Q c comes from the TEC-device and Q va1 and Q va2 are the convection flows on the lateral surface and at the extremity respectively. The thermal network of the piezocantilever is given by Fig. 9-b. R va1 is the convection thermal resistance which is related to Q va1 . R va2 is the convection thermal resistance which resists to the flow Q va2 . The final conduction thermal resistor and capacitor of the piezocantilever is made up of the piezolayer and of the copper-layer in parallel. We have:

peltier module (a) a T va2 Q L l c Q 1 va Q 2 va Q acto T actL T c Q va1 R va2 R va1 R pzt R cop R cop C cop C pzt C pzt C (b)
R pzt = L kpzt•Spzt , R cop = L kcop•Scop , R va1 = 2 hairPactL R va2 = 2 hairSact , ρ pzt C ppzt S pzt L, C cop = ρcopCpcopScopL 2
(3) where k pzt and k cop are the thermal conductivities, C ppzt and C pcop the heat capacities, ρ pzt and ρ cop the densities of PZT and copper respectively. On the other hand, S pzt = e pzt l and S cop = e cop l are the sections of the piezolayer and the copperlayer respectively. Finally, P act = 2 (l + e) and S act = S pzt + S cop = el are the perimeter and cross-section of the actuator.

D. Final model of the electrothermal functioning

Assemblying the previous different elements, we obtain the thermal network of the hybrid actuator as pictured in Fig. 10. In the figure, we define:

R va1//2 = Rva1Rva2 (Rva1+Rva2) , R vs//f = RvsR vf (Rvs+R vf ) C act = C pzt + C cop ( 4 
)
Applying Kirchhoff laws to the circuit of Fig. 10, we obtain the four governing equations of the thermal functioning:

T a = R vs C s dT so dt + R vs + 1 R s T so - R vs R s T sf ( 5 
)
T a = R vs//f C s dT sf dt + R vs//f (R th +Rc) + R vs//f Rs + 1 T sf - R vs//f Rs T so + R vs//f Rc R th th +Rc) - R vs//f R th T acto + R vs//f Rc (R th +Rc) -R vs//f P s + R vs//f Rc (R th +Rc) -R vs//f P j/2 (6) T a = R va1 C act dTacto dt + Rva1 Ract + Rva1 R th -Rva1Rc R th (R th +Rc) T acto -Rva1 Ract T actL -Rva1 (R th +Rc) T sf + R va1 -Rva1Rc (R th +Rc) P s -R va1 + Rva1Rc (R th +Rc) P j/2 (7) T a = R va1//2 C act dTactL dt - R va//2 Ract T acto + (Rva1//2+Ract) Ract T actL (8)
IV. MODELING OF THE PIEZOELECTRIC AND THERMOMECHANICAL FUNCTIONING

A. Constitutive equations in static regime

Smits and Choi [START_REF] Smits | Equations of state including the thermal domain piezoelectric and pyroelectric heterogeneous bimorphs[END_REF] derive the static constituent equation of a rectangular unmiorph structure containing one piezolayer and one passive layer. The deflection δ at the tip was formulated versus the applied voltage U and versus the temperature variation T :

δ = d p U + f s T (9)
where the piezoelectric coefficient is d p = - 

and where d 31 is the transverse piezoelectric coefficient of PZT, s p 11 and s c 11 are the axial elastic coefficients of PZT and copper respectively, and ∆α = α pztα cop is the difference of their thermal expansion coefficients.

B. Introduction of the dynamic part

Two dynamic parts can be introduced in the model of (Eq. 9): one for the piezoelectric (electromechanical) term and one for the thermomecanichal term, such as: δ = d p UD(s) + f s T D T (s). The Laplace variable is denoted by s.

