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Abstract

A generalisation of existing mechanical models is pro-

posed to account for the relation between wood mac-

roscopic properties and fibre microstructure and

chemical composition. It is applied to understanding of

the origin of anisotropic maturation strains measured at

the outermost surface of the xylem. Various assumptions

are considered for boundary conditions of the fibre dur-

ing the progressive maturation process and are applied

to experimental data from the literature. Assumptions

that the fibre is fully restrained in displacement, or fully

unrestrained or unrestrained in the transverse direction

only are all incompatible with observations. Indeed, with-

in the tree, the fibre is restrained in the longitudinal and

tangential directions, but unrestrained in the radial direc-

tion towards the bark. Mixed boundary conditions must

be introduced to correctly simulate both longitudinal and

tangential maturation strains. In the context of an ana-

lytical axisymmetric model, this is estimated by consid-

ering a parameter of partial release of tangential stress

during maturation. Consistence with data and with finite

element computation in the case of a square fibre con-

firmed that, because of the unrestrained radial condition,

a large part of the tangential maturation stress is released

in situ.

Keywords: anisotropy; boundary conditions; cell-wall

maturation; growth strain; multilayer model; residual

stress; wood fibre.

Introduction

Models relating wood properties to its microstructure

have been used to study various wood properties, such

as stiffness (Koponen et al. 1989; Harrington et al. 1998;

Yamamoto and Kojima 2002; Kojima and Yamamoto

2004b), viscoelasticity (Kojima and Yamamoto 2004a),

drying shrinkage (Barber and Meylan 1964; Cave 1972;

Yamamoto 1999) and maturation strains (Archer 1987;

Yamamoto 1998; Guitard et al. 1999). Early models were

based on a rather simple representation of the fibre wall

material as a matrix of lignin and hemicellulose reinforced

by a cellulosic microfibrillar framework (Barber and Mey-

lan 1964; Cave 1972). Further models integrated increas-

ing realism and complexity. Axisymmetric models (Barber

1968; Archer 1987; Yamamoto 1998, 1999; Sassus et al.

2004) allowed the cylindrical shape of compression wood

fibres to be taken into account. Multi-layer models with

two, three or four layers were proposed. Finally, the var-

iations of material properties were accounted for using a

kinetic description of the transformation process (Yama-

moto 1998, 1999). Application of elaborated models

allowed a satisfactory description of drying shrinkage

and longitudinal maturation strain. However, simulated

results for tangential maturation strains were not consis-

tent with observations (Yamamoto 1998).

Because of the evolution of the stiffness of cell wall

components, the final state of the fibre cannot be com-

puted by a simple elastic calculation. In this case, the

boundary conditions assumed during the transformation

process may have an influence on the final state. In most

formulations the fibre is assumed to be ‘‘virtually isolat-

ed’’. However, accounting for the real boundary condi-

tions of the fibre may lead to different results. Archer

(1987) developed a theoretical model assuming full

restraint of the fibre during maturation. He outlined the

fact that this assumption is not completely appropriate,

because a distinction should be made between the fibre

boundary conditions in the radial and tangential direc-

tions of the tree, which is not possible in an axisymmetric

formulation. The present paper aims at overcoming this

limitation by taking a better account of boundary condi-

tions. An explicit general formulation of the fibre model

that embraces all previous formulations is provided. It is

applied using literature data (Yamamoto 1998) and newly

adjusted parameters.

Material and methods

A description of the assumptions and parameters involved in the

model is presented in this section. An explicit mathematical

presentation can be found online (Alméras et al. 2004b). Some

assumptions on which the model is based, although classically

used, are subject to discussion (Yamamoto 1998; Guitard et al.

1999; Sassus et al. 2004). Only a discussion on boundary con-

ditions and their consequences is proposed in the present paper.
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Modelling wood material

Wood sub-micrometric structure can be described as a frame-

work of microfibrils made of crystalline cellulose, embedded in

a matrix of amorphous material consisting of lignins and hemi-

celluloses. The crystalline framework is assumed to be ortho-

tropic. Its mechanical behaviour here is sufficiently characterised

by its longitudinal modulus of elasticity El
f. The amorphous

matrix is supposed to be isotropic, characterised by its modulus

of elasticity Em and its Poisson ratio nm. Both are submitted to

induced strains al
f and am due to the maturation process. Wood

material results from a mix of these constituents in volumetric

proportions pf and pm. Its behaviour is approximated by a simple

law of mixture, expressed in the reference system associated to

the microfibril. Microfibrils are oriented at an angle f relative to

the longitudinal axis of the fibre. The behaviour of wood material

in the reference system associated to the fibre is deduced using

a tensor rotation formula. Because of the anti-symmetric situa-

tion of adjacent fibre walls, full shear restraint is assumed, so

that only normal components of the behaviour are kept.

