
HAL Id: hal-00546408
https://hal.science/hal-00546408

Submitted on 14 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Encapsulation and Behavioral Inheritance in a
Synchronous Model of Computation for Embedded

System Services Adaptation
Mickael Kerboeuf, Jean-Pierre Talpin

To cite this version:
Mickael Kerboeuf, Jean-Pierre Talpin. Encapsulation and Behavioral Inheritance in a Synchronous
Model of Computation for Embedded System Services Adaptation. Journal of Logic and Algebraic
Programming, 2005, 63 (2), pp.241-269. �10.1016/j.jlap.2004.05.005�. �hal-00546408�

https://hal.science/hal-00546408
https://hal.archives-ouvertes.fr

Encapsulation and Behavioral Inheritance in a

Synchronous Model of Computation for

Embedded System Services Adaptation

Mickaël Kerbœuf a,∗ Jean-Pierre Talpin a

a
Irisa, Campus de Beaulieu, 35042 Rennes cedex, France

Abstract

Because it encourages the incremental development of software and the reuse of
code by abstracting away implementation details, object orientation is an intuitive
and sensible way to conceive large software out of existing application components
and libraries. In practice, however, object-orientation is most of the time applied
and used with sequentiality in mind. This practice may sometimes be conceptually
inadequate for, e.g., control-dominated reactive system components.

We address this issue by proposing a process calculus that melts the paradig-
m of synchronous programming to key object-oriented features: encapsulation and
behavioral inheritance with overriding by means of specific algebraic concurrency
combinators. This framework provides support for the reuse of components and,
more specifically, for the adaptation of embedded systems with new services.

Cast in the context of a strict interpretation of the synchronous hypothesis, the
proposed model supports a static interpretation of inheritance: overriding is resolved
at compile-time (or link-time) and inheritance combinators are translated into prim-
itive synchronous ones. This compilation technique puts object-orientation to work
in a syntax-oriented model of synchronous concurrency that naturally supports the
incremental, refinement-based design of concurrent systems starting from encapsu-
lated and reused application components.

The benefits of our approach are illustrated by a concrete and practical example:
the adaptation of services to a plain old telephone service specification.

Key words: synchronous programming, process calculi, encapsulation, reuse and
behavioral inheritance.

∗ Corresponding author.
Email addresses: Mickael.Kerboeuf@irisa.fr (Mickaël Kerbœuf),

Jean-PierreTalpin@irisa.fr (Jean-Pierre Talpin).
URLs: http://www.irisa.fr/prive/kerboeuf (Mickaël Kerbœuf),

Preprint submitted to the Journal of Logic and Algebraic Programming 11 March 2004

1 Introduction

Object-orientation favors an incremental development of sequential software by taking into
account the structural and behavioral refinement of program components using the concept
of inheritance. Object-orientation enables the reuse of program libraries by abstracting away
implementation details from the necessary information contained in an interface, a signature,
a type. A few object-oriented concepts, materialized by a small set of operators, with a clear
and formal semantics, provide effective solutions for the design of large sequential software.

Moving to the design of concurrent systems, however, the picture is not that satisfactory.
It is indeed a very challenging issue to give an object-oriented account to concurrency that
meets the same degree of simplicity as for sequential software.

The synchronous hypothesis is an efficient approach to the design of concurrent and control-
dominated software. Synchrony consists of assuming that communications and computations
are instantaneous during the successive execution steps of a system. Making this hypothesis
is beneficial to system design. It allows the designer to focus on the logics of the system,
characterized by synchronization and causal relations between events, and abstract away
timing issues until a latter stage of system design (until its mapping on a given architecture).

We propose a new calculus of synchronous processes that supports the incremental, object-
oriented design of synchronous system components. This model consists of a core algebraic
formalism, akin to Pnueli’s synchronous transition systems [19], that melts the paradigm
of synchronous programming to the notions of encapsulation and of inheritance with over-
riding, borrowed to object-oriented programming. The classical notion of class is introduced
as an abstract parameterized and encapsulated process. An object is an instance of a class.
An inheritance operator is defined at the class level. It refines the behavior of an initial class
with a special class that corresponds to the notion of wrapper. A concurrent behavioral in-
heritance operator is defined in terms of synchronous composition by introducing a technique
of renaming or rewriting.

This intuitive and syntax-oriented approach offers flexible implementation possibilities: it can
both been used to interpret behavioral inheritance in the context of a functional architecture
consisting of process signatures and components, it can be used to combine, compile and
optimize concurrent objects, it can be used to link and load separately compiled modules. In
conclusion, it fully supports incremental design, reuse and encapsulation of objects for the
component-based engineering of concurrent software.

Overview In section 2, we first give a brief overview of the synchronous paradigm before
introducing the core algebraic model of implicit synchronous transition systems (Ists). Sec-
tion 3 gives the syntax and semantics of object orientation of this model: it is extended with

http://www.irisa.fr/prive/talpin (Jean-Pierre Talpin).

2

a mechanism for encapsulation, and with synchronous behavioral inheritance. A technique
for performing a static resolution of behavioral inheritance is then presented. The benefits
of this approach are probed and illustrated in section 4 by considering the concrete and
practical example of the adaptation of services of a Pots: a plain old telephone service.

2 A synchronous approach for the design of reactive systems

2.1 Synchrony and asynchrony

Synchrony and asynchrony are fundamentally different concepts in nature. Asynchrony is tra-
ditionally relevant for reasoning on distributed algorithms and for modeling non-determinism,
failure, mobility. It meets a natural implementation by networked point-to-point communi-
cation. Synchrony is more commonly viewed as specific to the design of reactive systems and
digital circuits. In this context, timeless logical concurrency and determinism are suitable
hypotheses.

Time prevails in an asynchronous design as communication and computation times need to
be taken into account at every level of the system under design. The absence of a com-
mon reference of time requires one to manage the local execution context of each applica-
tion component and maintain the expected global behavior of the system. In this process,
non-determinism incurred by asynchronous interactions increases the number of possible se-
quences of interleaved events. This makes the proof of suitable invariants (safety properties,
absence of live-locks or dead-locks) harder.

By contrast, a synchronous design hypothesis consists of assuming that communications and
computations are instantaneous between the successive execution steps of a system. Making
this hypothesis is beneficial for design. It allows the designer to focus on the logics of the
system, characterized by synchronization and causal relations between events, and abstract
away timing issues until a later stage of the design (its deployment on a given architecture).

In the synchronous approach of concurrency, time is abstracted from computations and com-
munications. As computing takes no time, the behavior of a computational unit can be seen
as a sequence of simultaneous events, ordered by causal relations. As communication takes
no time, a message from a unit to another is sent and received at the same logical instant.
Thus, synchrony offers a global view of the interaction in a system where the only notions
relevant to verification are simultaneity of events or causal precedence between events.

