
HAL Id: hal-00546531
https://hal.science/hal-00546531v1

Preprint submitted on 14 Dec 2010 (v1), last revised 26 Dec 2010 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fair Subtyping for Multi-Party Session Types
Luca Padovani

To cite this version:

Luca Padovani. Fair Subtyping for Multi-Party Session Types. 2010. �hal-00546531v1�

https://hal.science/hal-00546531v1
https://hal.archives-ouvertes.fr

Fair Subtyping for Multi-Party Session Types

Luca Padovani
Dipartimento di Informatica, Università di Torino, Italy

Laboratoire Proves, Programmes et Systèmes, Université Paris Diderot, France

<padovani@di.unito.it>

Abstract

We study a theory of session types in which we add a liveness property
to the familiar safety one. In this setting, some subtype relations between
session types that hold in other theories and that are commonly regarded
as harmless become unsound. We present various equivalent definitions
of the subtyping relation, we relate it with the standard ones, and we give
algorithms for deciding it. Incidentally, we provide an original and re-
markably simple coinductive characterization of the fair testing preorder
for nondeterministic, sequential processes consisting of internal choices of
outputs and external choices of inputs.

1 Introduction

A session is a conversation between processes that interact with one another
by means of a private channel. Each process uses the channel according to
a session type [16, 17, 22] that describes the order and the type of messages
that the process is allowed to send or expected to receive in the scope of the
session. For example, the session p : q!a.q!a.?b.end |q : ?a.?a.p!b.end describes
a conversation between two participants identified by the tags p and q: p sends
two amessages to q and then waits for a bmessage; qwaits for two amessages
and then sends b to p. This is an example of correct session, where every output
of a participant corresponds to an input of another participant and vice versa.

More interesting session types describe alternative and recursive behaviors.
For example, the session types satisfying the equations

T = q!a.T ⊕ q!b.end R = ?a.R+ ?b.end

describe two processes that respectively send and receive arbitrarily long se-
quences of amessages followed by a bmessage. The operators⊕ and + distin-
guish between two kinds of behavioral choice, often named internal and exter-
nal choice, respectively: a sender internally chooses the type (a or b) of message
to send; a receiver externally offers two types of messages (a and b) that it is
capable to handle and lets the other process decide which one to send. It is in-
tuitively clear that p : T | q : R describes a correct session: no matter of the type
and the number of messages that p sends, q is capable to receive all of them.

The most common way to add flexibility to a type theory is to introduce
a notion of subtyping that defines an asymmetric compatibility between types.

1

Informally, when T is a subtype of S it is safe to use a channel of type T wher-
ever a channel of type S is expected. For example, the session type T defined
above is a subtype of q!b.end: using a channel of type q!b.end means sending
a b message to process q. This behavior is permitted by the session type T (al-
though T also permits sending an a message), therefore using a channel with
type T in place of another one with type q!b.end cannot compromise correct-
ness. The reader may draw an insightful analogy between subtyping of session
and record types: if “using a record” means selecting one of its fields, then it
is safe to use a record in every context where a subset of its fields can be se-
lected. By generalizing the example above we may deduce that T is a subtype
of S if S is a variant of T where some internal choices have been reduced in
width. According to this intuition it is easy to see that all the session types in
the family

S2 = q!a.q!a.S2⊕q!b.end · · · Sn = (q!a.)nSn⊕q!b.end · · · S∞ = q!a.S∞
are supertypes of T . The type Sn allows sending a b message only after the
number of sent amessages is multiple of n. The type S∞ is somehow the limit
of the sequence {Si}i≥2 and describes a process that only sends a messages.
The fact that T is a subtype of S∞ may be questionable: on the one hand, no
process behaving as S∞ can cause any harm, since no message of unexpected
type is ever sent; on the other hand, while the sessions p : Si | q : R for i ≥ 2
all have the potential for terminating (it is always possible that a b message is
sent), the session p : S∞ | q : R is doomed to loop forever.

Type theories of session types with subtyping have been thoroughly stud-
ied, for example in [13, 6]. In these works the widely accepted point of view
that drives the theory is that a session is correct when “nothing bad ever hap-
pens”. From this perspective, the session type T is a subtype of S∞. When
we shift the focus from dyadic sessions (those with exactly two participants)
to so-called multy-party sessions [18], where an arbitrary number of participants
is involved, this viewpoint shows its limits, well beyond the questionable sub-
typing relation above. For example, in the session p : S∞ | q : R | r : ?c.end the
participants p and q keep interacting with each other and neither of them cares
to send the c message that r is waiting for. This session is correct, because no
participant ever receives an unexpected message, but this is a poor consolation
to r. Sure, by looking at the session types S∞ and R one can tell that the prob-
lem is obvious, since r is never mentioned in them. However, S∞ might just
happen to be the supertype of some T ′ such that p : T ′ |q : R |r : ?c.end does not
exhibit the same problem for r (one such type is T ′ = q!a.T ′ ⊕ q!b.r!c.end).

In this paper we develop a theory of session types that is centered around
a stronger notion of correctness. In our theory, a correct session must preserve
the potential for reaching a state where all of its participants are satisfied. As
we have just seen, this stronger notion of correctness has an impact on the in-
duced subtyping relation that cannot be neglected. For example, T and T ′ are
no longer subtypes of S∞ because p : T | q : R and p : T ′ | q : R | r : ?c.end are
correct but p : S∞ | q : R and p : S∞ | q : R | r : ?c.end are not. Understanding
when two session types are related by subtyping in our theory is a surprisingly
complex business. First of all, the differences between the standard subtyping
relation and ours emerge only “in the limit”, when infinite session types are
involved, while the two relations coincide on finite session types. Second, un-
like the standard subtyping relation for session types, deciding whether some

2

branch of an internal choice can be safely removed may involve a non-local
check on the structure of the session types being compared. This results into a
subtyping relation that is difficult to characterize and hard, if at all possible, to
axiomatize.

To illustrate the subtleties behind our subtyping relation, consider the ses-
sion types T , S2, and S∞ represented as the three automata below, where the
initial states have been labelled with the name of the session type and the arcs
with the actions performed by the processes that behave according to these
types:

T end

q!a

q!b
S2

•

end

q!a

q!b

q!a S∞
q!a

The subtyping relation establishes a correspondence between states of two
session types. In the figure above, the correspondence is depicted as the three
dotted arrows showing, for each state of S2, the corresponding state of T . The
fact that S∞ is not a supertype of T can be easily detected since no end state is
reachable from S∞, but this does not explain why S2 is a supertype of T . Ob-
serve that S2 has an intermediate state •which lacks the outgoing q!a-labelled
transition that T has. The correspondence between T and this state of S2 is safe
if (and only if) there is no behavior R that makes p : T | q : R correct and q is
capable to loop the interaction starting from p : S2 | q : R in such a way that the
• state is visited infinitely often. If this were the case, q could rely on the ob-
servation of a b message after having received an odd number of a messages
to terminate successfully. This cannot happen in the example above because
p : S2 can always break the loop by sending q an a message followed by a b
one (the act of sending a message is irrevocably decided by the sender). We ex-
press this as the fact that S2 rules over (every context that completes) T , which
we denote by T ≺ S2.