Modelling the wood fibre

The wood fibre is modelled as a cylindrical hollow structure

made of n concentric layers. This representation can adapt to

the usual description of various fibre types, with an external

compound middle lamella (CML), and two or three inner sec-

ondary layers (S1, S2, S3 or G). The external radius of the fibre

is denoted by r0. Layers are numbered from the outer side to the

inner side of the fibre wall. Each layer is characterised by its

inner radius ri, proportion of microfibrils pi
f and microfibril angle

(MFA) fi. The stiffness and induced strains are computed using

the model of wood material. The strain and stress fields inside

the fibre are computed using an analytical solution provided by

Archer (1987). The solution depends on the boundary conditions

imposed on the fibre. They are defined at three bounds: the

longitudinal bound, the internal radial bound and the external

radial bound. The internal radial bound is assumed to be stress-

free, meaning that the internal pressure of the living cell is

neglected. For each of the other bounds, two options are con-

sidered. They may be assumed to be either fully restrained or

fully unrestrained in displacement. The main outputs of the mod-

el are parameters describing the state of the fibre at its external

bounds: radial displacement ur(r0), radial stress sr(r0), longitudinal

strain ´z and longitudinal load N.

Modelling maturation kinetics

The maturation of a wood fibre is a progressive process that

occurs together with the deposition of cell wall material. The

amount of constituents, and therefore their stiffness, increases

at the same time as maturation strains are induced. Because the

stiffness is not constant, the above elastic model cannot be

directly used to compute the final state of the fibre. Analytical

formulation and resolution of the model with variations of stiff-

ness were not explicitly carried out. We used a numerical meth-

od instead. Maturation was divided into a finite number of

elementary steps. The stiffness of the constituents increases

between steps, and is assumed to be constant during a step.

At each step, an elementary increment of strain is induced in

the constituents, and the elastic model is used to compute the

output parameters. These are cumulated to compute the final

state of the fibre.

Modelling maturation strains

During maturation, strains are progressively induced at the level

of the constituents. This results in a potential maturation strain

at the level of the fibre. Due to physical restraints (depending on

the boundary conditions of the fibre), only part of this strain is

expressed (i.e., actually achieved) during the maturation pro-

cess, and the other part is accumulated as maturation stress.

This accumulated part can be artificially released at the xylem

surface. Released strains are measured using various methods

(Yoshida and Okuyama 2002) by cancelling longitudinal and tan-

gential maturation stress either independently (denoted by ´L

and ´T) or together (in this case called ‘‘LT-released’’ strains,

denoted by ´L* and ´T*). Classically, the expressed part of the

maturation strain is considered negligible, so that released strain

is considered to be equal to maturation strain.

Two points of view are considered in the present paper. The

first consists of modelling maturation of the fibre inside the tree.

Discussing the assumptions for the boundary conditions of the

fibre in this context is the objective of the present paper. In this

case, maturation results in maturation stresses sr(r0) and/or N.

Strains released independently (´L, ´T) or simultaneously (´L*, ´T*)

can be easily computed with the wood fibre model using a single

elastic step with imposed boundary stresses sr(r0) and/or yN.

The second point of view is referred to as the ‘‘virtually isolated

fibre’’ assumption. In this case, calculation at the fibre level is

performed assuming that boundary conditions during maturation

are unrestrained in both the longitudinal and radial directions.

Then, the stresses computed by the model at the boundaries

wsr(r0) and Nx vanish, because all maturation strains are

expressed during maturation. These expressed strains, ´z and

ur(r0)/r0, are then supposed to be equal to the released strains

´L* and ´T* measured at the tree level.

Reference model and data

A recent application of the wood fibre model was performed by

Yamamoto (1998). In this paper, the author studied the relation

between MFA and maturation strains (as well as other wood

properties). His model is assessed on data measured on 44

samples of sugi (Cryptomeria japonica D. Don) late wood. The

MFA of the S2 layer was measured by X-ray diffraction.

Released maturation strains were measured with strain gages in

the T and L directions, after complete release in both directions.

The present model is similar to Yamamoto’s model in many

aspects. The fibre structure is represented as embedded con-

centric layers, and each layer is assumed to consist of a matrix

of lignin and hemicellulose reinforced with a cellulose frame-

work, both submitted to kinetic variations of stiffness and

induced strains. Mathematical formulation and resolution are

slightly different, but both models are based on mostly identical

mechanical and structural assumptions. The main difference is

the distinction between ‘‘maturation’’ and ‘‘released’’ strains,

related to the boundary conditions of the fibre. In Yamamoto’s

model the ‘‘virtually isolated fibre’’ assumption is made. In the

present model, this assumption is an option, and other condi-

tions are explored.