Back to the real world, where physical time has to be taken into account, the synchronous
hypothesis can be validated by checking that the program reacts rapidly enough to per-
ceive the events in suitable order, or by checking the so-called property of endochrony. This
property expresses that a unique sequence of interleaving events can be inferred from the
synchronous specification, regardless of the delay induced by each event.

3

2.2 Synchronous languages

Synchrony imposes a discretization of the behavior of a system: a synchronous specification
is a sequence of instantaneous reactions to events. Imperative synchronous languages like
Statecharts [13] or Esterel [4] focus on the sequence of events. Declarative (data-flow)
synchronous languages such as Lustre [12] or Signal [3] focus on the elementary reactions:
a program handles streams of values, the signals. During a given execution step, each signal
is either “present” or “absent” (but a computation is never “in progress”).

Building upon previous work on casting the synchronous multi-clocked model of computation
of Signal into notions of process calculi [21], we define an algebraic model of implicit
synchronous transition system, which we call Ists, akin to Pnueli’s synchronous transition
systems (Sts, [19]), where absence is explicit (for verification purposes) and to the Signal

modeling language, where absence is implicit.

2.3 A calculus of synchronous processes

The Ists formalism aims at supporting the introduction of new concurrency concepts to ease
the compositional modeling of reactive systems starting from a minimal set of constructs.

Ists borrows an operator of non-deterministic choice between behaviors from Sts [19] in
order to support a structural equivalence relation which enables syntax-oriented behavioral
reasoning on processes. Ists differs from Sts by letting absence be an implicit (non syntactic)
notion in the model (as in Signal). The equivalence between Signal and the Ists is shown
in [14].

In the remainder of this section, we first give an informal overview of the Ists centered
around an example. Then, its formal syntax and operational semantics are detailed. They
are summarized in appendix A.

2.3.1 Overview of the Ists formalism

In Ists, a synchronous process consists of a set of relations or partial equations on signals.
A signal is identified by a name x which, at any logical instant of time (each transition),
either carries a value v (and then we say that this signal is present), or not (and we say that
it is absent, making use of the special mark ⊥ to denote this absence). The clock of a signal
x (denoted by x̂) is the set of instants when this signal is present.

Each elementary equation or transition relation of a process specifies a relation between the
values of its input and output signals.

For instance, (z=x+y) is a primitive addition process. It relates the the integer input signals

4

x and y to the integer output signal z. The values carried by x, y and z, but also their clock
x̂, ŷ and ẑ, are related: x, y and z are present at the same time, and when x and y carry the
values c and d, then z carries the value c + d. Usual operators on numbers and booleans are
provided. Identity (or assignment) is simply written (y=x).

Guards are primitive processes. They enable to trigger reactions or transitions under certain
conditions. However, they do not define any output signal. For instance, the guard (when x)
(resp. (when not(x))) is active only if the boolean input signal x carries the value true (resp.
false). The guard (event x) is less restrictive. It is active only when the input signal x is
present.

The silent process, denoted by 1, enables stuttering: it is active when all signals are absent.
State transitions are implemented by the primitive process (y=(pre c) x). The function (pre c)
defines a register which initially contains the value c. When the input signal x is present with
the value d, the value c is sent along the output signal y, the value d is stored in the register
and the process becomes (y=(pre d) x).

The synchronous composition of two processes p and q is written p | q. The transition of p | q is
performed by the simultaneous transition of p and q and with the same context (by context,
it is meant that, if p assumes any signal x present with a value v or absent, then q should
simultaneously make the same assumption during its transition). Non-deterministic choice
is written p+q. It consists of choosing to execute either p or q during a given transition.
Restriction p/x is used to limit the scope of a signal x to the process p.

Example 1 Let balance be a process that implements a voting balance counter, i.e. it counts
the number of times a signal x is true minus the number of times it is false. The balance is
written:

balance
def
= 1 +


(m=(pre 0) n)

∣∣∣∣

 (when x) | (n=m+1)

+ (when (notx)) | (n=m−1)





 /m

At the top-level, the balance consists of a choice between a process activated when x is present,
and the silent process, to enable stuttering. If x is present, there are two possible transitions.

The first transition is triggered if (and only if) x is true (it is guarded by when x). Simulta-
neously (i.e. by synchronous composition), m takes the previous value of n (initially 0) and
n takes the value of m + 1. The second transition is triggered iff x is false (it is guarded by
when (not x)). If so, the balance count n is decremented.

The balance receives the input x and defines the output n. The signal m is used to calculate
the current value of n given its previous one. It is defined locally. A possible sequence of
values of the signals x, m and n in time can be depicted by considering the following possible

5

trace of the execution of balance:

input: x ff ff tt ⊥ ff tt tt tt . . .

local : m 0 −1 −2 ⊥ −1 −2 −1 0 . . .

output: n −1 −2 −1 ⊥ −2 −1 0 1 . . .

When x is false (value ff), the reaction guarded by when (notx) is triggered. When x is true
(value tt), the reaction guarded by when x is triggered. When x is absent (mark ⊥), the silent
reaction guarded by 1 is triggered. Notice that the signals m, n and x are synchronous: they
are all absent or present at the same time.

2.3.2 Formal syntax

We now introduce the syntax of Ists more formally. To do so, a few notational conventions
used along the article are in order. Let A be a set and a ∈ A. We write Ak for the set of
sequences of length k ∈ N of elements of A. We write A∗ for

⋃
k∈N

(
Ak

)
. A sequence of any

length is denoted by ã ∈ A∗, and we write (a1, . . . , ak) ∈ Ak for a sequence of length k.

We write Z and B = {tt, ff} for the domains of integers and booleans and C = B + Z for
the set of constants. We consider an infinite countable sets of signals x, y ∈ X and functions
f, g ∈ F (we assume X and F disjoint: X ∩ F = ∅).

A process p in Ists consists of elementary transitions (y=(pre c)x) and simultaneous equa-
tions on signal names (ỹ=fx̃) combined using synchronous composition p | q and non-deter-
ministic choice p+q. The sequences ỹ and x̃ of signals required and defined in an equation
(ỹ=fx̃) can be empty (to capture guards, constants and silence), and the empty sequence is
denoted by (). Restriction p/x is used to limit the scope of a signal x to the process p.

p, q ::= ỹ=fx̃ (equation)

| y=(pre c)x (transition)

| p | q (composition)

| p+q (choice)

| p/x (restriction)

c, d ∈ C = B + Z (constant)

f, g ∈ F (function)

x, y ∈ X (signal)

(x1, . . . , xk) ∈ X k (sequence)

x̃ ∈ X ∗ =
⋃

k∈N
(
X k

)

2.3.3 Operational semantics of synchronous processes

The operational semantics of Ists consists of a set of axioms and rules that define the possible
transition of a process by induction on its syntax. We first introduce the algebraic laws of
Ists.