Piezoelectric dynamic part D(s) is of interest because it could be used to control and improve the performances of the fine positioning mode. Thermomechanical dynamic part D T (s) is not easy to characterize and identify. In fact, it is impossible to apply pure canonical temperature signals T (impulse, step, etc.) to perform that. Assuming that the thermomechanical dynamic part D T (s) is very rapid compared to the electrothermal dynamic model in (Eq. 5)-(Eq. 8), the latter dominates in the transfer between current i and output deflection δ. So we shall neglect D T (s) in the electrothermomechanical functioning and we will finally use:

δ = d p UD(s) + f s T (11)

C. Temperature gradient in the the piezocantilever

In model (Eq. 11), T is considered to be uniform all accross the piezocantilever. Nevertheless, the thermal model in (Eq. 5)-(Eq. 8) points out that the temperatures T acto and T actL could be distinct. For a more analysis, we capture the temperature field of the piezocantilever using a IR camera. Fig. 11 present the images when the temperature at the actuator face of the TEC-device is 19[ o C] and then 43[ o C]. These results show that the temperature gradient inside the piezocantilever is negligible except for the boundary between the TEC-module and the cantilever. Thus, we can assume that the temperature is T actL all along it. In addition, as the temperature is uniform inside the piezocantilever, whatever the side (PZT or copper) glued on the TEC-device is, the performances are similar. The final model of the deflection of the piezocantilever is: 

δ = d p UD(s) + f s (T actL -T a ) (12 

V. FINAL MODEL AND EXPERIMENTS A. The final governing model

The final model includes the electrothermal dynamic model in (Eq. 5)-(Eq. 8) and the dynamic model of the piezoelectric actuator in (Eq. 12). The dynamic part D(s) can be experimentally identified. Re-arranging the different equations we have:

                                       dTso dt = 1 τs T sf -bso τs T so + 1 τvs T a dT sf dt = 1 τs T so - c sf τ vs//f T sf -cacto τ vs//f T acto - cps τ vs//f T acto i - c j/2 τ vs//f i 2 + 1 τ vs//f T a dTacto dt = 1 τact T actL -dacto τrva1 T acto + d sf τrva1 T sf - dps τrva1 T acto i + d j/2 τrva1 i 2 + 1 τrva1 T a dTactL dt = 1 τact T act0 -eactL τ rva1//2 T actL + 1 τ rva1//2 T a δ = d p UD(s) + f s (T actL -T a ) (13 
) with, for the first equation

τ s = R s C s , τ vs = R vs C s , b so = (Rvs+Rs)
Rvs [START_REF] Lopez-Walle | Principle of a submerged freeze gripper for microassembly[END_REF] for the second equation [START_REF] Mokaberi | Drift compensation for automatic nanomanipulation with scanning probe microscopes[END_REF] for the third equation

τ vs//f = R vs//f C s c sf = R vs//f (R th +Rc) + R vs//f Rs + 1 c acto = R vs//f Rc R th (R th +Rc) - R vs//f R th c ps = α R vs//f Rc (R th +Rc) -R vs//f c pj/2 = Rp 2 R vs//f Rc (R th +Rc) -R vs//f
τ act = R act C act , τ rva1 = R rva1 C act d acto = Rrva1 Ract + Rrva1 R th -Rva1Rc R th (R th +Rc) + 1 d sf = Rva1 (R th +Rc) , d ps = α R va1 -Rva1Rc (R th +Rc) d pj/2 = Rp 2 R va1 + Rva1Rc (R th +Rc) (16) 
and for the fourth equation

τ rva1//2 = R rva1//2 C act , e actL = 1 + R va1//2 Ract ( 17 
)
Table II resumes the physical properties that will be used for simulation. 

B. Electrothermal experimental result

The first experiments concern the electrothermal functioning which links the applied current i and the different temperatures. We are especially interested in the temperature T act0 of the TEC-device at x = 0 of the piezocantilever. A sine input with i = 0.1[A] of amplitude is applied to the TEC-device. The frequency is chosen to be very low (0.001 [Hz]) in order to avoid the influence of the dynamic part to the shape of the static characteristics, i.e. due to the phase lag. The results are compared with the simulation of the developed model and show that the latter is accurate (Fig. 12). Afterwards, a series of steps at different values (i = 0.1[A], i = 0.05[A] and i = 0.025 [A]) are applied to the TEC-device. Fig. 13 pictures the experimental and model simulation results. It also shows 