A more involved example where this is not the case is the following:

T • end

q!a,q!b

?a
?b

S •

end

• •

q!a

?b

?a q!a,q!b

?a

?b×

The only difference between T and S is that S lacks the outgoing !b-labelled
transition that T has. Basically, p : S may send a b message only after an odd
number of amessages have been sent to q and an equal number of amessages
have been received. Unlike the previous example, it is q that decides whether
to terminate the interaction with p, by sending a b message, or to continue,
by sending an a message. Consider now the participant q : R where R =
?a.p!a.(?a.p!a.R + ?b.p!a.R) + ?b.p!b.end. It is easy to see that p : T | q : R is

3

correct and that p : S | q : R loops through state S. In other words, q forces p : S
to go through state S hoping to receive a b message. This was possible with
p : T , but not with p : S. The fact that a participant like q : R exists means that
T is not ruled by S, and therefore T is not a subtype of S. In this paper we show
that the “ruled by” relation fully characterizes the contexts in which removing
outputs is safe.

Related work. The framework we have depicted is known in concurrency
theory as fair testing [19, 21]. Testing [11, 10, 15] is a general technique for
defining refinement relations v between processes so that, when P v Q holds,
the process Q can be safely used in place of process P because every “test”
that P passes is passed also by Q. The notion of “test” roughly corresponds to
the property that “nothing bad ever happens” in “unfair” testing theories, and
to the property that “something good will eventually happen” in fair testing
theories. The idea is that, in a system that goes infinitely often through a state
from which some action is possible, that action will eventually be observed. In
the present paper, we instantiate fair testing to a context where processes are
session types describing the behavior of participants of a multi-party session
and the “test” is given by the correctness of a session.

Since the v relation is defined by universally quantifying over an infinite
number of tests, a crucial aspect of every testing theory is the study of alter-
native, possibly effective characterizations of v or approximations of it. Alter-
native characterizations of unfair refinements have been defined, for example,
in [14, 15] and later, in coinductive form, in [7, 8] and in [4, 1]. Alternative char-
acterizations of fair refinements have also been given in the literature, but we
find them unsatisfactory in one way or another. The authors of [19] present a
characterization based on sets of infinite strings, while [21] relies on a complex
denotational model of processes. In both cases the characterizations are rather
involved, at least if compared to those of corresponding unfair refinements.
A related problem, pointed out in [21], is that no complete axiomatization of
these refinements is known at the present time. Recently, [2, 3] have investi-
gated subcontract relations for Web services which are closely related to fair
subtyping of session types, but they refer to [21] when it comes to character-
izing and deciding them. The authors of [4] provide a coinductive character-
ization that is not complete (for instance, it fails to assess that T is a subtype
of S2). The standard reference for subtyping of session types is [13], where the
subtyping relation is coinductively presented and thus “unfair” by definition.
A fair theory of multi-party session types has been developed in [20], but no
alternative characterization nor algorithms were given.

Contributions. This paper presents a self-contained fair theory of multi-party
session types where the focus is on the eventual satisfaction of all the inter-
acting participants of a session rather than on the absence of communication
errors. From a technical viewpoint, the main novelty is an alternative charac-
terization of the fair subtyping relation which is expressed as the combination
of the familiar, “unfair” subtyping relation [13] plus a “ruled by” relation for
which we provide a relatively simple decision procedure based on a notion of
behavioral difference between session types. This allows us to present a com-
plete deduction system for the subtyping relation as a minor variation of the

4

Table 1: Syntax of session types and sessions.
T ::= Session Type

fail (failure)
| end (success)
|

∑
i∈I ?ai.Ti (input)

|
⊕
i∈I pi!ai.Ti (output)

M ::= Session
p : T (participant)

| M |M (composition)

standard one, modulo the use of the “ruled by” relation.

Structure of the paper. In Section 2 we formalize the language of (multi-
party) session types and the notion of correct session. Section 3 defines sub-
typing as the relation that preserves correctness and provides a sound and
complete coinductive characterization of it based on the “ruled by” relation.
Section 4 presents algorithms for deciding subtyping and related notions. Sec-
tion 5 concludes. For the sake of readability, proofs and auxiliary technical
material has been collected in Appendix A.

2 Syntax and Semantics of Session Types

Table 1 defines the syntax of sessions and session types. A session is a finite
composition p1 : T1 | · · · | pn : Tn made of a fixed number of participants
that communicate with each other according to the session types Ti. We as-
sume to work exclusively with well-formed sessions, where each participant is
uniquely identified by a tag pi (i 6= j implies pi 6= pj). Session types are the pos-
sibly infinite, finitely-branching, regular trees generated by the nonterminal T
in the grammar in Table 1 such that:

• ai = aj implies Ti = Tj for every subterm
∑
i∈I ?ai.Ti and i, j ∈ I;

• pi!ai = pj!aj implies Ti = Tj for every subterm
⊕
i∈I pi!ai.Ti and i, j ∈ I.

These two conditions ensure that session types are unambiguous by requir-
ing that every prefix of the form ?a or p!a uniquely determines a continuation.
The session type end describes a successfully terminated participant that no
longer participates to the session. The session type

∑
i∈I ?ai.Ti describes a pro-

cess that waits for a message: according to the type of the message it receives,
which is represented here as an atomic name ai, the process behaves accord-
ing to the continuation Ti. The session type

⊕
i∈I pi!ai.Ti describes a process

that internally decides to send some message of type ai to another participant
of the session identified by tag pi. After the output operation the process be-
haves as described in the session type Ti. It is convenient (although not neces-
sary) to have a canonical term fail describing failed participants that are unable to
terminate successfully. This happens, for example, if a participant receives an
unexpected message. No correct session should ever involve a process that has
failed. Let us fix a few notational conventions: p, q, . . . range over tags; a, b,
. . . range over action names; T , S, range over session types, and M, N, . . . over
sessions. Sometimes we will write ?a1.T1 + · · · + ?an.Tn for

∑n
i=1 ?ai.Ti and

p1!a1.T1 ⊕ · · · ⊕ pn!an.Tn for
⊕n
i=1 pi!ai.Ti. Recall that a regular tree is made

5

Table 2: Transition system of sessions.

(T-SUCCESS)

p : end
X
−→ p : end

(T-OUTPUT)

p : q!a.T
q!a
−→ p : T

(T-CHOICE)
k ∈ I

p :
⊕
i∈I

qi!ai.Ti −→ p : qk!ak.Tk

(T-INPUT)
k ∈ I

p :
∑
i∈I

?ai.Ti
p?ak−→ p : Tk

(T-FAIL)
a 6= ai (i∈I)

p :
∑
i∈I

?ai.Ti
p?a
−→ p : fail

(T-PAR CHOICE)
M −→M ′

M |N −→M ′
|N

(T-PAR ACTION)
M

α
−→M ′ α 6= X

M |N
α

−→M ′
|N

(T-COMM)

M
p!a
−→M ′ N

p?a
−→ N ′

M |N −→M ′
|N ′

(T-PAR SUCCESS)

M
X
−→M N

X
−→ N

M |N
X
−→M |N

of a finite number of distinct subtrees [9]. We will sometimes write trees(T) for
the finite set of subtrees that T is made of, including T itself.