6

We write fv(p) and dv(p) for the set of free and defined names of a process p. Informally, a
name x is free (resp. defined) in p if it occurs unbound in an action (resp. unbound and is
an output signal of a base process) of p. We write p[x/y] for the substitution of y by x in p
and dom S for the domain of a substitution S.

fv(ỹ = fx̃) = ỹ ∪ x̃

dv(ỹ = fx̃) = ỹ

fv(p+q) = fv(p | q) = fv(p) ∪ fv(q)

dv(p+q) = dv(p | q) = dv(p) ∪ dv(q)

fv(p/x) = fv(p) \ {x}
dv(p/x) = dv(p) \ {x}

Let P be the set of Ists processes. The structural or syntactic equivalence relation ≡ is
defined on P (relations that involve scoping are subject to the side-condition (∗) : x 6∈ fv(p)).

p/y≡(p[x/y])/x(∗)

p/x/y≡p/y/x

p | q/x≡(p | q)/x(∗)

p | (q | r)≡(p | q) | r
p+(q+r)≡(p+q)+r

p+q/x≡(p+q)/x(∗)

p+q≡q+p

p | q≡q | p
p | 1≡p+p ≡ p

p/x≡p(∗)

The operational semantics of a process p is defined by the relation p e−→ q. It defines the
possible transitions e of a process from an initial state p to a final state q. The term e
represents the events that are present in the environment of the process at the instant at
which the transition takes place. It is constructed by induction on the term p by combining
events from every sub-term of p. An event is defined by the association of a signal x to a
value c in e, written x 7→ c. It denotes the value c carried by the signal x at the (logical)
instant denoted by e. A signal x can alternatively be regarded as absent (i.e. x is absent iff
x 6∈ dom e).

e, f ∈ E = X ⇀ C∗ (environment)

Rule (eqv) takes into account the syntactic recombination of processes. Rule (or) is the
choice rule. It allows a transition from p+q to r+q with e if a transition from p to r with e
is possible (resp. from q, by rule (eqv)). Rule (let) implements the scope restriction of a
name x in a process p. We write ex for the context e outside of the scope of x (x 6∈ dom ex,
for all x).

(eqv)

p ≡ p′ e−→ q′ ≡ q

p e−→ q

(or)

p e−→ r

p+q e−→ r+q

(let)

p e−→ q

p/x
ex−→ q/x

Rule (and) implements synchronous composition. It stipulates that the simultaneous tran-
sitions from p to p′ with e and from q to q′ with f are valid iff e and f agree on the
assignment to all signals shared by p and q, as defined by the side-condition. More precisely,
a signal x shared by p and q (x ∈ fv(p)∩ fv(q)) must be simultaneously present or absent in
both p and q (x ∈ dom e ⇔ x ∈ dom f) and, when present (x ∈ dom e ∩ dom f), with the

7

same value (e(x) = f (x)).

(and)
p e−→ p′ q

f−→ q′

p | q e ∪ f−−−−→ p′ | q′
iff ∀x ∈ fv(p) ∩ fv(q),




(x ∈ dom e ⇔ x ∈ dom f)

∧ (x ∈ dom e ∩ dom f ⇒ e(x) = f(x))

Axiom (com) defines the meaning of primitive functions (and, in extenso constants). At
a given transition, an equation (ỹ=fx̃) relates the values d̃ ∈ C∗ carried by the sequence of
input signals x̃ to the values c̃ ∈ C∗ carried by the sequence of output signals ỹ according to a
(possibly partial) function f . A partial map δ defines how primitive functions (e.g. identity,
equality or boolean and integer functions) relates these values:

δ : F ⇀ (C∗ ⇀ C∗)

∀f ∈ dom δ, ∃k, k′ s.t. δ(f) : Ck ⇀ Ck′

If a function f does not return any output value (i.e. δ(f) : Ck ⇀ C0), f implements a guard,
such as when and event. In this case, we write (when x) for (()=when x). If f does not require
any input value (i.e. δ(f) : C0 ⇀ Ck′

), f implements a constant signal, like true and false,
which stands for the boolean constants tt and ff . In this case, we write (x=true) or (x=tt) for
(x=true ()). The silent process 1 is defined by the function which neither defines any output
signal nor requires any input signal (i.e. δ(f) : C0 ⇀ C0). We just write 1 instead of (()=1 ()).

δ(+) = {((c,c′) 7→ (d)) | (c,c′,d) ∈ Z3 ∧ d=c+c′}
δ(id) = {((c) 7→ (c))|c ∈ C}
δ(=) = {((c,c) 7→ (tt))|c ∈ C} ∪ {((c,c′) 7→ (ff))|c 6= c′}

δ(event) = {((c) 7→ ()) | c ∈ C}

δ(when) = {((tt) 7→ ())}
δ(true) = {(() 7→ (tt))}
δ(false) = {(() 7→ (ff))}

δ(1) = {(() 7→ ())}

The side condition of (com) makes the use of δ explicit. It stipulates that the transition
across (ỹ=fx̃) is possible with e iff e is defined for (and only for) ỹ and x̃, and if the values
carried by ỹ and x̃ satisfy δ(f). Notice that e : X ⇀ C∗, and hence, we write e(x̃) for the
sequence (e(x1), . . . , e(xn)) where (x1, . . . , xn) = x̃.

(com) (ỹ=fx̃) e−→(ỹ=fx̃) iff dom e = x̃ ∪ ỹ ∧ δ(f)(e(x̃)) = e(ỹ)

¿From the axiom (com), the transition of guards, constants and silence can easily be deduced.

(z=x+y)

x 7→ c, y 7→ d
z 7→ c+d

−−−−−−−−−−→(z=x+y)

1 ∅−−−→ 1

x=tt x 7→ tt−−−−→x=tt

x=ff
x 7→ ff−−−−−→x=ff

when x x 7→ tt−−−−→when x

event x x 7→ c−−−−→ event x

Notice that (when x) and (x=tt) have the same behavior. However, (when x) only uses the
signal x (it is a control structure) whereas (x=tt) defines the signal x (it is an assignment).

8

Example 2 To manifest the preemption capability of choice and composition in the Ists let
us consider a choice expression where a signal x only appears in one of the alternatives: p ≡
y=x + y=0 and put the expression p in a context p | q such that q ≡ x=1. By definition of the
rule (or), either y=x or y=0 react, assuming an environment e1 such that dom e1 = {x, y}
and e1(y) = e1(x) or producing an environment e2 such that dom e2 = {y} and e2(y) = 0. By
definition of the rule (com), q reacts by emitting the value 1 along x, producing dom f = {x}
and f(x) = 0. Let us consider the possible combinations of these two expressions by the rule
(and). We need to respect the side-condition of that rule, which stipulates that x, the signal
shared by p and q, is present in e iff it is in f . The only choice is e = e1: the presence of x in
the context q has preempted the reaction y=0 in the expression p. Had p been the expression
((y=x+1) + (y=x−1)) then choice in the context q would have been non-deterministic,
allowing either the left or right alternative to be fired.

Axiom (pre) defines the transition that corresponds to evaluating y=(pre c)x. The syntactic
update performed in the axiom allows to load the initial value c in the output signal y and
to simultaneously store the value d carried by the input signal x.

