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ABSTRACT

This paper proposes a Bayesian approach for unsupervised

image deconvolution when the parameter of the gaussian PSF

is unknown. The parameters of the regularization parame-

ters are also unknown and jointly estimated with the other

parameters. The solution is found by inferring on a global a

posteriori law for unknown object and parameters. The esti-

mate is chosen in the sense of the posterior mean, numerically

calculated by means of a Monte-Carlo Markov chain algo-

rithm. The computation is efficiently done in Fourier space

and the practicability of the method is shown on simulated

examples. Results show high-frequencies restoration in the

estimated image with correct estimation of the hyperparame-

ters and instrument parameters.

Index Terms— Image restoration, unsupervised decon-

volution, myopic deconvolution, full-bayesian approach,

Monte-Carlo Markov chain.

1. INTRODUCTION

Deconvolution is an active research field [?, ?]. Examples

of application are medical imaging, astronomy, nondestruc-

tive testing and more generally imagery problems. The de-

convolution problem is ill-posed and a well-known solution

relies on the introduction of prior information in addition to

the data. The resulting estimate depends on two sets of vari-

ables in addition to the data. Firstly, the solution depends

on the parameters of the probability laws named hyperparam-

eters (mean, variance, parameters of correlation matrix,. . . ).

Secondly, the estimate naturally depends on the instrument re-

sponse model. These problems are called myopic or blind and

a book has been recently published on this subject [?]. Many

application have knownledge about the shape of the PSF up

to some unknown parameters. An exemple where the instru-

ment is known up to some shape parameters is microscopy

imaging [?]. This paper deal with the case where the PSF is

known to be gaussian but the width parameter is unknwon.

This model is classical in optical imaging for exemple where

the Airy disc is approximated by a gaussian [?]. This model is

also encoutered in astmospheric turbulence, focus or defocus

modeling. A difficulty is the non-linearity of the likelihood of

the width parameter.

A recent paper [?] address the estimation of the gaus-

sian blur with an empirical method. Several value are used

to estimate the image with a Wiener filter with fixed hyperpa-

rameter. The best parameter is chosen to minimize the second

derivatives L1 norm of the estimate. Another work [?] pro-

pose a maximum likelihood to estimate the blur parameter.

Our approach is to estimate the parameter jointly with the im-

age and the hyperparameter, not in two step. The paper [?]

use a Gibbs sampler to estimate jointly the image and all the

pixel of the PSF. This approach estimates the whole PSF but

is not adapted to estimate the parameter of a gaussian blur

since they doesn’t take into account the knownledge about

the PSF shape. In addition the complexity of this model make

the computational cost very high.

We propose a new method that, contrary to [?] or [?],

jointly estimates the image, the hyperparameters and the

gaussian blur parameter in common framwork. The estimate

is chosen as the mean of the posterior law and is computed

using MCMC algorithms, as in [?], to obtain sample of the a

posteriori law despite of its complexity. The model allows the

computation to be done in Fourier space in a very effective

manner.

2. FORWARD MODEL

We consider N pixels real square images represented in lex-

icographic order by vector x ∈ R
N , with generic elements

xn. The forward model is written y = Hwx + n where

y ∈ R
N are the data, Hw a convolution matrix parametrized

by parameters collected in w and n the model errors. In these

paper we deal with a gaussian blur written in Fourier space

◦

h(να, νβ) = exp
(
− 2π2w

(
ν2α + ν2β

))
(1)



with frequencies (να, νβ) ∈ [−0.5; 0.5]
2
. The non-linear

dependency of the value h with w will be the main diffi-

culty. The matrix Hw is considered block-circulant circulant-

block (BCCB) for computational efficiency of the convolu-

tion in Fourier space. The diagonalization of Hw is written

ΛH = FHwF † where ΛH is a diagonal matrix, F the uni-

tary Fourier matrix and † the transpose conjugate symbol. The

convolution, in Fourier space, is written
◦

y = ΛH

◦

x+
◦

n where
◦

x = Fx,
◦

y = Fy and
◦

n = Fn are the 2D discrete Fourier

transform (DFT-2D) of image, data and noise, respectively.

The description is equivalent and everything will be done in

Fourier space.

3. BAYESIAN FRAMEWORK

This section presents the prior law for each set of parameters.

In order to account for smoothness, the image law introduces

penalization of high-frequency through a difference operator

on the pixel. Conjugate law for the hyperparameters and uni-

form law for the instrument parameters are considered.