We express the evolution of a session by means of a labelled transition sys-
tem. The idea is that each participant of a session behaves as described by
the corresponding session type and the session evolves by means of internal
choices taken by the participants and by synchronizations occurring between
them. Labels, ranged over by α, . . . , describe successful termination and in-
put/output actions and are generated by the grammar that follows:

α ::= X | p?a | p!a

Table 2 defines the transition system (symmetric rules omitted). Rule (T-
SUCCESS) states that end performs a X action that denotes successful termina-
tion and reduces to itself. Rules (T-OUTPUT) and (T-CHOICE) deal with outputs.
The former one shows that a participant willing to send a a-message to partic-
ipant q performs a q!a action. The latter one states that a participant that is
ready to send any message from a set internally and irrevocably chooses one
particular message to send. Rules (T-INPUT) and (T-FAIL) deal with inputs.
The former one is standard and states that a participant p performs p?a actions
according to the type of messages it is willing to receive. The latter shows that
a participant can receive an unexpected input, but in doing so it will reduce to
an unrecoverable failed state. Rules (T-PAR CHOICE) and (T-PAR ACTION) are
standard rules propagating transitions through compositions. (T-COMM) is the
usual communication rule. Finally, (T-PAR SUCCESS) states that a composition
has successfully terminated only if all of its participants have. In the following
we adopt the following conventions: we write =⇒ for the reflexive, transitive
closure of −→; we write α

=⇒ for =⇒ α
−→=⇒ and α1···αn=====⇒ for the composition

α1=⇒ · · · αn=⇒; we let s, t, . . . range over finite strings of actions different from X;
we write M α

−→ (respectively, M α
=⇒) if there exists N such that M α

−→ N (re-
spectively, M α

=⇒ N); we write M X−→ if there exists no N such that M −→ N.
We also extend the labelled transition relation and the above notation to session
types so that, for example, T α

−→ S if p : T
α

−→ p : S for some p.

6

We conclude this section with the definition of correct session. Intuitively, a
session is correct if at any time it is always possible to reach a state where every
participant of the session has successfully terminated. Formally we have:

Definition 2.1. We say thatM is correct ifM =⇒ N implies N X
=⇒.

As an example, consider the session M = p : T | q : S | r : ?b.end where T
and S are defined by the equations:

T = q!a.T ⊕ r!b.T ′ T ′ = q!a.T ′ ⊕ q!c.end S = ?a.S+ ?c.end

It is easy to verify that M is a correct session: even though participant p
keeps sending a messages to q, it always has the potential to send a b mes-
sage to r. Once it has done so, it starts again sending a messages to q, but
this time it can also terminate the interaction by sending a c message. At this
point all the participants have successfully terminated. Perhaps more interest-
ing are the incorrect sessions. For instance, p : q!a.end ⊕ q!b.end | q : ?a.end is
not correct because p may decide to send a b message that q is not willing to
receive. Even though at the beginning of the interaction there is one potential
path leading to successful termination, the decision of sending b is made irre-
vocable by rule (T-CHOICE). There are also intrinsically flawed session types
that can never be part of a correct session. For example, the sessionM |p : fail is
incorrect regardless of M, because fail is never able to perform X. The session
type fail describes a participant that is unable to terminate successfully. Some
sessions are incorrect despite that no deadlock occurs in them. This happens
in the session p : T | q : S where T = q!a.T and S = ?a.S because, even though
the participants keep interacting with each other, they do not have the ability
to terminate the interaction.

It is useful to remark a few easy properties of correctness: p : end is the
simplest correct session; the session M | p : end is correct if and only if M
is correct; finally, correctness is preserved by reductions: if M is correct and
M =⇒ N, then N is also correct.

3 Fair Subtyping

We define the subtyping relation for session types semantically as the relation
that preserves correctness: we say that T is a subtype of S if every sessionM|p : T
that is correct remains correct when we replace T with S. Formally:

Definition 3.1 (subtyping). We say that T is a subtype of S, written T 6 S, if
M | p : T correct impliesM | p : S correct for everyM. We write ≶ for the equivalence
relation induced by 6, namely ≶ = 6 ∩6−1.

This definition may look surprising at first, because it speaks about left-
to-right substitutability, while subtyping is usually concerned with right-to-
left substitutability: it is safe to use a value of some subtype T wherever a
value of a supertype S is expected. The mismatch is only apparent, however,
and is due to the fact that we have identified session types with the processes
behaving according to them. To clarify this point, suppose that S is the type
associated with a channel c and that some process P uses c as indicated by
S. If we replace channel c with another channel d with type T 6 S, what we

7

are actually replacing is the set of processes that P is interacting with, which
behave according to some M such that M | p : T is correct. Replacing c with
d does not affect the way P behaves: P uses channel d (whose actual type is
T) as if it were channel c (thus according to S). This means that the actual
implemented session is described by M | p : S. Since T 6 S, we know that this
session is correct.

A thorough study of the subtyping relation that solely relies on Defini-
tion 3.1 is not easy, because of the universal quantification over an infinite set
of contexts M. Nonetheless, a few relations are easy to establish. For example,
we have

(i) ?a.end 6 ?a.end + ?b.end and (ii) p!a.end⊕ q!b.end 6 p!a.end

namely 6 behaves covariantly with respect to inputs and contravariantly with
respect to outputs, on finite session types. The two relations can be explained as
follows: in (i), any contextM such thatM |p : ?a.end is correct must eventually
send some message to p, and this message can only be a for otherwise p would
fail because of rule (T-FAIL). Therefore, M | p : ?a.end + ?b.end is also correct,
since ?a.end+?b.end is more receptive than ?a.end. In (ii), any contextM such
that M | r : p!a.end⊕ q!b.end is correct must be able to terminate successfully
no matter which message (either a or b) is sent (to p or q, respectively). One
such context isM = p : ?a.q!c.end+ ?c.end | q : ?b.p!c.end+ ?c.end. Therefore,
nothing bad happens when we replace p!a.end ⊕ q!b.end with a more deter-
ministic behavior, such as p!a.end. As a general note, observe that relation
(i) increases (and relation (ii) decreases) the number of paths along the session
types that lead to end when one reads the relations from left to right. Since
correctness concerns the reachability of a successfully terminated state, it is not
obvious that reducing the number of paths leading to end is generally safe, as
we have already argued in the introduction.

We devote the rest of this section to the complete characterization of 6. To
ease the presentation, we proceed incrementally in three steps: (1) we intro-
duce a normal form for session types that allows us to focus on the subclass of
viable session types, those that can be part of correct sessions and that, conse-
quently, are the most relevant in practice; (2) we express T 6 S as the conjunc-
tion of two relations, the familiar (but unsafe) T 6U S subtyping for session
types (which is shown to include 6) and a T ≺ S relation that holds when the
paths leading to successful termination in T that have disappeared from S do
not endanger correctness; (3) we show how to reduce the T ≺ S relation to
deciding the viability of a suitably defined T − S session type, somehow repre-
senting the “behavioral difference” between T and S.