(pre) (y=(pre c)x)
x 7→ d, y 7→ c−−−−−−−−−→(y=(pre d)x)

A summary of the syntax and the operational semantics of Ists is given in appendix A.

2.4 Related models

The synchronous interaction model in the Ists is primarily related to synchronous formalism-
s. It essentially differs from related process calculi such as Sccs [17] in the role played by
absence.

For instance, consider the Sccs process: ā×(a+b̄). If the event ā occurs, the term on the right
has the choice to fire a (and communicate), or to fire b̄. In the Ists, only the first transition
is possible (for the same reason as for example 2): the action b can only be chosen if a (the
other arm of the choice) is absent. This difference reflects the role of absence in synchronous
formalisms. Another example is the process balance: the transition by 1 is possible only if x
is absent. Indeed, if x is absent, then 1 is the only term that can be triggered, since all other
terms assume the presence of x. In other words, the absence of x is the triggering event for
the silent transition 1.

3 Object-orientated aspects

In the previous section, we presented the Ists formalism and the synchronous hypothesis on
which it is founded. In this section, we define its encapsulated version, Objective Signal, and

9

then further augment it with a behavioral inheritance operator. To begin with, the principles
of our synchronous object orientation are explained. Then, encapsulation and inheritance in
Objective Signal are presented.

3.1 Motivations and principles

We essentially aim at defining formal methods enabling the reuse of objects and classes by
employing an inheritance mechanism. This mechanism allows to adapt the behavior of a
class or an object from the outside, without having to rewrite its implementation. Some
important features of the object-oriented paradigm such as polymorphism, first-class objects
and dynamic object creation are absent from our model. Their combination to a synchronous
model of computation would raise issues, such as dynamic memory management, that are
hardly compatible with the requirements of synchronous processes to execute within bound-
ed (a priori predicted) space and time. We hence focus on the more fundamental merits
of the object-oriented approach to provide means to favor the reusability of components
and investigate the addition of encapsulation and inheritance mechanisms in a synchronous
framework.

3.1.1 Objects and synchronous behaviors

An object is usually defined by a set of methods and attributes. Formally, an object is often
represented by a record: an ordered and labeled collection of methods and attributes. The
values associated to the attributes of an object represent its state. Methods enable to read
and/or write the state of an object. The environment of an object is itself composed of
several objects.

In conventional approaches to concurrent object-oriented programming, method calls are
asynchronous. As an example, the next figure shows the interaction of an object, that defines
the attribute mem and a method y, with its environment, which provides the method x.
Calling y (step 1) triggers a call of x (step 2), performs an update of mem when x answers
(step 3), and returns the last value of mem (step 4).

1

2

3

4

c

object

call of x

call of y

x : asynchronous answer d

y : asynchronous answer c

mem :

y() :
aux := mem;
mem := x();
return aux;

environment

In a synchronous approach of concurrency, computation and communication take no time.
From an external point of view, a process p of Objective Signal is characterized by the signals
it defines. The state of p corresponds to the initial values c of delay equations (y=(pre c) x)
occurring in p. The state of the object is modified iff a signal defined by such an equation is
present.

10

The main departure of our framework from asynchronous models to concurrent object-
orientation lies in the synchronization relations between an object and its environment:
a defined signal can only be called (i.e. it is present and its value can be fetched) under
some conditions and by some stimulus. The synchronization relations of an object are given
by the clocks of the signals it involves. Remember that the clock of a signal denotes the
instants at which the signal is present or triggered. Yet, notice that to conform with the
synchronous paradigm, the call (i.e. the trigger) of a signal and its answer (i.e. its reaction)
are simultaneous (computation and communication take no time).

The next figure illustrates the interaction between a process (y=(pre c) x) and its environ-
ment. The picture on the right is a reformulation of the figure on the left which makes the
analogy to the asynchronous interaction explicit.

environment objectobject

x carries d

y carries c
at the same time

(y = (pre c) x) (y = (pre c) x)

environment

call of y, when it is present

x : synchronous answer d

y : synchronous answer c

synchronous call of x

The object-oriented representation of a synchronous process is a record that contains the sig-
nals it defines. At first glance, we need to add an encapsulation mechanism to that structure,
in order to create abstract processes (classes). The defined signals of a synchronous process
p are characterized by clocks (sets of triggering instants) and by the values they carry.

Next, we add inheritance (in the aim of supporting reuse and overriding). For the defined
signals of an object, overriding implies the capability of modifying the result of the signal as
well as its clock. Notice that synchronous composition and choice already (partially) achieve
this requirement. Choice allows to extend a process with a new behavior (i.e. the definition
and the clock of a signal) and synchronous composition allows to constrain a signal with new
synchronization relations.

Still, we need to be able to reset the values carried by a signal. To this end, we introduce an
asymmetric synchronous composition over classes, that enables to override the definition of
a signal and to use its previous definition via the classical notion of super-variable.

3.1.2 Inheritance and static resolution

The Ists formalism, extended with encapsulation and inheritance, aims at melting object
orientation, concurrency and synchronous data-flow within a same formal framework. How-
ever, perfect synchrony incurs strong specification requirements, notably on the resources of
the system (memory size, computation time), which need to be bounded. For that reason, it is
for instance not possible to recursively use a signal without introducing a delay between each
recursive call or to dynamically allocate new resources at runtime. However, the topology of
interaction being known statically enables to check precisely and efficiently the system safe.

11

Hence, in Objective Signal, the creation of an object (using a classical “new” class instan-
tiation statement), builds the object from the model of the class and activates it. As a
consequence, inheritance needs to be resolved statically, which may seem quite restrictive.
However, our aim is less about defining a new model of execution (with resource alloca-
tion) and more on defining a suitable model for the specification of system behaviors using
encapsulation and providing reusability.

3.1.3 Related works

The object-orientation of concurrent calculi has been a widely investigated topic. In [20], Pict,
an object-oriented concurrent language founded on the π-calculus, is presented. It implements
very powerful features like encapsulation, dynamicity and mobility, but its mechanism for
reusability does not implement an inheritance mechanism taking into account compositional
and structural modification of systems. In [9], a static and syntactic-oriented inheritance
mechanism is defined for the Join-Calculus [10].

Objective Signal relates to that approach by adding a similar, syntax-oriented, mechanism
to a synchronous formalism. Different approaches to reactive and synchronous concurrent
objects have also been proposed in [5,6], which do not enables the overriding of the behaviors
of objects.

Instead of adding object-oriented features to a synchronous or asynchronous concurrent for-
malism (such as the π-calculus or the Ists), some further related works have investigated the
extension of object-oriented formalisms with concurrency. Most of the approaches considered
in this field are founded on the object-oriented calculus impς of Abadi and Cardelli [1],
featuring classes, inheritance, prototyping, dynamic creations, subtyping and method specia-
lization. In [11], concς is defined to encompass concurrent objects by including concurrency
operators borrowed to the π-calculus. In [8], concς is further extended with a calculus of
dependent types to analyze and avoid race conditions in concurrent specifications (i.e. the
simultaneous access to the same ressource). The synchronous paradigm on which Objective
Signal is founded does not aim at matching the expressive capability of concς yet casts
encapsulation and behavioral inheritance in a (synchronous) framework were design errors
such as race conditions can easily be analyzed and detected.