Evaluation and optimisation of the model

A simulation was performed with the same parameters used by

Yamamoto (1998). This provides a numerical cross-validation of

both models and is considered as a reference for the examina-

tion of other assumptions. The reference set of parameters

describes a typical fibre of sugi late wood. Input parameters of

the model describe the structure of the fibres, the mechanical

properties of its elementary constituents, induced strain in each

constituent and the kinetics of the maturation process. Output

parameters are simulated values of ´L* and ´T* for various values

of MFA inside the S2 layer. Most input parameters are set to

fixed values. In particular simulations, some parameters (p)

(Table 2) are adjusted to fit the observed data using a least-
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Figure 1 Schematic representation of a wood fibre.

Table 1 Structure and chemical composition of the concentric

layers constituting the fibre.

Layer Thickness Framework Matrix MFA

(%) (%) (%)

CML 2.4 15 85 08/458/908

S1 8.9 15 85 908

S2 29.6 30 70 08–458

Thickness of the layers is expressed as percentage of the fibre

radius. Microfibril angle (MFA) of the CML layer is 08 for 1/4, 908

for 1/4, and 458 for 1/2 of the framework. MFA of the S2 layer

takes successive values between 08 and 458 in simulations.

Figure 2 Longitudinal (L) and tangential (T) maturation strains

simulated for a virtually isolated fibre with the present model

(solid lines) and with Yamamoto’s model (dotted lines), using

Yamamoto’s parameters. Points represent measurements of

released strains from Yamamoto (1998).

square method by minimising the distance D between simula-

tions and observations:

obs obs 2 obs obs 2D(p)sS (w w´ *(p,f )–´ x q(1–w )w´ *(p,f )–´ x )obs L L L L T T

where ´L
obs, ´T

obs and fobs are data measured for a given obser-

vation and wL is the weight of the longitudinal strain. It is set to

0.5 when attempting to fit both ´L
obs and ´T

obs, and to 0 or 1

when concentrating on ´T
obs or ´L

obs singly.

Parameter set

Fibre structure The fibre is supposed to consist of three main

layers (CML, S1 and S2) (Figure 1). The effect of the S3 layer is

neglected. Parameters for each layer’s structure are given in

Table 1. These are representative values, based on direct meas-

urements of the fibre structure and chemical composition. In the

case of Yamamoto’s simulation, the CML was assumed to be

isotropic. In order to simulate the same situation while maintain-

ing consistency with our description of the other layers, we

assumed that the MFA was 08 for 1/4 of the framework, 908 for

another 1/4 and 458 for the remaining half. The MFA inside the

S2 layer is a variable parameter and was set at successive val-

ues between 08 and 458 during simulations.

Maturation kinetics Based on literature observations (Teras-

hima 1990), the maturation kinetics inside the cell wall was

assumed to progress as follows: (1) completion of the CML rigid-

ity and deposition of the cellulose microfibrils in the secondary

layers; (2) progressive lignification of the S1 layer, increasing the

stiffness of its matrix fraction and induced strains in both con-

stituents; and (3) similar progressive lignification of the S2 layer.

During each step, stiffness and induced strains of the maturing

layer are supposed to increase with time from 0 to their maximal

value.

Elastic constants Values of the longitudinal elastic modulus

of cellulose (134 GPa) and isotropic elastic modulus of the matrix

(2 GPa) are based on experimental works (Sakurada et al. 1962;

Cousins 1976) and on consistency with macroscopic data on

wood stiffness. The Poisson ratio of the matrix substance was

set close to 0.5, to conform to Yamamoto’s assumption of

incompressibility. Impact of this assumption is tested by adjust-

ing this parameter. All other stiffness parameters were neglected

in Yamamoto’s calculation and are set here to values close to 0.

Induced strains In accordance with Yamamoto (1998), we

assumed that the strain induced by maturation involves swelling

inside the matrix and shrinkage inside the framework. Values of

induced strains in the constituents cannot be observed directly.

Yamamoto fitted them in order to obtain the best agreement

between data and simulations. The shrinkage induced in the

framework was assumed to be identical (y0.15%) inside the S1

and S2 layers. Expansion of the matrix substance inside the S2

layer (q0.5%) was supposed to be half that in the S1 layer

(q1%). This assumption is based on the consideration that the

degree of maturation is lower in the S2 layer, due to its lower

lignification. These values were used as a reference for the sim-

ulations before trying new adjustments. Induced strains inside

the CML were neglected.

Results

Boundary conditions assumptions

Virtually isolated fibre Longitudinal and tangential mat-

uration strains simulated under this assumption are

shown in Figure 2 as a function of the MFA of the S2

layer. Dotted lines indicate Yamamoto’s original results.

Simulated ´L* is y0.09% for MFAs08. This increases

exponentially up to q0.17% for MFAs408. A longitudinal

release strain of 0% is obtained for MFAs278. Simulated

´T* is q0.27% for MFAs08 and decreases to q0.16%

for MFAs408. The shape of the curves is similar to

Yamamoto’s, with slightly lower values for ´L* and higher

values for ´T*. These small discrepancies between the

models are related to minor differences in the implemen-

tation, with some second-order terms neglected in

Yamamoto’s formulation and accounted for in the present

one. Simulation gave fairly good results for ´L*, but over-

estimated values for ´T*. Attempts to correct this bias by
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Table 2 Values of induced strains, Poisson’s ratio and release coefficient for the simulations.