Normal form. There exists a large class of syntactically unrelated, yet equiv-
alent session types. For instance, we have fail ≶ S∞ (the latter defined in Sec-
tion 1) because there is no correct session in which either of these two types
can occur. These flawed session types roughly correspond to the empty type
in other type theories. Session types that can occur in correct sessions are our
primary concern and we reserve a name for them.

Definition 3.2 (viability). We say that T is viable ifM | p : T is correct for someM
and p. We write Tv for the set of viable session types.

8

A session type T is not viable if and only if T 6 fail. That is, being not viable
means being “smaller than” the empty type. The existence of non-viable ses-
sion types hinders the definition of alternative characterizations of the subtyp-
ing relation such as the coinductive one that we are about to present, because
these characterizations are based on the intuition that semantically related ses-
sion types must be syntactically similar. For the rest of this section we assume
to work with session types in a normal form guaranteeing that every subtree in
a session type in normal form is viable. In the next section, we will show that
every viable session type admits an equivalent normal form and we present an
algorithm for computing it.

Definition 3.3 (normal form). We say that T is in normal form if end ∈ trees(S)
for every S ∈ trees(T). We write Tnf for the set of session types in normal form.

Observe that if T ∈ Tnf, then S ∈ Tnf for every S ∈ trees(T). The following
proposition assures us that working with session types in normal forms is at
the same time convenient and not restrictive: every session type in normal
form is viable, and every viable session type has an equivalent one in normal
form. We will be able to prove the proposition only with some machinery
defined in Section 4.

Proposition 3.1. The following properties hold: (1) Tnf ⊆ Tv; (2) for every T ∈ Tv
there exists S ∈ Tnf such that T ≶ S.

Unfair subtyping and 6 decomposition. Let us now introduce the standard
subtyping relation for session types, which we dub “unfair subtyping” to dis-
tinguish it from the one of Definition 3.1.

Definition 3.4 (unfair subtyping [13]). We say that S is a coinductive unfair
subtyping if T S S implies either:

1. T = end and S = end, or

2. T =
∑
i∈I ?ai.Ti and S =

∑
i∈I∪J ?ai.Si and Ti S Si for every i ∈ I, or

3. T =
⊕
i∈I∪J pi!ai.Ti and S =

⊕
i∈I pi!ai.Si and Ti S Si for every i ∈ I.

Unfair subtyping, denoted by 6U, is the largest coinductive unfair subtyping.

Item (1) states that the only subtype of end is end. Item (2) is the standard
covariant rule for input actions: it is safe for a process that is capable of handling
a set {?ai}i∈I∪J of incoming message types to wait for messages from a channel
on which a subset {?ai}i∈I of message types can be received. Item (3) is dual of
item (2) and deals with outputs. It states that a process can safely use a chan-
nel on which messages from the set {pi!ai}i∈I∪J can be sent if it never sends a
message that is not in this set. As we have anticipated in the introduction, the
6U relation is generally unsafe in our setting because it does not preserve cor-
rectness as by Definition 2.1 (for instance, the reader may verify that T 6U S∞
holds for T and S∞ defined in the introduction). We can be a little more precise
and say that 6 is included in 6U and that 6U does not introduce deadlocks, but
it can introduce livelocks:

Theorem 3.1. Let T, S ∈ Tnf. The following properties hold:

9

1. If T 6 S, then T 6U S.

2. If T 6U S andM | p : T is correct, thenM | p : S =⇒ N X−→ implies N X
−→.

An immediate corollary of Theorem 3.1 is that 6U and 6 coincide when
either of the session types being compared is finite. In particular:

Corollary 3.1. Let T, S ∈ Tnf and T 6U S and S be finite. Then T 6 S.

Proof. Immediate since every maximal computation ofM | p : S is finite.

Theorem 3.1 and Corollary 3.1 show that 6U is not – but is not too far away
from being – a sound approximation of 6. Therefore, in order to find a char-
acterization for 6 that is both complete and close to 6U, we seek for a decom-
position of the relation T 6 S as the conjunction of two relations: T 6U S,
expressing a safety property (S does not introduce deadlocks), and T ≺ S, ex-
pressing a liveness property (S does not preclude the successful termination of
any context that completes S). The “ruled by” relation ≺ is defined thus:

Definition 3.5. We say that T is ruled by S, notation T ≺ S, if M | p : T correct
impliesM | p : S

X
=⇒ for everyM.

Clearly Smay preclude successful termination only when some outputs are
removed (increasing the inputs increases the paths leading to successful termi-
nation). The property T ≺ S states that every context M that completes T must
take into account the possibility to successfully terminate by following a path
of actions shared with S. In other words, there exists noM that solely relies on
the outputs emitted by T but not by S in order to successfully terminate. We
can now formalize the decomposition of 6 as the “conjunction” of 6U and ≺:

Theorem 3.2. Let 6C be the largest relation included in 6U such that T 6C S implies
T ≺ S. Then T 6 S if and only if T 6C S for every T, S ∈ Tnf.

Characterization of ≺ and behavioral difference. We now shift the focus on
characterizing the ≺ relation. Suppose T 6≺ S. Then there exists some context
M such that the correctness of M | p : T crucially depends on the outputs that
T emits and that S does not. In order to find M, we define a session type T − S
that somehow represents the “difference” between T and S and that is viable
if (and only if) such M does exist. The intuition is that T − S differs from S in
three respects:

1. every end in S has been turned to a fail in T − S;

2. T − S performs no more inputs than those performed by T ;

3. T − S performs all the outputs performed by T .

Formally:

Definition 3.6 (session type difference). Let T 6U S. The difference of T and S,
denoted by T − S, is coinductively defined by the following equations:

end − end = fail∑
i∈I ?ai.Ti −

∑
i∈I∪J ?ai.Si =

∑
i∈I ?ai.(Ti − Si)⊕

i∈I∪J pi!ai.Ti −
⊕
i∈I pi!ai.Si =

⊕
i∈J\I pi!ai.Ti ⊕

⊕
i∈I pi!ai.(Ti − Si)

10

Because of its definition, T−S is viable if there existsM such that the correct-
ness of M | p : T − S solely depends on the end leaves found in those branches
of T that have been pruned in S by item (3) of Definition 3.4. To make ac-
quaintance with ‘−’ let us revisit some of the examples we have seen in the
introduction. Let T = q!a.T ⊕ q!b.end and Sn = (q!a.)nSn⊕ q!b.end. We have

T − Sn = q!a.(q!a.(· · · (q!a.︸ ︷︷ ︸
n

(T − Sn)⊕ q!b.end) · · ·)⊕ q!b.end︸ ︷︷ ︸
n−1

)⊕ q!b.fail

and T − S∞ = T

and we observe that T−S∞ is viable, while no T−Sn is because of the inevitable
q!b.fail branch. Also, when S is finite it is never the case that T −S is viable. For
example, T − q!b.end = q!a.T ⊕ q!b.fail and T − q!a.q!b.end = q!a.(q!a.T ⊕
q!b.fail) ⊕ q!b.end. This is consistent with Corollary 3.1, showing that 6U and
6 coincide when the larger session type is finite. In general, we can prove that
T ≺ S holds if and only if the difference between T and S is not viable.