3.1. Image prior law

The probability law for the image is a toroidal Gaussian field

p(x|γx) ∼ N (0, (γxD
†D)−1) parametrized by the γx preci-

sion. In the Fourier space, the probability law is also Gaussian

and writes

p(
◦

x|γx) ∝ γ(N−1)/2
x exp

[
−
γx
2
||ΛD

◦

x||2
]
. (2)

The circulant difference operator D, and its diagonalization

ΛD = FDF †, is build with a high-pass filter, the Laplacian

for example.

3.2. Noise and data laws

The noise is modeled as white zero-mean Gaussian with un-

known precision parameter γn. Consequently the likelihood

of the parameters given the data writes

p(
◦

y|
◦

x, γn,w) ∝ γN/2
n exp

[
−
γn
2
||

◦

y −ΛH

◦

x||2
]

(3)

It depends, of course, on the image
◦

x, on the noise parameter

γn and instrument parameters w embedded in ΛH .

3.3. Hyperparameters law

A classical choice for hyperparameter prior law is conjugate

law with computational efficiency justification [?]. A conju-

gate law for Gaussian precisions parameters is the Gamma

law parametrized by two values (αi, βi), with i = x or n,

p(γi) =
1

βαi

i Γ(αi)
γαi−1 exp (−γi/βi) . (4)

In addition we also want to use non-informative a priori

law. With specific parameter values, one obtains the non-

informative Jeffreys’s prior law p(γ) = 1/γ with (0,+∞).

3.4. Gaussian blur parameter law

For the blur parameter w, we consider that a physical study

provides a nominal value with uncertainty in a given inter-

val [m M ]. These is the case for example in optics where

FHWM of the Airy disc is the wavelength over the lens di-

ameter λ/D [?]. Since no more information is available, we

consider a uniform prior on the interval

p(w) = U[m M ](w) =
1

M −m
1[m M ](w) (5)

with 1[m M ](w) = 1, if w ∈ [m M ], 0 elsewhere. Other

choice are possible but do not allow easier computation be-

cause of the non-linear dependency in the likelihood.

3.5. Posterior law

At this point the law of the image, the hyperparameters, the

instrument parameters and the data are available. Thus, the

a posteriori law for all the parameters is built by multiplying

the likelihood (3) and the a priori laws (2), (4) and (5)

p(
◦

x, γn, γx, w|
◦

y) ∝ γN/2−1
n γ(N−1)/2−1

x 1[m M ](w)

exp
[
−
γn
2
||

◦

y −ΛH

◦

x||2 −
γx
2
||ΛD

◦

x||2
]
. (6)

Finally, inference is done on this law (6). An estimate and the

algorithm is described in the next section.

4. POSTERIOR MEAN AND LAW EXPLORATION

To compute the posterior mean of the parameters, Monte

Carlo Markov chain is used to provides samples of (6). The

samples are obtained by a Gibbs sampling algorithm. It con-

sists in sampling, iteratively, a conditional posterior law of a

set of parameters given all the others parameters obtained at

previous iteration.

4.1. Sampling the image

The conditional posterior law of the image is a Gaussian law.

Its covariance matrix is diagonal and writes

Σ
(k+1) = γ(k)

n |Λ
(k)
H

|2 + γ(k)
x |ΛD|2 (7)

and the mean

µ(k+1) = γ(k)
n

(
Σ

(k+1)
)−1

Λ
∗
H

(k) ◦

y. (8)

where ∗ is the conjugate symbol. The vector µ(k+1) is the

regularized least square solution at current iteration (or the

Wiener-Hunt solution). Finally, since the matrix are diagonal,

the sampling of the image is very effective: all the operation

are term-wise addition and multiplication.



4.2. Sampling precision parameters

The conditional posterior laws of the precisions are Gamma.

For γn and γx the parameters law are

α(k+1)
n = N/2, β(k+1)

n = 2/||
◦

y −Λ
(k)
H

◦

x
(k+1)

||2,

α(k+1)
x = (N − 1)/2, β(k+1)

x = 2/||ΛD

◦

x
(k+1)

||2.

4.3. Sample instrument parameters

The conditional law for instrument parameters writes

w(k+1) ∝ exp

[
−
γ
(k+1)
n

2
||

◦

y −ΛH,w
◦

x
(k+1)

||2

]
. (9)

This law is not standard and intricate, and no algorithm exists

for direct sampling. In addition the dependency of ΛH,w with

w is non-linear. The proposed solution relies on the power-

ful Metropolis-Hastings method. In the independent form the

algorithm is:

1. Sample a proposition wp ∼ p(w) = U[m M ](w).

2. Calculate the criterion

J
(
w(k), wp

)
=

γ
(k+1)
n

2

(
||

◦

y −ΛH,w(k)
◦

x
(k+1)

||2−

||
◦

y −ΛH,wp

◦

x
(k+1)

||2
)
.