Boundary condition Optimisation al
f (%) am (%) nm kT

Isolated fibre (unrestrained) Yamamoto (L) 0.15 1.00 0.5 1

L.S. (T) 0.06a 0.39a 0.5 1

L.S. (L and T) 0.14a 1.89a 0.37a 1

Fully restrained L.S. (L and T) 0.05a 0.47a 0.46a 0

Transversely unrestrained L.S. (T) 0.32a 1.38a 0.5 1

Partial release L.S. (L and T) 0.15 1.00 0.5 0.67a

L.S. (L and T) y0.16a 1.53a 0.49a 0.26a

aParameters adjusted by the least square (L.S.) optimisation procedure targeting L and/or T data (other are imposed values).

Figure 3 Longitudinal (L) and tangential (T) maturation strains

simulated for a virtually isolated fibre, after optimisation of

induced strains and Poisson’s ratio, targeting T data only (solid

lines) or T and L data together (dotted lines). Points represent

measurements of released strains from Yamamoto (1998).

Figure 4 Longitudinal (L) and tangential (T) maturation strains

simulated assuming full displacement restraint, using Yamamo-

to’s parameters (solid lines) and after optimisation of induced

strains and Poisson’s ratio targeting all data (dotted lines). Points

represent measurements of released strains from Yamamoto

(1998).

Figure 5 Longitudinal (L) and tangential (T) maturation strains

simulated assuming the fibre is longitudinally restrained and

transversely unrestrained, using Yamamoto’s parameters (solid

lines) and optimised induced strains targeting T-data (dotted

lines). Points represent measurements of released strains from

Yamamoto (1998).

adjusting values of induced strains in the constituents al
f,

am and Poisson’s ratio of the matrix nm (Table 2) failed to

fit both ´T* and ´L* for all MFAs. No significant improve-

ment to ´T* results could be achieved without decreasing

agreement with ´L* (Figure 3). This suggests that the

quality of the model is not limited by these parameters,

but may be limited by the boundary condition

assumptions.

Full restraint A simulation was performed assuming

that the fibre was fully restrained during maturation (Fig-

ure 4). For MFA-258, the simulated released strains are

similar to those obtained for the virtually isolated fibre.

For higher MFAs, ´T* have slightly higher values and ´L*

lower values. Adjusting al
f, am and nm (Table 2) did not

lead to satisfactory results for both data series (Figure 4).

No restraint in the transverse plane A third set of

simulations was performed assuming that the fibre was

fully restrained in its longitudinal direction but unre-

strained in its transverse plane. In this case, no trans-

verse stress is accumulated during fibre maturation,

because the fibre was assumed to strain freely in the

transverse plane. Then, ´T* is only a consequence of cou-

pling with the release of longitudinal strains. Using Yama-

moto’s parameters, results for ´L* are similar to those

obtained with previous assumptions and in agreement

with the data (Figure 5). However, the variation of ´T* dif-

fers from other simulations. Values are close to 0.03%

for MFA-258 and are negative for higher MFA, reaching

y0.12% for MFAs408. These are closer to observations

than in previous simulations. They are still lower than the

observed data, but the order of magnitude and evolution

with MFA is correctly simulated. Induced strains and

Poisson’s ratio were adjusted to fit data with these

boundary conditions (Table 2). Agreement for ´T* strains

could be improved, but in this case agreement for ´L*

was severely decreased (Figure 5).

Evidence for intermediate boundary conditions

Results shown in Figures 2–5 show that boundary con-

ditions do not have major consequences on the simula-

tion of ´L*. However, they do have a strong effect on ´T*.

Assuming unrestrained conditions in the transverse plane

improved the agreement with observations for ´T* without

decreasing it for ´L*. However, ´T* seems to be limited to

values lower than observed if consistency with ´L* is

imposed. Indeed, in this case, it is assumed that no

transverse stress is accumulated during maturation, so

that ´T* is only due to coupling with ´L*. This is why zero
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Figure 6 Longitudinal (L) and tangential (T) maturation strains

simulated assuming partial stress release in the transverse

plane, with Yamamoto’s parameters and optimised release coef-

ficient (solid lines) and with optimised induced strains and

release coefficient (dotted lines). Points represent measurements

of released strains from Yamamoto (1998).

released strain is obtained for both T and L at the same

MFA (note, however, that the relation between ´T* and ´L*

is not a simple proportionality, since the ratio depends

on the MFA). Therefore, a larger value of ´T* for low MFA

could be obtained only for a larger absolute value of ´L*,

which is then inconsistent with the data. Thus, with these

boundary conditions, it is virtually impossible to improve

agreement for ´T* without decreasing it for ´L*.