Theorem 3.3. Let T 6U S. Then T ≺ S if and only if T − S is not viable.

We conclude this section with an interesting analogy between our frame-
work and that of semantic subtyping [12], which also motivates the notation
T−S. We have observed that “being not viable” is equivalent to “being smaller
than fail”, and that fail somehow represents the empty type in our theory. There-
fore, a consequence of Theorems 3.2 and 3.3 is that in order to decide T 6 S
one has to decide whether T − S 6 fail. This reformulation is precisely the
one used in the framework of semantic subtyping, where types are interpreted
as sets of values and deciding the subtyping relation σ ⊆ τ is equivalent to
deciding the emptiness of σ \ τ. Note however that T ≺ S alone does not
imply T 6 S. For example, we have q!a.T ⊕ q!b.end ≺ q!a.S ⊕ q!b.end
where T = ?a.(q!a.T ⊕ q!b.T) + ?b.end and S = ?a.q!a.S + ?b.end. Still,
q!a.T ⊕ q!b.end 66 q!a.S⊕ q!b.end because T 66 S, as we already know.

4 Algorithms

In this section we define algorithms for deciding viability, for computing the
normal form of viable session types, and for deciding subtyping. We also dis-
cuss about the complexity of deciding correctness.

Viability. The viability of a session type T is tightly related to the reachability
of end subtrees occurring in it. The algorithm we propose assumes initially that
every subtree of T is viable and iteratively discards those subtrees for which
this assumption is disproved. Each iteration performs three checks: a subtree
S ∈ trees(T) is viable provided that end can be reached from it; input nodes are
viable provided that there is at least one branch that is viable; output nodes are
viable provided that every branch is viable. Formally, let the viability sequence
for T be the sequence {Vi}i∈N of sets of session types defined in this way:

V0 = trees(T)

V2i+1 = {S ∈ V2i | ∃s : S
s

=⇒ end, ∀t ≤ s : S t
=⇒ S ′ ∈ trees(T) ⇒ S ′ ∈ V2i}

V2i+2 = {end} ∪ {
∑
j∈I ?aj.Tj ∈ V2i+1 | ∃j ∈ I : Tj ∈ V2i+1}

∪ {
⊕
j∈I pj!aj.Tj ∈ V2i+1 | ∀j ∈ I : Tj ∈ V2i+1}

11

where ≤ is the usual prefix relation between strings of actions.
Observe that, in computing V2i+1, it is not enough to be able to reach an

end subtree from S to declare S viable. It must be the case that every subtree
along the path S s

=⇒ end has not been proved non-viable. Note also that the
algorithm needs to go through a potentially infinite number of strings s such
that S t

=⇒. However, it is enough to consider those paths such that the deriva-
tion S t

=⇒ never goes through the same subtree twice. Since regular session
types have a finite number of distinct subtrees, it always suffices to check a
finite number of paths. Every set in the sequence is finite and the sequence is
decreasing. Therefore, there exists k ∈ N such that Vk = Vk+1 = Vk+2. We
denote the fixpoint of the sequence with viables(T).

Theorem 4.1 (viability). T ∈ Tv if and only if T ∈ viables(T).

Normal form. Once we know how to identify viable session types, comput-
ing their normal form is only a matter of pruning out those subtrees that are
not viable. When T is viable the normal form of T , denoted by nf(T), is defined
coinductively by the following equations:

nf(end) = end
nf(

∑
i∈I ?ai.Ti) =

∑
i∈I,Ti∈viables(Ti) ?ai.nf(Ti)

nf(
⊕
i∈I pi!ai.Ti) =

⊕
i∈I pi!ai.nf(Ti)

Theorem 4.2 (normal form). If T ∈ Tv, then nf(T) is in normal form and T ≶ nf(T).

Fair subtyping. We present a sound and complete deduction system for the
subtyping relation, which is coinductively defined in Table 3. Rules (FS-END)
and (FS-INPUT) are just the same as in well-known deduction systems for the
unfair subtyping relation (see, e.g., [13]). Rule (FS-OUTPUT) states that sub-
typing is preserved by output prefixes when these are preserved. Rule (FS-
FAIROUTPUT) is similar to the familiar contravariant rule for outputs, except
that it is applicable only when the smaller session type is ruled by the larger
one, which can be determined by checking the viability of the difference of the
two session types with the algorithm above. It is enough to check the condition
T ≺ S only when S has strictly fewer outputs than T . This is shown to imply
that the condition holds whenever T 6A S is provable.

Theorem 4.3. Let T, S ∈ Tnf. Then T 6 S if and only if T 6A S.

Unfortunately, it seems like the ≺ relation does not admit a simple axioma-
tization. The problem lies in the fact that the 6 relation is not local, in the sense
that the applicability of rule (FS-FAIROUTPUT) may depend upon regions of
the session types that are arbitrarily far away from the place where it is ap-
plied. Consider for instance the session type T = q!a.(?a.)n.(q!a.(?a.)nT ⊕
q!b.end) ⊕ q!b.end and observe that the two q!b branches can be arbitrarily
distant according to the number n of input actions. Both the session types S1 =
q!a.(?a.)n.(q!a.(?a.)nS1⊕q!b.end) and S2 = q!a.(?a.)n.q!a.(?a.)nS2⊕q!b.end
are supertypes of T and they differ from T because one of the two q!b.end
branches has been removed. However, removing both branches results into a
non-viable session type. Therefore, one branch can be safely removed only if
the other one is not.

12

Table 3: Deduction system for the subtyping relation.

(FS-END)
end 6A end

(FS-INPUT)
Ti 6A Si

(i∈I)∑
i∈I

?ai.Ti 6A

∑
i∈I∪J

?ai.Si

(FS-OUTPUT)
Ti 6A Si

(i∈I)⊕
i∈I

pi!ai.Ti 6A

⊕
i∈I

pi!ai.Si

(FS-FAIROUTPUT)

Ti 6A Si
(i∈I)

⊕
i∈I∪J

pi!ai.Ti ≺
⊕
i∈I

pi!ai.Si⊕
i∈I∪J

pi!ai.Ti 6A

⊕
i∈I

pi!ai.Si

Correctness. We conclude this section with a few considerations concerning
the decidability of correctness. First of all observe that, since session types are

regular and finite branching, the relation ≤M
def
= {(N ′, N) | M =⇒ N =⇒ N ′}

is finite and can be computed in finite time by exploring every state reachable
fromM. NowM is correct if and only if N X

−→ for every ≤M-minimal session.
In the special case of binary sessions, when only two participants p and q

are involved, the session p : T | q : T is always correct, assuming that q is the
only role occurring in T , that T is in normal form, and where T is the dual of T
which is coinductively obtained thus:

end = end
∑
i∈I ?ai.Ti =

⊕
i∈I p!ai.Ti

⊕
i∈I q!ai.Ti =

∑
i∈I ?ai.Ti

By definition of 6, every session p : T | q : S where T 6 S is also correct.
However, the converse is not true. That is, there are cases where p : T | q : S is
correct and yet T 66 S, for example when T = q!a.(?a.T + ?b.T) ⊕ q!b.end and
S = ?a.p!a.S+?b.end. This is in sharp contrast with the unfair theories [13, 6],
where p : T | q : S is correct (in the “unfair” sense) if and only if T 6U S.