C. Thermomechanical experimental result

The next experiment concerns the deflection δ of the piezocantilever versus the temperature variation: the thermomechanical behavior. For that, we impose U = 0 so that δ = f s (T actL -T a ) for the last equation of the model in (Eq. 13). Fig. 14 gives the (static characteristic) comparison between the model (linear dashed-plot) and the experimental result for the deflection δ versus the temperature T actL . It shows that the linear model does not reflect the real characteristics of the actuator. We then propose a polynomial model:

δ sim = ni i=1 a i (T actL -T a )
i , such as a 1 = f s . The identification of the parameters a i is based on the following optimization problem:

       ε min = min ai∈R ni N k=0 (δ(k) -δ sim 2 δ sim (k) = ni i=1 a i (T actL -T a ) i (k) ( 18 
)
where N is the data length. Using Matlab TM and several choices of model-order n i , it appeared that the modeling error ε min did not decrease substantially when n i is greater than four. Therefore, we choose:

δ = 4 i=1 a i (T actL -T a ) i ( 19 
)
with a 4 = -0.00169, a 3 = 0.04056, a 2 = -0.32233 and a 1 = f s . The simulation result, presented by star-plot in Fig. 14, well fits to the experimental results. 

D. Piezoelectric experimental result

In this part, the piezoelectric characteristic δ = d p UD(s) in model (Eq. 13) is analyzed.

1) Static characteristics: we first analyze the static behavior of the piezocantilever. To perform that, a sine input voltage of amplitude U = 40[V ] is applied. The frequency is chosen to be low (here we choose f = 0.1 [Hz]) to avoid the influence of the dynamic part D(s) [START_REF] Rakotondrabe | Quadrilateral modelling and robust control of a nonlinear piezoelectric cantilever[END_REF]. The experimental results (Fig. 15-solid line) and the simulation of the model δ = d p U (Fig. 15-dashed line) show that a linear model is not accurate enough to capture the static behavior of the piezocantilever. In fact, piezoelectric materials, especially ceramics, are strongly subjected to hysteresis when the applied electrical fields is relatively high. Therefore, we propose to use a nonlinear model.

There are different models of hysteresis used to characterize smart materials: the Preisach [START_REF] Dubra | Preisach classical and nonlinear modeling of hysteresis in piezoceramic deformable mirrors[END_REF], the Prandtl-Ishlinskii [START_REF] Kuhnen | Inverse feedforwrad controller for complex hysteretic nonlinearities in smart-materials systems[END_REF] [24] and the Bouc-Wen models [START_REF] Rakotondrabe | Bouc-Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators[END_REF]. The Prandtl-Ishlinski model (PI-model) is notably appreciated for simplicity of its implementation and ease of obtaining a control law [START_REF] Rakotondrabe | Complete open loop control of hysteretic, creeped and oscillating piezoelectric cantilevers[END_REF].

In the PI approach, a hysteresis is modeled by the sum of many elementary hysteresis operators, called play operators. Each play operator, denoted by γ i (.), is characterized by a threshold r i and a weighting w i [START_REF] Krasnosel | Systems with hysteresis[END_REF]. So, instead of δ(t) = d p U (t), we have: [START_REF] Smits | Equations of state including the thermal domain piezoelectric and pyroelectric heterogeneous bimorphs[END_REF] where δ(t -) indicates the value of the output at precedent time and n hyst the number of play operators. The identification of the parameters r i and w i , well described in [START_REF] Rakotondrabe | Complete open loop control of hysteretic, creeped and oscillating piezoelectric cantilevers[END_REF], is done using the maximum operating input range U = 40[V ]. For a trade-off between the accuracy and the simplicity, we choose a number n hyst = 15. The identified model is pictured in Fig. 15star plot. The figure clearly shows that the PI model is more suitable to capture the static behavior of the piezocantilever than the linear model. 2) Dynamic characteristics: we now identify the dynamic part D(s). For this purpose, a step input of amplitude U = 40V is applied. Using ARMAX (Auto Regressive and Moving Average eXogenous) method [START_REF] Ljung | System Identification Toolbox -for use with MATLAB[END_REF], it is shown that a third order model well captures the transient part. The simulated model and the experimental results are pictured in Fig. 16, and the model is: 