Results for fully restrained or unrestrained radial

bounds at the fibre level suggest that the situation for the

observed data is between these two assumptions. Other

direct arguments support this idea. Strains released tan-

gentially without longitudinal release (defined as ´T) are

usually not zero, showing that ´T* should not be due only

to coupling with ´L*, but also to radial stress accumulated

during fibre maturation. This is not compatible with the

assumption of unrestrained radial bounds. Data reported

in this paper were obtained in LT-release. The fact that

positive values of ´T* are observed for null values of ´L*

also supports this idea. Inside the tree, the condition of

the maturing wood fibre is not homogeneous in the trans-

verse plane. It is almost completely blocked in the direc-

tion tangential to the tree (T) because of the core of

mature wood. However, in the radial direction of the tree

(R) it is almost completely unrestrained (the effect of bark

being neglected). We suggest that tangential strains can-

not be correctly simulated without considering the fact

that transverse bounds of the fibre are neither completely

restrained nor completely unrestrained.

Partial release of tangential maturation stress

during maturation

Because of the assumption of axisymmetry, the distinc-

tion between the tree radial and tangential directions

cannot be made at the fibre level. Both refer to the radial

direction with reference to the axisymmetric fibre model.

In this section, we try to overcome this limitation of the

cylindrical fibre model while keeping the assumption of

axisymmetry. It is assumed that the fibre radial bound is

partly blocked and partly free. For this purpose, we con-

sider the partial release of radial stress at the fibre level

during maturation, supposed to be achieved through the

macroscopic radial direction.

Implementation of partial release during maturation

Simulations shown in this section are based on the same

parameters and data as above, with a modified version

of the model. The change only concerns the boundary

conditions of the fibre and the mechanism of stress

accumulation. In this implementation, it is assumed that

a fraction of the transverse maturation stress is released

during the maturation process, and the other fraction is

accumulated until final release. The fraction released dur-

ing maturation is managed by a parameter called the

coefficient of transverse stress release (kT). This param-

eter has a value between 0 and 1. A value of 0 is equiv-

alent to full displacement restraint and a value of 1 is

equivalent to the unrestrained assumption. Intermediate

values simulate partial stress release. It is simulated by

inserting an ‘‘elastic release’’ step after each elementary

maturation step, which consists of cancelling a fraction

kT of the stress accumulated during the previous matu-

ration step.

Fitting the coefficient of transverse release The

release coefficient is an abstract concept designed to

overcome the limitations of the cylindrical model. Its val-

ue cannot be directly measured. Therefore, it was adjust-

ed in order to fit the data. Adjusting both the release

coefficient and induced strains (Table 2) improved the

agreement between simulations and observations when

compared to other boundary conditions (Figure 6). Sim-

ulated released strains here are correct for both T and L.

The value of kT suggests that a large part (74%) of the

transverse stress induced in the fibre wall is released dur-

ing maturation. Using Yamamoto’s induced strains, an

optimal value of kT (0.67) also leads to fairly good results

(Figure 6), showing that it is this coefficient, rather than

new values of induced strains, that improves the agree-

ment with observed data.

Finite element computation The real situation of the

fibre is complete restraint in the macroscopic T direction.

However, stress accumulated in the T direction is partly

released at the fibre level by transfer to the free R direc-

tion. For a correct account of this problem, a non-axi-

symmetric model is needed. The loss of symmetry leads

to complicated formulations, so that the derivation of

analytical models becomes rather intractable. However,

a finite element calculation is possible. This was per-

formed with CAST3M software for a fibre with square

cross-section. The walls of the fibre were assumed to

have the same multi-layer structure and stiffness as for

the cylindrical model, for MFAs208. The corners were

assumed to consist of the same substance as the CML.

Maturation strains were induced inside the constituents.

Two elastic calculations were performed: the first assum-

ing full restraint at external bound on the four sides, and

the second assuming that the external tangential wall

was unrestrained, while the three other sides were

restrained (Figure 7). The profile of the tangential stress

along a radial wall was computed in each case.

The fibre shape is clearly modified by the absence of

restraint on one side. Consequences are dilatation and

ovalisation of the lumen, and a loss of symmetry. The
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Figure 7 Finite element computation for a square fibre with

three or four walls restrained in displacement and submitted to

induced strains. Resulting strains were magnified 10-fold for

easier visualisation; tangential compression stress along radial

walls (solid lines) and mean stress level (dotted lines).

Figure 8 Evolution of the ratio r3/4 (tangential stress with three

walls restrained over tangential stress with four walls restrained)

and the release coefficient kTs1–r3/4, computed using finite ele-

ments on a square fibre, as a function of the MFA of the S2

layer.

profile of tangential compression stress along a radial

wall is almost uniform in the case with four sides

restrained. In the case with three sides restrained, the

stress is partly transferred to the R direction, resulting in

a lower stress level on the radial walls. Heterogeneity of

the tangential stress also appears along the radial wall.