5 Conclusions

Applying the standard subtyping relation in multi-party sessions may result
into a subset of participants that starve for messages that are never sent, while
the rest of the session engages an infinite loop. Even in dyadic sessions it might
be desirable not to loose the ability to reach successful termination of the inter-
acting parties. These scenarios naturally call for the definition of session type
theories that take into account some liveness property of sessions in addition
to the standard safety. Fair subtyping relations (often referred to as refinements
in concurrency theory) have rightfully gained the fame of being hard to charac-
terize completely [19, 21] or even to approximate [4, 20]. The main contribution
of this paper is the definition of a self-contained, comprehensive fair theory of
session types which is presented as a relatively simple variation of more famil-
iar ones.

It is not entirely clear how much the characterization of the subtyping rela-
tion we have given owes to the fact that we work with a very primitive process

13

language. The proof of the characterization (Theorem 3.2) only needs the se-
mantic definition of ≺ (Definition 3.5) and therefore should be generalizable to
full-featured process languages. It is not obvious, and thus subject to future in-
vestigation, whether the same holds for the notion of difference (Definition 3.6).

In our theory, checking whether a session is correct can be more expensive
than in “unfair” theories (Section 4). This observation substantiates the effec-
tiveness of the design-by-contract approach advocated in [5, 18], where the
session types of a multy-party session are obtained as projections of a global
type associated with the session. The approach guarantees that the resulting
session is correct by construction. However, subtyping may be used both dur-
ing the projection as well as while type checking processes against the session
types of the channels they use. Therefore, it is fundamental for subtyping to
preserve session correctness (in the sense of Definition 2.1) and not just safety.
We plan to investigate the issues of type checking processes using a fair sub-
typing relation in a future work.

Acknowledgments. This draft was mostly written while the author was mâitre
de conférences invité at Laboratoire Proves, Programmes et Systèmes in 2010.
The author is grateful to Daniele Varacca for the enlightening discussions on
fairness had during his stay there.

References

[1] Franco Barbanera and Ugo de’Liguoro. Two notions of sub-behaviour
for session-based client/server systems. In Proceedings of PPDP’10, pages
155–164. ACM, 2010.

[2] Mario Bravetti and Gianluigi Zavattaro. A foundational theory of con-
tracts for multi-party service composition. Fundamenta Informaticae,
89(4):451–478, 2009.

[3] Mario Bravetti and Gianluigi Zavattaro. A theory of contracts for strong
service compliance. Mathematical. Structures in Comp. Sci., 19:601–638, June
2009.

[4] Michele Bugliesi, Damiano Macedonio, Luca Pino, and Sabina Rossi.
Compliance preorders for Web Services. In Proceedings of WS-FM’09,
LNCS 6194, pages 76–91. Springer, 2010.

[5] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured
communication-centered programming for web services. In Proceedings
of 16th European Symposium on Programming, LNCS, 2007.

[6] Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, Elena Giachino, and
Luca Padovani. Foundations of session types. In Proceedings of PPDP’09,
pages 219–230. ACM, 2009.

[7] Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory of con-
tracts for Web services. In Proceedings of POPL’08, pages 261–272. ACM,
2008.

14

[8] Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory of con-
tracts for Web services. ACM Transactions on Programming Languages and
Systems, 31(5):1–61, 2009.

[9] Bruno Courcelle. Fundamental properties of infinite trees. Theoretical Com-
puter Science, 25:95–169, 1983.

[10] Rocco De Nicola and Matthew Hennessy. Testing equivalences for pro-
cesses. Theoretical Computer Science, 34:83–133, 1984.

[11] Rocco De Nicola and Matthew Hennessy. CCS without τ’s. In Proceedings
of TAPSOFT’87/CAAP’87, LNCS 249, pages 138–152. Springer, 1987.

[12] Alain Frisch, Giuseppe Castagna, and Veronique Benzaken. Semantic sub-
typing: dealing set-theoretically with function, union, intersection, and
negation types. Journal of the ACM, 55(4):1–64, 2008.

[13] Simon Gay and Malcolm Hole. Subtyping for session types in the π-
calculus. Acta Informatica, 42(2-3):191–225, 2005.

[14] Matthew Hennessy. Acceptance trees. Journal of the ACM, 32(4):896–928,
1985.

[15] Matthew Hennessy. Algebraic Theory of Processes. Foundation of Comput-
ing. MIT Press, 1988.

[16] Kohei Honda. Types for dyadic interaction. In Proceedings of CONCUR’93,
LNCS 715, pages 509–523. Springer, 1993.

[17] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primi-
tives and type disciplines for structured communication-based program-
ming. In Proceedings of ESOP’98, LNCS 1381, pages 122–138. Springer,
1998.

[18] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asyn-
chronous session types. In Proceedings of POPL’08, pages 273–284. ACM,
2008.

[19] V. Natarajan and Rance Cleaveland. Divergence and fair testing. In Pro-
ceedings of ICALP ’95, LNCS 944, pages 648–659. Springer, 1995.

[20] Luca Padovani. Session types at the mirror. EPTCS, 12:71–86, 2009.

[21] Arend Rensink and Walter Vogler. Fair testing. Information and Computa-
tion, 205(2):125–198, 2007.

[22] Vasco T. Vasconcelos. Fundamentals of session types. In SFM’09, LNCS
5569, pages 158–186. Springer, 2009.

A Proofs

A.1 Proofs of Section 3

Lemma A.1. Let T, S ∈ Tnf and T 6U S and M | p : T correct and M | p : S =⇒
M ′ | p : S ′. ThenM | p : T =⇒M ′ | p : T ′ for some T ′ such that T ′ 6U S

′.

15

Proof. By unzipping the derivation M | q : S =⇒ M ′ | q : S ′ we deduce that

M
s

=⇒M ′ and S s
=⇒ S ′ for some string s of actions. We show that there exists

T ′ such that T s
=⇒ T ′ and T ′ 6U S

′ by induction on s:

• In the base case we have s = ε, and we conclude by taking T ′ = T (note
that S ′ may be a residual of S after an application of rule (T-CHOICE) but
even in this case T ′ 6U S

′ still holds).

• Suppose s = q?as ′. Then M q!a
=⇒ M ′′

s ′

=⇒ M ′ and S q?a
−→ S ′′

s ′

=⇒ S ′ for
some M ′′ and S ′′. We deduce S =

∑
i∈J ?ai.Si and a = ak and S ′′ = Sk

for some k ∈ J. From item (2) of Definition 3.4 we deduce T =
∑
i∈I ?ai.Ti

with I ⊆ J. It must be the case that k ∈ I, for otherwise M | q : T =⇒
M ′′ | q : fail which is incorrect. We deduce Tk 6U Sk and we conclude by
induction hypothesis.