δ(t) = n hyst i=1 γ i (U (t)) = n hyst i=1 w i • max {U (t) -r i , min[U (t) + r i , δ(t -)]} ( 
D(s) = δ U = 102 s 2 +

E. Modeling overview and discussions

The four first equations of the developed model in (Eq. 13) well fit to the experimental results. These equations refer to the electrothermal functioning of the hybrid actuator. The last equation of (Eq. 13), which corresponds to the piezoelectric and thermomechanical behaviors, is not accurate enough. This equation, developed in [START_REF] Smits | Equations of state including the thermal domain piezoelectric and pyroelectric heterogeneous bimorphs[END_REF], does not take into account the ferroelectric materials nonlinearities such as the hysteresis. Therefore, we have proposed a polynomial model for the thermomechanical part and a Prandtl-Ishlinskii (PI) hysteresis model for the piezoelectric (electromechanical) one. Contrarily to the electrothermal equations which are based on physical parameters, the proposed nonlinear model of the themomechanical and piezoelectric sub-systems is with lumped parameters. Using the previous section, the piezocantilever equation (last equation in (Eq. 13)) is therefore replaced with:

δ(t) = n hyst i=1 γ i (U (t)) D(s) + ni i=1 a i (T actL (t) -T a ) i (22)
As presented in (Eq. 13) and (Eq. 22), the output deflection δ is dependent on the ambient temperature T a . However, if T a changes, the temperatures T act0 and T actL of the TEC-device and of the piezocantilever (when i = 0[A]) also change as these elements are exhibited in the air, and as a result the initial deflection still remains zero.

Fig. 17 gives a synthesis of the modeling aspect in the form of detailed block diagram that presents the connections between the different signals of the actuator. In the figure, the electrothermal functioning of the actuator is described by the Peltier/cooling block and the thermal bimorph model blocks. They provide the temperature T actL that corresponds to the thermal actuation of the piezocantilever. The polynomial and the PI-hyst blocks describe the thermomechanical and the piezoelectrical functioning respectively. The developed model is of great interest from the point of view of performances improvement. The dynamic model as in (Eq. 13) and (Eq. 22) and summarized in Fig. 17 does not only allow us to understand the behavior of the actuator, but also constitutes a starting point for the design of a controller to improve the dynamics and the accuracy performances. Such performances are necessary for micromanipulation and microassembly tasks where the developed actuator can be used as microgrippers. This application requires the use of actuators with both the high range (more than the hundred of microns) and the high resolution (better than the micron). Table III gives a general summary of performances of the proposed actuator compared to classical unimorph piezocantilever and to a thermal bimorph having the same dimensions and materials components (PZT and copper) as well as operating input ranges (U = 40[V ] and temperature variation: 20[ o C]). The resolution of the thermal bimorph actuator depends on the temperature source element (using the TEC-device, we obtain ≈ 1µm). 

VI. CONCLUSION

The aim of this paper was the presentation, development and modeling of a new hybrid actuator. The actuator, based on a piezocantilever, combines the piezoelectric effect and the thermal bimorph principle. The main advantage lies in the combination of the high range of displacement from the thermal actuation and of the high resolution from the piezoelectric actuation. To apply the temperature variation, the piezocantilever was embedded on a Peltier module (TECdevice). A model of the hybrid actuator was developed and validated by experimental results. The thermal network was used to model the thermal dynamic behavior because of its ease to connect subsystems. To model the piezocantilever's deflection, Smits and Choi's linear model was first used. However, due to the nonlinearities aspect of the piezomaterial, we have proposed a polynomial and a Prandtl-Ishlinskii (PI) models for the thermomechanical and piezoelectric terms respectively. The developed model can be used for behavior analysis, design optimization and control design.
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Fig. 1 .

 1 Fig. 1. (a) Unimorph piezocantilever. (b) Piezoelectric actuation. (c) Thermal actuation.

Fig. 2 .