The mean stress level is much lower than in the four-

sides case. The ratio between the three-sides and four-

sides cases is r3/4s0.21, meaning that the fraction of

released tangential stress (kTs1–r3/4) is 0.79 in this case.

This fraction should be compared with the adjusted

release coefficient kTs0.74. Additional simulations (Fig-

ure 8) showed that the released fraction increases up to

0.9 with the MFA of the S2 layer, tending to almost com-

plete stress release. This evolution may be related to the

ratio of transverse stiffness of the S2 and CML layers.

Indeed, for large MFAs, the S2 layer is stiffer in the trans-

verse direction, so that strain induced into it strongly

pushes on the CML layer, allowing a greater rate of ova-

lisation and stress transfer.

Discussion

Boundary conditions were shown to have major conse-

quences on the simulated tangential strain. This is related

to the fact that the model integrates a kinetic evolution

of the constituent’s stiffness. Because of the variation of

the constituent’s stiffness during the maturation process,

the calculation of final maturation strains is not elastic.

This is easily shown by considering the stress increment

s1 induced in an early lignification stage t1, when the wall

rigidity is C1. If no restraint is considered, the stress

induced in the new layer generates a strain ´1sC1
y1s1.

In the case of full restraint, the same stress s1 is blocked

until final release time tn, when the wall rigidity is Cn. The

strain generated by the liberation of this stress is there-

fore ´19sCn
y1s1. As the rigidity increases with time

(Cn)C1), we have ´19-´1. This result is analogous to

those obtained in tree biomechanics (Castera and Morlier

1991; Fournier et al. 1991; Alméras et al. 2004a) showing

that the strains and stress inside a tree stem depend not

only on its dimensions, elastic properties and load, but

also on the history of these parameters. The influence of

longitudinal boundary conditions is low because the cel-

lulose is assumed to be already stiff at the beginning of

maturation. Cellulose mainly acts as longitudinal rein-

forcement, so that the relative variation of longitudinal

stiffness due to lignification is low and the elastic solution

is a good approximation in the longitudinal direction.

In the case of an elastic calculation, the expressed

strain of a virtually isolated fibre would be equivalent to

the released strain of a fully restrained fibre. As the cal-

culation is not elastic, this is no longer equivalent. The

assumption of a virtually isolated fibre was used suc-

cessfully for modelling drying shrinkage, also in a non-

elastic context (Yamamoto 1999). However, in this case,

the assumption of free bounds was justified because,

when a piece of wood is dried, induced strain is actually

expressed instead of being accumulated and released in

the final state. For the simulation of maturation strains,

other boundary conditions must be considered. Guitard

et al. (1999) obtained good agreement for tangential

strains under the virtually isolated fibre assumption, using

the same data and slightly different parameters. Many

basic assumptions of this model are similar to the pres-

ent one, but the validity of the mechanical resolution is

questionable. Indeed, the ‘‘local condition’’ used in their

Eq. (20) simplifies much the mathematical resolution, but

is not compatible with the assumption of plane strains

used in their Eq. (14). The solution therefore does not

seem to be completely sound from a mechanical point

of view.

Using a rigorous solution, we could obtain good agree-

ment between observations and simulations by introduc-

ing partial release of the transverse stress during

maturation. Some parameters were adjusted using a

method that ensures convergence to the optimal values.

The fact that adjusted induced strains are close to those

obtained by Yamamoto (1998) using a ‘‘trial and error’’

method confirms that improvement of the simulation is

due to a better account of boundary conditions rather

than to a change in postulated induced strains. The

adjusted value of the release coefficient is consistent with

the released fraction computed in a non-axisymmetric

case. This parameter allowed retention of the cylindrical

formulation of the mechanical problem, while accounting

6



for the fact that the fibre is not fully restrained in the

transverse plane. The possibility of accounting for

boundary stresses during a non-linear transformation

process opens new perspectives of applications for

modelling various phenomena or technological pro-

cesses at the fibre level, such as wood bending, forming,

drying under restraint or mechano-sorption. Further

study of maturation strains with this tool includes anal-

ysis of the coupling between longitudinal and tangential

strains, and modelling of the interaction between fibre

maturation and day/night changes in tree diameter.
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Appendix: mechanical formulation of the fibre model 

Mechanical behaviour of elementary constituents 

The matrix of amorphous material is assumed isotropic and denoted with superscript m. Its 

mechanical behaviour is characterized by its Young’s modulus E
m
, Poisson’s ratio νm

, shear

modulus G
m
 = E

m
/[2(1+νm

)] and induced strain  αm
. The framework of crystalline material

(superscript f) is assumed transverse isotropic, associated to the reference “ttl”, where l is the 

direction of microfibrils and the direction t transverse to them. Its mechanical behaviour is 

characterized by its longitudinal and transverse Young’s moduli (El 
f
 , Et 

f
 ), Poisson’s ratios (νtl 

f
, νtt

f
), shear moduli (Gtl 

f
, Gtt 

f
) and induced strains (αl 

f
, αt 

f
). 