3.2 Encapsulation

3.2.1 Overview of encapsulation in Objective Signal

Processes p in Objective Signal are encapsulated within classes C. A class gives the generic
definition of an object that can be instantiated by providing its initial state. In the definition
of a class, a defined signal x (i.e. which appears on the left hand-side of an equation) is
provided by the class. A signal y, which appears on the right hand-side of an equation, is a

12

signal call or signal fetch. The class which provides this signal is identified by a parameter
C ∈ M. Thus, signal calls are prefixed by class parameters: C.y.

A class definition is parameterized by all the classes it uses. Among them, a special class
parameter self refers to the current instance of the class.

Example 3 The class Cbalance is an encapsulation of the process balance. The initial defini-
tion is encapsulated within a structure which specifies its interface: [C] is the class parameter
which provides the signal x used by the balance. The special parameter self refers to the
class Cbalance itself (which provides the signals n and m). The scope of m is restricted to the
definition of the class. m is a private signal.

Cbalance
def
=

[C] .
1 +


(m=(pre 0) self.n)

∣∣∣∣

 (when C.x) | (n=self.m+1)

+ (when (notC.x)) | (n=self.m−1)





 /m




The class Cbalance can only be instantiated if it is given an effective parameter that provides the
signal x. Objects are identified by names o ∈ O and are created by the construct o′ = new C(õ)
where C is a class (e.g. Cbalance) and o′ the name of the instance. Thus, o′ corresponds to the
parameter self. The sequence õ provides the effective parameters required by C (e.g. C).

Objects o, o′ in Objective Signal behave like processes in Ists. They are combined using
synchronous composition o | o′ and choice o+o′. For instance, the following object is composed
of two sub-objects. The first one (named balance) is an instance of the class Cbalance. Its
creation requires an object env which provides the signal x. balance and env are connected by
synchronous composition.

Cenv
def
= [].[1+(x=tt)+(x=ff)]

balance = new Cbalance(env) | env = new Cenv()

3.2.2 Formal syntax

We formally introduce the encapsulated Objective Signal. There are two grammars in this
extended formalism. The first rule correspond to Ists processes p where instantiated behav-
iors can be specified. The second rule C corresponds to class definitions where abstracted
behaviors can be specified.

The first rule extends the grammar of Ists with the class instantiation statement o′ =
new C(õ) presented in the previous example. As the target of a signal call x is an object o,

13

signal names x ∈ X now appear as instantiated paths o.x ∈ (O × X).

p, q ::= p | q | p+q | p/m | m̃=fm̃′ | m=(prec)m′ | o′ = new C(õ) (instantiated process)

m ::= o.x (instantiated path)

o ∈ O (object name)

Classes C consist of an interface where class parameters are declared, and an abstract be-
havior pa is defined (for “abstract p”). In these abstract behaviors, signal names x ∈ X on
the right hand-side of equations are replaced by abstract paths C.x ∈ (M×X). An abstract
path C.x denotes the call to a signal x of the class parameter C. The path self.x refers to the
signal x of the current class. A signal name x appearing on the left hand-side of an equation
is a defined signal. It implicitly refers to the abstract path self.x.

C ::= [C̃].[pa] (class)

pa, qa ::= pa | qa | pa+qa | pa/x | ỹ=fñ | y=(prec)n (abstract process)

n ::= C.x (abstract path)

C ∈ M 3 self (class parameter)

The notations for the free and defined signals of processes (fv(p) and dv(p)) are extended to
objects and classes in order to take paths pa into account. In the remainder, we exclusively
consider classes that are well-formed, i.e. classes [C̃].[pa] such that C.x ∈ fv(pa) ⇒ C ∈ C̃.

Notice that, in the grammar p, some non-instantiated classes may coexist with instantiated
ones. When a reaction containing an object declaration o′ = new C(õ) is triggered, a new
instance of C (i.e. a process that corresponds to the definition pa) is created. Names and
paths of the original definition are substituted by the effective parameters õ and o′. In the
following example, abstract paths are substituted by instantiated paths.

o′ = new

[C] .


 (x=C.x+1)

| (y=self.x−1)


 /x



(

o
)

;


 (o′.x=o.x+1)

| (o′.y=o′.x−1)


 /o′.x

The renaming of signals and paths is achieved by a syntactic operator bindo
σ which selec-

tively applies a substitution σ to the class parameters that appear on the right hand-side of
equations (signal calls), and changes each defined signal x into a path o.x. Here, the name o
corresponds to the name of the current instance. We write o.ỹ for the tuple (o.y1, . . . , o.yn)

14

where (y1, . . . , yn) = ỹ.

bindo
σ(pa | qa) = bindo

σ(pa) | bindo
σ(qa)

bindo
σ(pa+qa) = bindo

σ(pa)+bindo
σ(qa)

bindo
σ(pa/x) = (bindo

σ(pa))/o.x

bindo
σ(ỹ=fñ) = (o.ỹ=f(ñσ))

3.2.3 Operational semantics

We define the operational semantics of the encapsulated processes p. The core operational
semantics of Ists remains unchanged: we just need to additionally take instantiated paths
o.x into account (instead of simply signal names x). Thus, an environment e is now a partial
function from paths to constants:

e, f ∈ E = (O × X) ⇀ C∗ (environment)

The creation of a class instance occurs at run time, when a reaction containing an object
definition is triggered. We need to introduce a rule for that purpose. It simply applies the
renaming mechanism on the definition pa of a class. The name o′ of the created object is
substituted to the parameter self. The effective parameters õ are substituted to the class
parameters C̃.

(inst)
bindo′

[o′õ/selfC̃](pa)
e−→ p

o′ = new [C̃].[pa](õ)
e−→ p

3.3 Inheritance

3.3.1 Overview of Objective Signal

We now complete the definition of Objective Signal with an inheritance operator over classes.
Using the notion of wrapper class, this construct allows to synchronously add new signals to
a class and to refine or adapt existing ones, compositionally. When a signal defined in the
wrapper is also defined in the class it is applied to, the new definition prevails. Still, it is
possible to refer to the initial one thanks to the super-class: the parameter super.

Example 4 We wish to modify the class Cbalance in order to incorporate a reset signal r
(provided by the class that defines x). The signal r can be invoked only if x is present.
It is used to reset the balance to 0. The state of Cbalance is managed by a private signal m.
Implementing this upgrade without inheritance would break encapsulation. Using inheritance,

15

it amounts to adding a wrapper (on the right hand-side) to the initial class as follows:

Cresettable balance
def
=

[C] .
1 +


(m=(pre 0) self.n)

∣∣∣∣

 (when C.x) | (n=self.m+1)

+ (when (not C.x)) | (n=self.m−1)





 /m




&

[C ′] . [] .