 2 Fig. 2. CAD drawing of the hybrid micro-actuator.

Fig. 3

 3 shows the prototype of the developed micro-actuator and the experimental setup. An optical sensor (Keyence-2420) having a resolution up to 10nm and a range of ±200µm is used to measure the deflection of the piezocantilever. The temperatures at the actuator face of the TEC-device and at the piezocantilever's tip are measured with miniature NTC (Negative Temperature Coefficient) thermistors. A computer, a dSPACE board, a HV (high voltage) and a current amplifier are used to provide the input voltage of the piezocantilever and the input current of the TEC-device, and to acquire the measurements. Finally, we use the Matlab-Simulink TM software to manage the acquisition and the control program.

Fig. 3 .

 3 Fig. 3. The data acquisition block diagram and the experimental setup.

Fig. 4 Fig. 4 .

 44 Fig. 4. Systemic scheme of the hybrid thermo-piezoelectric actuator.

Fig. 5 .

 5 Fig. 5. (a) A beam structure. (b) Dynamic thermal network of the beam.

Fig. 6 .

 6 Fig. 6. Analysis of the cooling block.

Fig. 7 .

 7 Fig. 7. Thermal network of a TEC-device.

Fig. 9 .

 9 Fig. 9. Thermal network of the piezocantilever.
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 2 and the thermoelectric coefficient is f s = 3ABL 2 ∆α K , with: A = s c 11 s p 11 (s c 11 h p + s p 11 e c ) , B = ec(ep+ec) (s c 11 ep+s p 11 ec) K = (s c 11 ) 2 (e p ) 4 + (s p 11 ) 2 (e c ) 4 + 4s c 11 s p 11 e c (e p ) 3 +4s c 11 s p 11 e p (e c ) 3 + 6s c 11 s p 11 (e c ) 2 (e p ) 2

Fig. 11 .

 11 Fig.11. The thermal images of the piezocantilever using an IR camera.

Fig. 10 .

 10 Fig. 10. Thermal network of the hybrid actuator.

Fig. 12 .Fig. 13 .

 1213 Fig. 12. Static characteristics between the applied current i[A] and the temperature T act0 [ • C] at x = 0 of the piezocantilever.

Fig. 14 .

 14 Fig. 14. Actuator deflection δ versus the temperature T actL at x = L.

10 :Fig. 15 .

 1015 Fig. 15. Hysteresis between the applied voltage U and the deflection δ.

Fig. 16 .

 16 Fig. 16. Resulting deflection δ when using a step input U = 40[V ].

Fig. 17 .

 17 Fig. 17. Detailed block diagram of the hybrid actuator.

TABLE I

 I Geometrical characteristics.

	Symbol	title	value
	Ls	length of the cooling block	25mm
	as	width of the cooling block	38mm
	bs	thickness of the cooling block	20mm
	Sp	area of the TEC-device	8 × 5mm 2
	L	active length of the actuator	15mm
	l	width of the actuator	2mm
	epzt	thickness of the PZT-layer	0.2mm
	ecop	thickness of the Copper-layer	0.1mm
	e	total thickness	= epzt + ecop
	B. Prototype and experimental setup	

TABLE II

 II 

		Physical properties.	
	Symbol title	value
		Air:	
	h air	convection thermal coefficient	30W/(m 2 K)
		Cooling block (alumina):	
	ρs	density	2701kg/m 3
	Cps	thermal capacity	902J/(kgK)
	ks	thermal conductivity	222W/(m o K)
		Passive layer (copper):	
	ρc	density	7135kg/m 3
	Cpc	thermal capacity	386J/(kgK)
	kc	thermal conductivity	381.5W/(mK)
	αcop	thermal expansion	17 × 10 -6
	s c 11	axial elastic constant	9.1 × 10 -12 m 2 /N
		TEC-device:	
	α	Peltier coefficient	12 × 10 -3 V /K
	kp	thermal capacity	12 × 10 -3 J/(kgK)
		PZT (-5H):	
	ρpzt	density	7500kg/m 3
	Cppzt	thermal capacity	420J/(kgK)
	kpzt	thermal conductivity	138W/(mK)
	d 31 s p 11 αcop	transverse piezoelectroc coefficient axial elastic constant thermal expansion	-100 × 10 -12 m/V 15 × 10 -12 m 2 /N 3.3 × 10 -3
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