• Suppose s = p!as ′. Then M p?a
=⇒ M ′′

s ′

=⇒ M ′ and S =⇒ p!a
−→ S ′′

s ′

=⇒
S ′ for some M ′′ and S ′′. We deduce S =

⊕
i∈J pi!ai.Si and p = pk

and a = ak for some k ∈ J. From item (3) of Definition 3.4 we deduce
T =

⊕
i∈I pi!ai.Ti and J ⊆ I. We deduce Tk 6U Sk and we conclude by

induction hypothesis.

We introduce some convenient notation used in the following proofs: we
write

∏n
i=1 pi : Ti for p1 : T1 | · · · |pn : Tn; given a sessionM, we write dom(M)

for the tags of the participants inM, that is dom(
∏
i∈I pi : Ti) = {pi | i ∈ I} and

we write M(p) for the session type associated with tag p ∈ dom(M). We also
write {p1, . . . ,pn}!a.T for p1!a · · ·pn!a.T when the order of the outputs does
not matter.

Theorem A.1 (Theorem 3.1). Let T, S ∈ Tnf. The following properties hold:

1. If T 6 S, then T 6U S.

2. If T 6U S andM | p : T is correct, thenM | p : S =⇒ N X−→ implies N X
−→.

Proof. Regarding item (1), it is enough to show that 6 is a coinductive unfair
subtyping. Suppose T 6 S. We distinguish three possibilities according to the
shape of T :

(T = end) We have p : end |q : T correct, hence p : end |q : S is also correct. We
conclude S = end, therefore item (1) of Definition 3.4 is satisfied.

(T =
∑
i∈I ?ai.Ti) Suppose M | q : Tk correct for some k ∈ I, let dom(M) =

{q1, . . . ,qm}, and consider

N
def
= p : q!ak. ?ack. · · · ?ack︸ ︷︷ ︸

m

.end |

m∏
i=1

qi : p!ack.M(qi)

where p 6∈ {q,q1, . . . ,qm} and ack is some name that does not occur any-
where. We have N | q : T correct and N | q : T =⇒ p : end |M | q : Tk.
From the hypothesis T 6 S we deduce that N | q : S is correct, therefore
S =

∑
i∈I∪J ?ai.Si. Furthermore, N | q : S =⇒ p : end |M | q : Sk, hence

Ti 6 Si for every i ∈ I because k ∈ I and M are arbitrary. We conclude
that item (2) of Definition 3.4 is satisfied.

16

(T =
⊕
i∈I pi!ai.Ti) Let {Mi}i∈I be a family of systems such that Mi | q : Ti is

correct for every i ∈ I. Without loss of generality we may assume that
dom(Mi) = dom(Mj) = {q1, . . . ,qm} for every i, j ∈ I (if this is not the
case, appropriate p : end participants can be added wherever necessary).
Observe that {pi | i ∈ I} ⊆ {q1, . . . ,qm}. For every j ∈ {1, . . . ,m}, let

Nj
def
= qj :

∑
i∈I,pi=qj

?ai.{q1, . . . ,qm} \ {qj}!ackj.
{q1, . . . ,qm} \ {qj}!ai.r!ack.Mi(qj)

+
∑
i∈I,pi 6=qj

?acki.
∑
k∈I,pk=pi

?ak.r!ack.Mk(qj)

and let

N
def
= p : ?ack. · · · ?ack︸ ︷︷ ︸

m

.end |

m∏
i=1

Ni

where p 6∈ {q,q1, . . . ,qm} and {ack, ack1, . . . , ackm} do not occur anywhere.
We have that N | q : T is correct and N | q : T =⇒ p : end |Mi | q : Ti for
every i ∈ I. From the hypothesis T 6 Swe deduce thatN |q : S is correct,
therefore S =

⊕
i∈J pi!ai.Si and J ⊆ I. Furthermore, N | q : S =⇒ p :

end |Mi | q : Si for every i ∈ J, hence Ti 6 Si for every i ∈ J because each
Mi is arbitrary. We conclude that item (3) of Definition 3.4 is satisfied.

Regarding item (2), we have N = M ′ | p : S ′ for some M ′ and S ′. From
the hypotheses T 6U S and M | p : T and Lemma A.1 we deduce that M | p :

T =⇒M | p : T ′ for some T ′ such that T ′ 6U S
′. From the hypothesisN XX−→ we

deduce T ′ = S ′ = end. Again from the hypothesis M | p : T correct we have
M ′

X
−→, therefore N X

−→.

Theorem A.2 (Theorem 3.2). Let 6C be the largest relation included in 6U such that
T 6C S implies T ≺ S. Then T 6 S if and only if T 6C S for every T, S ∈ Tnf.

Proof. (“only if” part) We must show that 6 ⊆ 6U∩≺. The relation 6 ⊆ 6U has
already been proved in Theorem 3.1. Regarding the relation 6 ⊆ ≺, suppose

T 6 S andM | p : T correct. ThenM | p : S
X
=⇒ for otherwiseM | p : Swould be

incorrect.
(“if” part) Suppose T 6C S and letM | q : T be a correct session. Consider a

derivation M | p : S =⇒M ′ | p : S ′. From Lemma A.1 we deduce M | p : T =⇒
M ′ |p : T ′ for some T ′ such that T ′ 6C S

′. From the hypothesisM |p : T correct
we deduce M ′ | p : T ′ correct. By definition of 6C we have T ′ ≺ S ′, therefore

we concludeM | p : S ′
X
=⇒.

Theorem A.3 (Theorem 3.3). Let T 6U S. Then T ≺ S if and only if T − S is not
viable.

Proof. (“only if” part) Suppose by contradiction that T − S is viable and let
M | p : T − S be a correct session. Then M | p : T is also correct and, from the
hypothesis T ≺ S, we deduce M | p : S

X
=⇒. Then M sX

=⇒ and S s
=⇒ end for

some string s. By definition, we deduce T − S
s

=⇒ fail, thus contradicting the
hypothesis that T − S is viable.

(“if” part) Let M | p : T be a correct session and {Vk}k∈N be the viability

sequence for T − S. We prove that T ′ − S ′ 6∈ Vk implies M | p : S ′
X
=⇒ by

induction on k.

17

• (k = 0) Since T − S ∈ V0 we concludeM | p : S
X
=⇒ (ex falso quodlibet).

• (k > 0 and k is odd) Then for every s such that T − S s
=⇒ end there exists

t ≤ s such that T − S
t

=⇒ R and R 6∈ Vk−1. From the hypothesis M | p : T

correct we deduce M sX
=⇒M ′ and T sX

=⇒ for some s. Suppose that S Y s=⇒,
for otherwise there is nothing to prove. Then T − S

s
=⇒ end. We deduce

that T − S
t

=⇒ R with R 6∈ Vk−1 for some t ≤ s. Since T is in normal form
and R is not viable, it must be the case that R = T ′ − S ′ for some T ′ and
S ′ such that T t

=⇒ T ′ and S t
=⇒ S ′. By induction hypothesis we deduce

M ′ | p : S ′
X
=⇒. We conclude by observing thatM | p : S =⇒M ′ | p : S ′.