1 + (n=super.n) +




(event super.n)

| (event C ′.r)

| (n=0)







As its syntax suggests, inheritance & is basically a sort of oriented (and non commutative)
synchronous composition. There are two parts in the interface of a wrapper. The first part
([C ′] in the example) enables to reuse the parameters of the initial class ([C] of Cbalance). The
second part possibly introduces new parameters ([] in the example: no new parameters).

Stuttering is still enabled by the wrapper (reaction 1). The second reaction (n=super.n) is
enabled if and only if r is absent: it can be triggered in a context that provides values for
(and only for) n and super.n (recall example 2). In particular, the presence of r (referenced
in the third reaction of the process) inhibits the reaction (n=super.n). Hence, if r is absent,
the second reaction is triggered and the previous version of n prevails.

The third reaction specifies that n provides 0 instead of super.n when r, provided the class by
C ′ (alias C) is present. We introduce a renaming scheme to merge Cbalance and its wrapper
into a unique base class. Cresettable balance is then equivalent to the following class:

Cresettable balance ≡
[C] .





1 +


(m=(pre 0) self.n)

∣∣∣∣

 (when C.x) | (n′n′n′=self.m+1)

+ (when (notC.x)) | (n′n′n′=self.m−1)





 /m

∣∣∣∣

1 + (n=self.n′n′n′) +




(event self .n′n′n′)

| (event C.r)

| (n=0)







/n′n′n′




Renaming in the initial class and the wrapper is selective. The signal n is overridden. In order

16

to enable the coexistence of its initial definition and its new one within a same structure, n
is changed into a new name n′n′n′ (whose scope is restricted), only where it is initially defined.
Where n is only used (in the definition of m), n remains unchanged. Thus, the signal m still
maintains a delayed version of (the new version of) n.

The reactions added by the wrapper are also adapted. The previous references to the “super”
signal n are changed into references to the “self” signal n′n′n′. Finally, the parameters C and C ′

are unified in the global structure under the name C. The signals x and r are now provided
by the same class C.

Notice that it is not possible to extend the initial behavior just by adding a reaction outside
the scope of m, because when n is reset to 0, m must register it. It is therefore not possible
to achieve the modification without inheritance, or without breaking the encapsulation.

To create an instance of the modified class, we must extend its environment with the signal r.
Consider the following process:

Cenv
def
= [].

[
1 +

(
(x=tt)+(x=ff)

)
|
(
(r=tt)+1

)]

resettable balance = new Cresettable balance(env) | env = new Cenv()

A possible sequence of values of the signals x, m, n and r in time is depicted by the following
execution trace. Boxed values indicate which signals are taken into account in the definition
of n. The signal r has a preemptive power on x. When it is present, the previous value of n
is ignored and n is reset to 0.

input : x ff ff tt ⊥ ff tt tt tt . . .

input : r ⊥ tt ⊥ ⊥ ⊥ tt ⊥ ⊥ . . .

private : m 0 −1 0 ⊥ 1 0 0 1 . . .

private : n′n′n′ −1 −2 1 ⊥ 0 1 1 2 . . .

public : n −1 000 1 ⊥ 0 000 1 2 . . .

3.3.2 Formal syntax

The definition of a wrapper uses the parameters self and super. They respectively refer
to the whole modified class and to the initial class modified by the wrapper. Among the
other parameters of a wrapper, it is necessary to distinguish between the parameters that
are already used in the initial class (first part of the interface), and the new parameters
introduced by the wrapper (second part of the interface). In the previous example, the
wrapper reuses the parameter C of balance. Thus, as expected, the signals x and r are
provided by the same object. We could have specified a new parameter in the second part of

17

the interface in order to let the signals r and x be provided by potentially different classes.

[C̃r].[C̃].[pa] (wrapper)

Wrappers can be considered as a general form of class. Indeed, a base class can be seen as
a wrapper which neither uses the parameters of the initial class (C̃r = ()), nor the reference
super in its definition:

[C̃].[pa]
def
= [].[C̃].[pa] and ∀x ∈ X , super.x /∈ fv(pa) (base class)

The following syntax extends second level (classes) of the encapsulated Ists with wrappers
and inheritance:

C ::= [C̃r].[C̃].[pa] | C&C′ (class)

pa, qa ::= pa | qa | pa+qa | pa/x | ỹ=fñ | y=(prec)n (abstract process)

n ::= C.x (abstract path)

C ∈ M ⊃ {super, self} (class parameter)

3.3.3 A spatial version of the method lookup algorithm

In classical object oriented programming languages like SmallTalk, the semantics of inher-
itance is given by the method lookup algorithm. When a method is called, its definition is
looked up in the receiving class. If it is not found, the search starts again in its super class.
When a method uses another method of the same class (reference to this) the search starts
in the current class. When a method of the overridden class is called, the search start in the
super class. In Objective Signal, a class C can be built incrementally using inheritance:

C
def
= C1&C2& . . .&Cn

The call of a signal x initially (and only) defined in C1 triggers a signal lookup mechanism
based on the same classical principle of object-oriented programming. However, thanks to
the synchronous hypothesis, the signal lookup is synchronous to the call! Thus, the temporal
iteration of the classical method-lookup algorithm is replaced by a spatial one. We introduce
a syntactic operator called lookup which aims at deploying the classes C1 . . . Cn in a unique
base class.

Along the way, the defined signals and their different overridden versions coexist after a spe-
cific renaming. This renaming is achieved by using a substitution mechanism and a selective
application operator L. Let C1 be a base class and pa its definition. Let C2 be a wrapper
and qa its definition. If a signal x of C1 (i.e. x ∈ dv(pa)) is overridden in C2 (i.e. x ∈ dv(qa)),
the occurrences of x in pa are replaced with a fresh name. This renaming is achieved by the

18

following substitution:

βpaqa :




dom βpaqa = dv(pa) ∩ dv(qa)

∀x ∈ dom βpaqa , xβpaqa = x′ /∈ dv(pa) ∪ dv(qa)

However, this substitution must be selectively applied. Indeed, the calls must remain un-
changed, and now, they refer to the new version of the signal. For that purpose, we use the
following operator:

Lβ (pa | qa) = Lβ(pa) | Lβ(qa)

Lβ (pa+qa) = Lβ(pa)+Lβ(qa)

Lβ(pa/x) = Lβx (pa) /x

Lβ(ỹ=fñ) =
(
(ỹβ)=fñ

)

A wrapper can modify another wrapper. The syntactic operator lookup unifies the interfaces
of two base classes (and/or wrappers) and applies L on them. In the result, the overridden
(i.e. renamed) signals are restricted locally.

lookup


 [C̃r1] . [C̃1] . [pa]

& [C̃r2] . [C̃2] . [qa]




= [C̃r1] . [C̃1C̃2] .