3. Sample t ∼ U[0 1] and takes w(k+1) = wp if log t <

min{J, 0}, w(k+1) = w(k) otherwise.

Since everything is in Fourier space, and w is a scalar, the

algorithm is very effective. As a counter part, more sample

are needed because of rejection.

4.4. Empirical mean

The sampling of
◦

x, γ and w are repeated iteratively until the

law has been sufficiently explored. The estimate is approxi-

mated with x̂ = F †
E[

◦

x] where all the iteration can be done

in Fourier space with an unique IFFT at the end.

5. DECONVOLUTION RESULTS

This section is devoted to numerical experiments. It is

based on two images : (1) the usual Lena case and a (2)

the case of a sample of the prior law (so that true values of

the hyperparemeters γn and γx are known). The noise is

a white gaussian and several values of γn are tested. The

matrix ΛD is obtained with the FFT-2D of the Laplacian

[0 1 0; 1− 4 1; 0 1 0] /8. The width parameter w is set to 4

or 6. It’s a priori laws is p(w) = U[2 7]. This corresponds

to uncertainty of approximately ± 40% around the nominal

value.
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Fig. 1. Result for Lena. Fig. 1(a) is the data. Fig. 1(b) is

the estimate. Profiles correspond to the 68-th line. Solid line

profile is the true.

5.1. Estimation results

The result for the image is illustrated Fig. 1(b). The image is

restored, more details are visible and the profiles are closer to

the true image than data. High-frequencies are more visible

and oscillation that were not visible in the data are present

in the estimate particularly around pixels 200 in the profile

Fig. 1(b). The estimated circular mean of the power spectral

density of the objects are illustrated Fig. 2. The spectrum of

the true image is retrieve up to the frequency f ≈ 0.15 limits

where the noise start to be dominant. After this frequency,

the power spectral density of the data mainly comes from the

noise. Since the method estimate the parameters γn and γx,

this frequency limit is automatically estimated.

Concerning the hyperparameters, since we must know the

true value of all the parameter, the study is done on a sample

of the prior law. Their estimates are reported in Tab. 1. For

each result the ISNR define as 10 log10(||x−y||2/||x− x̂||2)
increase. The estimated of γn is each time close to the true

values and seems to be a little under estimated. The γn esti-

mation is very close with γ̂n = 0.49 instead of 0.5 or 1.98 for

2. The value of γx is underestimated with approximately 1.9

and 1.3 instead of 2.

For the gaussian blur the result is compared to the method

DL1 described in [?] that also estimate the gaussian blur pa-

rameter. Our result is each time closer to the true value of the

paramater specially when the noise increases. The incertitude
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Fig. 2. Circular mean of the power spectral density (PSD)

of the image, the output model image Hx, the data (filtered

image corrupted by noise) and the estimate that is close to the

true until noise dominate in data.

γn (SNR) γx w ISNR

True 0.5 (27) 2 6

mean ±σ 0.49± 0.01 2.06± 0.14 6.03± 0.3 3.85

DL1 - - 9.23

True 0.01 (10) 2 6

mean ±σ 0.009± 0.002 2.05± 0.2 5.35± 0.8 9.09

DL1 - - 6.5

True 0.5 (32) 2 4

mean ±σ 0.49± 0.01 1.3± 0.09 4.4± 0.29 2.86

DL1 - - 2.05

Table 1. Paramters results. SNR and ISNR are in dB.

is quite small. Even with the prior incertitude the posterior

law is concentrate around the true value.

5.2. A posteriori law characteristics

The histograms of γn and γx, Fig. 3(a) and 3(b) respectively,

are concentrated around their mean. The variance of γn is

lower than the γx one. Effectively there is a degradation, by

the convolution, of the information about γx present in the im-

age which is an input of the instrument model. This is not the

case for γn, which is directly observed in the output, resulting

in a lower variance for γn.

The histogram of the instrument parameter is different.

The histogram of w Fig. 3(c) is much more concentrated

around the true value than the hyperparameter histograms.

It’s variances is quite small with regards to the interval of the

a priori law.

6. CONCLUSION

This paper presents a new global and coherent method for the

estimation of a gaussian blur parameter in unsupervised de-

convolution. It is build within a Bayesian framework and a

extended a posteriori law for the image, the hyperparameters
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Fig. 3. Histograms for γn and γx and w.

and the blur parameter. The estimate, defined as the poste-

rior mean, is computed by means of an MCMC algorithm

in less than 5 minutes on a standard computer. The results

show that the deconvolved image is closer to the true image

than the data and show restored high-frequencies. In addi-

tion the gaussian blur parameter and the hyperparameters are

estimated and close to the true value.