Both constituents of the wood material are assumed to have an elastic behaviour with induced 

strains, defined in ttl by the relation between the stress vector σ and strain vector ε : 

σm
 = C

m
(εm−αm

) (1-a) 

σ f
 = C

 f
(ε f−α f

) (1-b) 

Stiffness matrices, C
m
 and C

 f
 are:
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Vectors of induced strains in the constituents are: 
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Mechanical behaviour of the wood material in the reference of microfibrils 

The fibre wall can be considered as the superposition of two phases, both having a specific spatial 

organization. Crystalline material forms a framework of microfibrils oriented along direction l. 

Amorphous material can be considered as a continuous matrix with holes at the location of the 

crystalline cellulose. Behaviour of the wood material is approximated by a simple law of mixture of 

the two phases in volumetric proportions pm and pf = 1−pm, so that: 

ε m+f
 = ε m

 = ε f
(2) 

σ  m+f
 = pmσ m

 + pfσ
 f 

(3) 

The constitutive law is then: 

σ m+f
 = pmC

 m
(ε m+f−α m

) + pfC
 f
(ε m+f−α f

) = C
 m+f

(ε m+f−α m+ f
) (4) 

with: C
 m+f

 = pmC
 m

 + pfC
 f  α m+ f

 = (C
 m+f

)
−1

(pmC
 mα m

 + pfC
 fα f

)

Mechanical behaviour of the wood material in the reference of the fibre 

Microfibrils in the fibre wall are oriented at an given angle (MFA), noted φ, from the fibre 

longitudinal axis. Behaviour of wood material in the cylindrical reference of the fibre rθz (z is the 

longitudinal axis of the fibre, r the radial and θ the tangential direction) can be deduced from that 

expressed in the ttl reference (denoted by numeric sub-scripts) using classical rotation formula (with 

s = sinφ and c = cosφ): 

Crr = C11 
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Cθθ = c
4
C22 + s

4
C33 + 2c

2
s

2
C23 + 4c

2
s

2
C44

Czz = s
4
C22 + c

4
C33 + 2c

2
s

2
C23 + 4c

2
s

2
C44

Czθ = Cθz = c
2
s

2
C22 + c

2
s

2
C33 + (c

4
+s

4
)C23 − 4c

2
s

2
C44

Crz = Czr = c
2
C31 + s

2
C12

Cθr = Crθ = s
2
C31 + c

2
C12

Cρr = Crρ = csC31 − csC12 

Cρθ = Cθρ = − c
3
sC22 + cs

3
C33 + cs(c

2
-s

2
)C23 + 2cs(c

2
-s

2
)C44

Cρz = Czρ = − cs
3
C22 + c

3
sC33 + cs(s

2
-c

2
)C23 + 2cs(s

2
-c

2
)C44

Cρρ = c
2
s

2
C22 + c

2
s

2
C33 − c

2
s

2
C23 + (c

2
-s

2
)
2
C44

Cττ = c
2
C55 + s

2
C66

Cλλ = s
2
C55 + c

2
C66

Cλτ = Cτλ = scC55 − scC66 

αr = α1  

αθ = c
2α2 + s

2α3

αz = s
2α2 + c

2α3

αρ = − 2scα2 + 2scα3 

Because of this rotation, new terms of coupling appear between normal strains and shear stress in 

the θz plane, and between shears in the rz plane and in the rθ plane. A term of θz shear also appears 

in the induced strains. Because of the anti-symmetric situation of adjacent cell walls, we assume 

that shear are fully restrained in the fibre wall. Then, behaviour of the fibre is sufficiently described 

by the stiffness matrix and strain vector reduced to their normal components. 

Given the behaviour of elementary constituents, this models allow to compute all terms of C and α 

as functions of the proportion and orientation of the microfibril framework, p
f
 and φ.

Expression of the mechanical problem for a multi-layer cylinder 
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The mechanical problem consists of computing the displacement field u = (ur, uθ, uz) at equilibrium 

inside the fibre wall. Because of cylindrical symmetries, this field only depends on the radial 

position inside the fibre wall: u = u(r). For the same reason, we make the assumption of generalized 

plane strains, so that the displacement along z does not depend on the radial position: uz(r) = zεz, εz

being the constant longitudinal strain. As we assumed full shear restraint, it comes that uθ(r) = 0. 