 Lβpaqa

(pa)

| qa[C̃r1C̃1/C̃r2][self.(xβpaqa)/super.x]


 /im βpaqa




The initial class (which can itself be a wrapper as well) uses the parameters C̃1 and reuses
the parameters C̃r1. The last ones refer to the parameters of the class that the wrapper is
supposed to modify. C̃1 and C̃r1 can be reused (via the alias C̃r2) in the wrapper of the
wrapper. In the result, C̃r1 remains unchanged. The parameters C̃1 of the initial class and
the parameters C̃2 of the wrapper refer to the classes used in the top-level class. Then, they
both appear in the interface of the result. The initial definitions pa and qa are synchronously
composed. Lβpaqa

is applied on pa to rename overridden definitions but not their calls. In qa,

the parameters of the initial class C̃r1C̃1 replace the corresponding parameters C̃r2 in the
wrapper. The previous versions of overridden signals super.x are replaced by their new names
xβpaqa in the global component, now referred to as self. All these new names (im βpaqa) are
restricted to the definition of the new class.

Most of the time, the modified class is not a wrapper and its wrapper does not introduce any
new parameter. In this case, C̃r1 = () and C̃2 = (). The wrapping of this class naturally yields

19

to another base class with the same interface (as in the previous example Cresettable balance):

lookup


 [C̃1] . [pa]

& [C̃r2] . [] . [qa]




= [C̃1] .


 Lβpaqa

(pa)

| qa[C̃1/C̃r2][self.(xβpaqa)/super.x]


 /imβpaqa




On more complex classes, the lookup operator is applied recursively. Base classes and base
wrappers are kept unchanged by it.

lookup (C&C′) = lookup (lookup(C)&lookup(C′))

lookup(C) = C (with C: base class)

3.3.4 Operational semantics

To define the rule for the resolution of inheritance at runtime, we upgrade the rule (inst) by
adding the renaming mechanism on the given class C. The rule can be applied only if the
result of lookup is a base class.

(inst)
lookup(C) = [C̃].[pa] bindo′

[o′õ/selfC̃](pa)
e−→ p

o′ = new C(õ) e−→ p

A summary of the syntax and the operational semantics of Objective Signal is given in
appendix B

3.3.5 Static resolution of naming

The formalism upon which our object-oriented language is built is first-order: the object
network’s topology doesn’t evolve during execution. Thus, it is possible to detect synchro-
nization constraints between different system components statically. Hence, it is possible to
detect and resolve inheritance statically. We introduce a compilation technique from a Ob-
jective Signal process p to a base Ists process JpK that preserves behavioral equivalence. The
translation consists of globally applying the operators lookup and bind on p and of performing
a substitution σ : (O × X) → X in order to change instantiated paths into original signal

20

names: ∀o.x ∈ (O × X), ∀o′.x′ ∈ (O ×X), (o 6= o′) ∨ (x 6= x′) ⇒ (σ(o.x) 6= σ(o′.x′)).

Jo′ = new C(õ)K = Jo′ = new lookup(C)(õ)Kr
o′ = new [C̃].[pa](õ)

z
=

r
bindo′

[o′õ/selfC̃](pa)
z

Jm̃ = fm̃′K = (m̃σ = fm̃′σ)

Jp | qK = JpK | JqK
Jp+qK = JpK+ JqK
Jp/mK = JpK /(mσ)

As the same syntactic operators are used, we naturally obtain the following result:

Theorem 1

p e−→ q ⇔ JpK eσ−−→ JqK

Proof sketch The proof, detailed in [14], is by induction on the structure of synchronous
systems. The rules of the Ists and its object-oriented version are quite similar, modulo
renaming by σ.

Let us consider the base case p : m̃ = fm̃′ and suppose that p e−→ q. Rule (com) applies and
requires q to have the form m̃ = fm̃′ and e be such that dom e = m̃∪ m̃′ and δ(f)(e(m̃′)) =
e(m̃). Let σ : (O×X) → X be the substitution specified by the translation scheme. We have
that:

∀m, m′, m 6= m′ ⇒ mσ 6= m′σ

Using this substitution on instanciated paths, we obtain:

(m̃σ=fm̃′σ) eσ−−→(m̃σ=fm̃′σ)

where dom eσ = m̃σ∪m̃′σ ⊂ X . According to the translation scheme, we have: JpK eσ−−→ JqK.
The case of the base process (m = (pre c) m′) is similar. In cases where processes are
composed of several (structurally) simpler processes, we just need to invoke an induction hy-
pothesis. We detail such induction steps for the case analysis of the synchronous composition
(p | q) and of the class instanciation (o′ = new C(õ))

21

Consider the process p : o′ = new C(õ) and suppose that p e−→ q. Rule (inst) applies and
initiates the following proof sequence:

p e−→ q ⇔ lookup(C) = [C̃].[pa] ∧ bindo′
[o′õ/selfC̃](pa)

e−→ q rule (inst)

⇔ lookup(C) = [C̃].[pa] ∧
r
bindo′

[o′õ/selfC̃](pa)
z

eσ−−→ JqK induction

⇔ lookup(C) = [C̃].[pa] ∧
r
o′ = new [C̃].[pa](õ)

z
eσ−−→ JqK translation scheme

⇔ Jo′ = new lookup(C)(õ)K eσ−−→ JqK
⇔ Jo′ = new C(õ)K eσ−−→ JqK translation scheme

⇔ JpK eσ−−→ JqK definition of p

Consider the process (p | q) and suppose that (p | q) e−→ p′. Rule (and) applies and provides
the following proof sequence:

(p | q) e−→ p′ ⇔ p
e1−−→ p1 ∧ q

e2−−→ p2 ∧ e = e1 ∪ e2 ∧ p′ = (p1 | p2) ∧

∀m ∈ fv(p) ∩ fv(q),

∣∣∣∣
(m ∈ dom e1 ⇔ m ∈ dom e2) ∧
(m ∈ dom e1 ∩ dom e2 ⇒ e1(m) = e2(m))

rule (and)

⇔ JpK e1σ−−−→ Jp1K ∧ JqK e2σ−−−→ Jp2K ∧ e = e1 ∪ e2 ∧ p′ = (p1 | p2) ∧

∀m ∈ fv(p) ∩ fv(q),
∣∣∣∣
(m ∈ dom e1 ⇔ m ∈ dom e2) ∧
(m ∈ dom e1 ∩ dom e2 ⇒ e1(m) = e2(m))

induction

According to the translation scheme, Jp′K = Jp1 | p2K = Jp1K | Jp2K. By application of σ, we
have:

eσ = e1σ ∪ e2σ

Using the fact that fv(JpK) = fv(p)σ, and by application of the above induction hypothesis,
we obtain that, for all x ∈ fv(JpK) ∩ fv(JqK),

(x ∈ dom e1σ ⇔ x ∈ dom e2σ)

and also

(x ∈ dom e1σ ∩ dome2σ ⇒ e1σ(x) = e2σ(x))