• (k > 0 and k is even) We distinguish two subcases:

– Suppose T =
∑
i∈I ?ai.Ti and S =

∑
i∈I∪J ?ai.Si and Ti − Si 6∈ Vk−1

for every i ∈ I. From the hypothesis M | p : T correct we deduce

M
p!ai=⇒ M ′ for some i ∈ I and M ′ | p : Ti correct. By induction

hypothesis we deduce M ′ | p : Si
X
=⇒. We conclude by observing

thatM | p : S =⇒M ′ | p : Si.

– Suppose T =
⊕
i∈I∪J pi!ai.Ti and S =

⊕
i∈I pi!ai.Si and Ti − Si 6∈

Vk−1 for some i ∈ I, because Ti is viable for every i ∈ J \ I since T
is in normal form. From the hypothesis M | p : T correct we deduce

M
?piai=⇒ M ′ for someM ′ such thatM ′ |p : Ti is correct. By induction

hypothesis we deduce M ′ | p : Si
X
=⇒. We conclude by observing

thatM | p : S =⇒M ′ | p : Si.

A.2 Proofs of Section 4

Theorem A.4 (Theorem 4.1). T ∈ Tv if and only if T ∈ viables(T).

Proof. (“only if” part) We show that S ∈ trees(T)\Vi implies that S is not viable
by induction on i.

• (i = 0) There is nothing to prove since trees(T) \ V0 = ∅.

• (i > 0 and i is odd) Then for all s such that S s
=⇒ end there exist t ≤ s and

S ′ such that S t
=⇒ S ′ and S ′ ∈ trees(T)\Vi−1. Suppose, by contradiction,

that S is viable. Then there exists M such that M | p : S is correct, hence
M | p : S =⇒ N | p : end where N X

−→. We deduce that M s
=⇒ N and

S
s

=⇒ end for some finite string s of actions. Then there exists t ≤ s such
that S t

=⇒ S ′ and S ′ 6∈ Vi−1. By induction hypothesis we deduce that
S ′ is not viable. This contradicts the hypothesis that M | p : S is correct,
hence that S is viable.

• (i > 0 and i is even) Suppose S ∈ Vi−1 \ Vi. The session type S cannot be
end, for end subtrees are always preserved along the sequence {Vi}i∈N.
Suppose, by contradiction, that S is viable and thatM |p : S is correct. We
distinguish two subcases according to the form of S:

18

– (S =
∑
j∈I ?aj.Sj and Sj 6∈ Vi−1 for every j ∈ I). It must be the case

that M p!ak=⇒ M ′′ for some k ∈ I and M ′′ | p : Sk is correct. But this
is absurd, because by induction hypothesis we deduce that Sk is not
viable.

– (S =
⊕
j∈I pj!aj.Sj and Sk 6∈ Vi−1 for some k ∈ I). Dual of the

previous case.

(“if” part) We must define a system M such that M | p : T is correct under
the hypothesis T ∈ viables(T). Let {p1, . . . ,pn} be the set of roles occurring in
T and let q be another role different from them (and from p) which will be a
controller participant. We also need a set {ack1, . . . , ackn} of distinct names that
do not occur anywhere else. The controller is defined by the equations:

end ↓ q = end∑
i∈I ?ai.Ti ↓ q =

⊕
i∈I,Ti∈viables(Ti){p1, . . . ,pn}!ai.p!ai.(Ti ↓ q)⊕

i∈I pi!ai.Ti ↓ q =
∑n
i=1 ?acki.

∑
j∈I,pi=pj

?aj.{p1, . . . ,pn} \ {pi}!acki.
{p1, . . . ,pn} \ {pi}!aj.(Tj ↓ q)

Basically, q is the only one sending messages to p and it notifies every pi
with the same messages it sends to p. Dually, every pi immediately notifies
the controller of the message it has received and the controller propagates the
information to all the other roles. Each pk is defined by the equations:

end ↓ pk = end∑
i∈I ?ai.Ti ↓ pk =

∑
i∈I,Ti∈viables(Ti) ?ai.(Ti ↓ pk)⊕

i∈I pi!ai.Ti ↓ pk =
∑
i∈I,pi=pk

?ai.q!ackk.q!ai.(Ti ↓ pk)
+
∑n
i=1 ?acki.

∑
j∈I,pi=pj

?aj.(Tj ↓ pk)
Observe that every projection is well defined because of the definition of

viables(T). Now consider

M
def
=

n∏
i=1

pi : T ↓ pi | q : T ↓ q
It is a simple exercise to verify that M | p : T is correct and this concludes

the proof.

Theorem A.5 (Theorem 4.2). If T ∈ Tv, then nf(T) is in normal form and T ≶ nf(T).

Proof. Let traces(T) def
= {s | T

s
=⇒ end}. We have traces(nf(T)) ⊆ traces(T),

therefore nf(T) 6 T . Consider M such that M | p : T is correct and consider a
derivation M | p : nf(T) =⇒M ′ | p : R. Then there exists s such that M s

=⇒M ′

and nf(T) s
=⇒ R. From traces(nf(T)) ⊆ traces(T) we deduce that there exists

T ′ such that T s
=⇒ T ′ and R = nf(T ′). From the hypothesis M | p : T correct

we deduce that M ′ | p : T ′
X
=⇒, namely that M ′ tX

=⇒ and T ′ tX
=⇒ for some

string t. Furthermore, T ′ s ′

=⇒ T ′′ implies T ′′ viable for every s ′ ≤ t. Therefore

nf(T ′) tX
=⇒ by definition of nf(T ′). We concludeM ′ | p : R

X
=⇒.

Theorem A.6 (Theorem 4.3). Let T, S ∈ Tnf. Then T 6 S if and only if T 6A S.

19

Proof. The “only if” part is immediate from Theorem 3.2. Regarding the “if”
part, it is obvious that 6A ⊆ 6U, therefore we only have to show that whenever
T 6A S is derivable we have T ≺ S. By Theorem 3.3, this is equivalent to
checking that T − S is not viable. From T 6A S we deduce that every T ′ − S ′

subtree occurring in T − S and corresponding to an application of rule (FS-
FAIROUTPUT) is not viable. Therefore, T − S ≶ R where R is the same as T − S
where every such subtree has been replaced by fail. Now end 6∈ trees(R) by
definition of T − S, therefore T − S is not viable.

Proposition A.1 (Proposition 3.1). The following properties hold: (1) Tnf ⊆ Tv; (2)
for every T ∈ Tv there exists S ∈ Tnf such that T ≶ S.

Proof. Item (2) is an immediate consequence of Theorem 4.2. Regarding item (1),
let {Vi}i∈N be the sequence of sets resulting from the construction in Section 4.
It is easy to verify that Vi = trees(T) for every i ∈ N. We conclude that T is
viable.

20