Then, the mechanical problem is reduced to the determination of ur(r) and εz. The field of radial 

strain is derived from the radial displacement: εr = dur/dr = ur’ (5) 

Cinematic compatibility inside a cylinder implies that: εθ = ur/r (6) 

Static equilibrium inside a cylinder implies that: rdσr/dr + σr −σθ = 0 (7) 

Mechanical behaviour of the material is given by: σ = C(ε−α) (8) 

Injecting equations (5), (6) and (8) into (7), it comes that: 

rur’’ + ur’ – (Cθθ/Crr)ur/r = [εz(Cθz–Crz) +βθ – βr]/Crr  (9) 

with βθ and βr defined as the induced stress in the tangential and radial directions: 

βθ = – Cθr αr – Cθθ αθ – Cθz αz βr = – Crr αr – Crθ αθ – Crz αz

Equation (9) in a second-order differential equation defining the equilibrium solution. 

Analytical solution for a multi-layer=[-  

Using the following notations: 

γ 
2
= Cθθ/Crr  Kβ = (βθ – βr)/Crr  Kz = (Cθz–Crz)/Crr

A general solution of this equation is (γ 
2
 and Kβ + Kzεz being uniforms, and assuming γ � 1):

ur(r) = Ar
γ
 + Br

−γ 
+ εzKz/(1−γ2

) + rKβ/(1−γ2
) (10) 

The field of radial displacement can be calculated in each layer i using the above solution. The field 

of radial stress can be derived using equation (8). We define ai, bi, ci, di, ei, fi, gi, hi, known 

functions of r so that, for r∈[ri-1, ri]: 

ur(r) = Aiai(r) + Bibi(r) + εzci(r) + di(r) (11) 

σr(r) = Aiei(r) + Bifi(r) + εzgi(r) + hi(r) (12) 

Explicit form of these functions is: 
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ai(r) = r
γ i

bi(r) = r
−γ i

ci(r) = Kzi/(1−γi
2
)  di(r) = rKβi/(1−γi

2
) 

ei(r) = (γ 
iC

 i
rr+C

 i
rθ)r

γ i−1
fi(r) = − (γ 

iC
 i

rr−C
 i

rθ)r
−γ i−1

gi(r) = [(C
 i

rr+C
 i

rθ)Kzi/(1−γ 
i
2
) + C

 i
rz] hi(r) = (C

 i
rr+C

 i
rθ)Kβi/(1−γ 

i
2
) + βr

 i

For a structure with n layers, expressions defining ur and σr contain 2n unknown integration 

constants (Ai and Bi) and the unknown longitudinal strain εz. These 2n+1 unknown quantities are 

determined by interface and boundary conditions. 

Interfaces between layers define continuity conditions for ur and σr at ri for i∈[1, n−1]: 

ur(ri) = Aiai(ri) + Bibi(ri) + εzci(ri) + di(ri) = Ai+1ai+1(ri) + Bi+1bi+1(ri) + εzci+1(ri) + di+1(ri) (13) 

σr(ri) = Aiei(ri) + Bifi(ri) + εzgi(ri) + hi(ri) = Ai+1ei+1(ri) + Bi+1fi+1(ri) + εzgi+1(ri) + hi+1(ri) (14) 

Boundary conditions 

Boundary conditions of the fibre are defined in the transverse plane at its internal radius rn and 

external radius r0. The internal bound of the fibre is assumed unrestrained: 

σr(rn) = Anen(rn) + Bnfn(rn) + εzgn(rn) + hn(rn) = 0 (15) 

We consider 2 options at the external bound (either restrained or unrestrained in displacement): 

ur(r0) = A1a1(r0) + B1b1(r0) + εzc1(r0) + d1(r0) = 0 (16-a) 

   or σr(r0) = A1e1(r0) + B1f1(r0) + εzg1(r0) + h1(r0) = 0 (16-b) 

For the longitudinal boundary condition, the same assumptions can be considered. The assumption 

of displacement restraint is simply expressed as: εz = 0 (17-a) 

The fibre is stress-free at its longitudinal bound if the resultant axial load N (i.e. the sum of 

longitudinal stress) is null. This can be expressed as: (17-b) 

With: ji(r) = 2(γ iC 
i
zr+C 

i
zθ)r

γi+1
/(1+γ i) ki(r) = 2(−γ iC 

i
zr+C 

i
zθ)r

−γi+1
/(1−γ i)

li(r) = [(C
i
zr+C

i
zθ)K

i
z/(1−γi

2
) + C

i
zz]r

2
mi(r) = [(C

i
zr+C

i
zθ)K

i
β/(1−γi

2
) + βi

z]r
2

Computation of stress and strain fields 
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Relations (13), (14), (15), (16), (17) form a linear system of 2n+1 equations with 2n+1 unknown 

quantities, from which the values of Ai, Bi and εz can be easily deduced. Fields of displacement, 

stress and strain are derived from them, using relations (5), (6), (8), (11) and (12). 

The outputs of interest of the model are parameters describing the state of the fibre at its external 

bounds, namely ur(r0), σr(r0), εz and N. 


