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Nicolas criterion for the Riemann Hypothesis is based on an inequality that Euler totient function must satisfy at primorial numbers. A natural approach to derive this inequality would be to prove that a specific sequence related to that bound is strictly decreasing. We show that, unfortunately, this latter fact would contradict Cramér conjecture on gaps between consecutive primes. An analogous situation holds when replacing Euler totient by Dedekind Ψ function.

Introduction

The Riemann Hypothesis (RH), which describes the non trivial zeroes of Riemann ζ function has been qualified of Holy Grail of Mathematics by several authors [START_REF] Peter | The Riemann hypothesis: a resource for the afficionado and virtuoso alike[END_REF][START_REF] Lachaud | L'hypothèse de Riemann : le Graal des mathématiciens[END_REF]. There exist many equivalent formulations in the literature [START_REF] Conrey | The Riemann hypothesis[END_REF]. The one of concern here is that of Nicolas [START_REF] Nicolas | Petites valeurs de la fonction d'Euler[END_REF] that states that the inequality

N k ϕ(N k )
> e γ log log N k , where

• γ ≈ 0.577 is the Euler Mascheroni constant,

• ϕ Euler totient function ,

• N n = n k=1 p k the primorial of order n, holds for all k ≥ 1 if RH is true [START_REF] Nicolas | Petites valeurs de la fonction d'Euler[END_REF]Th. 2 (a)]. Conversely, if RH is false, the inequality holds for infinitely many k, and is violated for infinitely many k [9, Th. 2 (b)]. Thus, it is enough, to confirm RH, to prove this inequality for k large enough. In this note, we show that a natural approach to this goal fails conditionally on a conjecture arguably harder than RH, namely Cramér conjecture [START_REF] Conrey | The Riemann hypothesis[END_REF] 

p n+1 -p n = O(log 2 p n ). É
Note that under RH, it can only be shown that [START_REF] Cramér | On the distribution of primes[END_REF] 

p n+1 -p n = O( √ p n log p n ).
See [START_REF] Granville | Harald Cramér and the distribution of prime numbers[END_REF] for a critical discussion of this conjecture. An important ingredient of our proof is Littlewood oscillation Theorem for Chebyshev θ function [START_REF] Ingham | The distribution of prime numbers[END_REF]Th. 6.3]. An analogous situation holds when replacing Euler totient by Dedekind Ψ function, and replacing Nicolas criterion by [10, Th. 2].

An intriguing sequence

General conventions:

(1) We write log 2 for log log, and log 3 for log log 2

(2) The formula f = O(g) means that ∃C > 0, such that |f | ≤ Cg.

(

) The formula a k ∼ b k means that ∀ǫ > 0, ∃k 0 , such that b k (1 -ǫ) ≤ a k ≤ b k (1 + ǫ), if k > k 0 . 3 
We begin by an easy application of Mertens formula [START_REF] Hardy | An introduction to the theory of numbers[END_REF]Th. 429]. For convenience define

R(n) = n ϕ(n) log 2 n .
Recall, for future use, θ(x), Chebyshev's first summatory function:

θ(x) = p≤x log p. Proposition 1. For n going to ∞ we have lim R(N n ) = e γ . Proof: Put x = p n into Mertens formula p≤x (1 -1/p) -1 ∼ e γ log(x) to obtain R(N n ) ∼ e γ log(p n ),
Now the Prime Number Theorem [6, Th. 6, Th. 420] shows that x ∼ θ(x) for x large. This shows that, taking x = p n we have

p n ∼ θ(p n ) = log(N n ).
The result follows.

Define the sequence

u n = R(N n ).
We have just shown that this sequence converges to e γ . But Nicolas inequality is equivalent to saying that

u n > e γ .

So we observe

Proposition 2. If u n is strictly decreasing for n big enough then Nicolas inequality is satisfied for n big enough.

Proof: Assume u n > u n+1 for n > n 0 and that Nicolas inequality is violated for N > n 0 that is

u n ≤ e γ ,
then for n ≥ N + 1 we have u n+1 < u n ≤ e γ . This implies lim u n < e γ , contradicting Proposition 1.

We reduce the decreasing character of u n to a concrete inequality between arithmetic functions.

Proposition 3. The inequality u n > u n+1 is equivalent to

(1) log(1 + log p n+1 θ(p n ) ) > log θ(p n+1 ) p n+1 .
Proof: The inequality u n > u n+1 can be written as

N n ϕ(N n ) log 2 N n > N n+1 ϕ(N n+1 ) log 2 N n+1 . Note first that N n+1 ϕ(N n+1 ) = 1 (1 -1/p n+1 ) N n ϕ(N n ) ,
so that, after clearing denominators, u n > u n+1 is equivalent to

log 2 (N n+1 )(1 -1/p n+1 ) > log 2 N n , or, distributing, to log 2 (N n+1 ) -log 2 N n > log 2 N n+1 p n+1 .
Now, to evaluate the LHS we write N n+1 = N n p n+1 so that

log 2 (N n+1 ) = log 2 (N n p n+1 ) = log(log N n + log p n+1 ) = log 2 N n + log(1 + log p n+1 log N n ). to obtain log(1 + log p n+1 log N n ) > log 2 N n+1 p n+1 .
The result follows then upon letting log

N n = θ(p n ).
In fact, more could be true. 

Background material

We need an easy consequence of Littlewood oscillation theorem.

Lemma 1. There are infinitely many n such that

θ(p n ) > k n = p n + C √ p n log 3 p n ,
for some constant C independent of n. Proof: By [7, Th. 6.3], we know there are infinitely many values of x such that

θ(x) > x + C √ x log 3 x.
Let p n be the largest prime ≤ x. Thus

θ(p n ) = θ(x) > x + C √ x > p n + C √ p n log 3 p n .

More on u n

Unfortunately, the sequence u n is not decreasing as the next Proposition shows, conditionally on Cramér conjecture.

Proposition 4. The inequality u n > u n+1 is violated for infinitely many n's.

Proof: By Lemma 1 there are infinitely many n such that θ(p n ) > k n . For these n the RHS of ( 1) is > log k n+1 p n+1 > log kn p n+1 . Using the elementary bound log(1 + u) < u for 0 < u < 1, we see that the LHS of (1) is < log p n+1 kn . Combining the bounds on the LHS and the RHS we obtain

k n log k n < p n+1 log p n+1 .
Since the function x → x log x is non decreasing for x >> e we obtain k n < p n+1 , that is

p n+1 -p n > C √ p n log 3 p n , which contradicts Cramér conjecture [2] p n+1 -p n = O(log 2 p n ).
But is also not increasing, as the next Proposition shows unconditionally.

Proposition 5. The inequality u n < u n+1 is violated for infinitely many n's.

Proof: Suppose that u n < u n+1 for n big enough. Then for n large enough we have

u n ≤ e γ .
If RH is true that is a contradiction by [9, Th. Thus u n is not a monotone sequence for n big enough.

Analogous problem for Dedekind Ψ function

Recall that the Dedekind Ψ function is the multiplicative function defined by

Ψ(n) = n p|n (1 + 1 p ).
Define the sequence v n = Ψ(Nn) Nn log 2 Nn . We proved in [10] the two statements

• v n > e γ ζ(2) for all n ≥ 3 iff RH is true • lim v n = e γ ζ(2)
Thus, like for the sequence u n it is natural to wonder if v n is decreasing. Proposition 6. The inequality u n > u n+1 is equivalent to

(2) log(1 + log p n+1 θ(p n ) ) > log θ(p n ) p n+1 
Proof: The inequality v n > v n+1 can be written as

Ψ(N n ) N n log 2 N n > Ψ(N n+1 ) N n+1 log 2 N n+1 . Note first that Ψ(N n+1 ) N n+1 = (1 + 1/p n+1 ) Ψ(N n ) N n , so that, after clearing denominators, v n > v n+1 is equivalent to log 2 (N n+1 ) > log 2 N n (1 + 1/p n+1 ), or, distributing, to log 2 (N n+1 ) -log 2 N n > log 2 N n p n+1 .
Like in the proof of Proposition we have

log 2 (N n+1 ) = log 2 N n + log(1 + log p n+1 log N n ).
Combining the last two statements we obtain log(1 + log p n+1 log N n ) > log 2 N n p n+1 .

The result follows then upon letting log N n = θ(p n ).

Note that inequality 2 is slightly looser than inequality 1. Still, the analogue of Proposition 4 is true:

Proposition 7. The inequality v n > v n+1 is violated for infinitely many n's.

Similarly one can prove the analogue of Proposition 5 by using the arguments in the proof of [10, Th. 2].

Proposition 8. The inequality v n < v n+1 is violated for infinitely many n's.

The proofs of Propositions 7 and 8 are completely analogous to the case of Euler ϕ and are omitted.

  2 (a)]. If RH is false that contradicts [9, Th. 2 (b)].
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