Now, by definition of the rule (and), we obtain:

(p | q) e−→ p′ ⇔ (JpK | JqK) eσ−−→ Jp′K rule (and)

⇔ (Jp | qK) eσ−−→ Jp′K translation scheme

2

22

+onhook()
+offhook()
+dial(v:Number)
+call(v:Number)
+hangup(v:Number)
+progress(v:Number)
+established(v:Number)

−id : Number
−peer : Number

11

+dialtone()
+audiblering()
+stopaudiblering()
+ring()
+stopring()
+busytone()

Network

+call(from:Number,to:Number)
+hangup(from:Number,to:Number)
+progress(from:Number,to:Number)
+established(from:Number,to:Number)

User Telephone

+user +telephone

*
Number

1

+network

+telephone

Fig. 1. Class diagram of the POTS

4 Case study: the Plain Old Telephone Service

This section aims at considering a real-world case-study that was pertinently suggested
in [7] to advocate the benefits of object-oriented synchronous approach to the design of
distributed reactive systems in Uml. We use the Uml specifications from [7] (figures 1, 3
and 2) to support our case study, showing the benefits of the notion of encapsulation and of
the operator of behavioral inheritance provided by our synchronous model of computation.

4.1 Specification

4.1.1 The Plain Old Telephone Service

The Uml class diagram of figure 1 depicts a simplified telecommunication system comprising
terminals, subscriber-line management and network: a so-called “plain old telephone service”
(POTS). The Telephone class is characterized by id, the number of the current instance,
and by peer, the number of the called instance. Its methods implement the basic use of a
telephone by a user (offhook, onhook and dial) and by the network (call, hangup, established
and progress). The state diagram of figure 3 describes the behavior of a telephone. The two
main sub-states of the diagram describe the behavior of a telephone when it is activated by

unique unique

uniqueunique

call(u,v) /

progress(u,v) /

established(u,v) /

hangup(u,v) /

telephone[v].call(u)

telephone[v].progress(u)

telephone[v].established(u)

telephone[v].hangup(u)

Fig. 2. State diagram of class Network

23

idle

call(u) / peer := u;

user.ring();

network.progress(id,peer)

hangup(u) [u=peer] /

user.stopring()

onhook() /

network.hangup(id,peer)

ringing

hangup

established

offhook() /

network.established(id,peer)

hangup(u) [u=peer] /

user.busytone()

busy

offhook()

/

user.dialtone()

network.hangup(id,peer)

onhook() /

call(u) /

network.hangup(id,u)H

H
call(u) /

network.hangup(id,u)

established(u)

[u=peer] /

user.stopaudiblering()

progress established

not_busy

onhook()

called

hangup(u) [u=peer] /

user.busytone()

dialing

calling

onhook() /

dial(v) /

peer := v;

network.call(id,v)

progress(v)

user.audiblering()

dial(v) / network.call(id,v); hangup(v); user.busytone()

Fig. 3. State diagram of class Telephone

the network (state “called”), or by the user (state “calling”). In both cases, a new incoming
call implies a hangup message to the caller. Also in both cases, the telephone is set back
into its initial state (“idle”) when the user hangs up (onhook). The state diagram of figure 2
describes the behavior of a basic network. An incoming message (call, hangup, established
and progress) of a telephone identified by “u” is simply routed toward the corresponding
telephone identified by “v”.

4.1.2 Service adaptation: call forward on busy

Suppose that we wish to upgrade the POTS with a forwarding service (“call forward on
busy”). It enables to forward an incoming call to a given number when the phone is busy
instead of just returning a hangup message to the caller. Such a service adaptation implies
the modification of Telephone and Network.

In the remainder of this section, we describe the expected modifications of the initial spec-
ification (depicted in figures 4, 5 and 6), and then we show how the inheritance operator
achieves these modifications without breaking encapsulation.

There is a new attribute called fwd in Telephone. It contains the predefined number to
which a call has to be forwarded when the user is busy. New methods forward in Telephone

24

1

+dialtone()
+audiblering()
+stopaudiblering()
+ring()
+stopring()
+busytone()

Network

+call(from:Number,to:Number)
+hangup(from:Number,to:Number)
+progress(from:Number,to:Number)
+established(from:Number,to:Number)

User

+user
Number

1

+network

+telephone

1

−id : Number
−peer : Number

−fwd : Number

+onhook()
+offhook()
+dial(v:Number)
+call(v:Number)
+hangup(v:Number)
+progress(v:Number)
+established(v:Number)

+forward(v:Number,to:Number)

+telephone

*

Telephone

+forward(from:Number,to:Number,fwd:Number)

Fig. 4. Class diagram of the modified POTS

and Network implement the “call forward on busy” service. In Telephone, when the user
dials a number, there is now a third state transition (toward “forwarded”). It corresponds to
the answer forward(v, w) of the network. In this case the telephone dials itself the number w.
For that purpose, it uses the attribute selfdial (in state “forwarded”) exactly as the parameter
v of call(v) in state “dialing”. The class Network is also modified to take into account a
new incoming message forward. This message is a request from “u” for forwarding the caller
“v” to “f”. This request is routed by the network toward the corresponding telephone “v”.
The figures 4, 5 and 6 show these modifications. In figure 5, the highlighted parts in gray
point out the modifications. Two hangup messages have been preserved (boxed labels) when
the user hangs up (onhook).

4.2 Synchronous adaptation

We obviously wish to achieve the service adaptation without breaking encapsulation, i.e. with-
out rewriting Network and Telephone. We investigate the synchronous adaptation of Tele-
phone using the inheritance mechanism shown in the previous section. First, we briefly
describe the translation of a Statechart to an encapsulated Objective Signal process.

4.2.1 Statecharts encoding

For more readability, we do not take into account the “AND” super-states. Thus, a reaction
of the system corresponds to a unique transition within the global Statechart. The behavior
specified by a Statechart can then be described in Objective Signal by a choice between
several transitions.

Current state The signals state and last state carry the name of the current state and the
name of the last state. The clock of these synchronized signals defines the rate of the whole
process. We only consider the name of the current activated basic states (e.g. “progress”)
and not the nesting super states (e.g. “not busy” or “calling”). This is allowed since only
one basic state can be activated at a time (in the absence of “AND” super-states). Thus,

25

state is present at each transition, and last state is defined as follows (i stands for the initial

network.progress(id,peer)

hangup(u) [u=peer] /

user.stopring()

onhook() /

network.hangup(id,peer)

ringing

hangup

established

offhook() /

network.established(id,peer)

hangup(u) [u=peer] /

user.busytone()

offhook()

/

user.dialtone()

network.hangup(id,peer)

onhook() /

H

dial(v) /

peer := v;

network.call(id,v)

progress(v)

user.audiblering()

user.ring();

call(u) / peer := u;

idle

established(u)

[u=peer] /

user.stopaudiblering()

progress established

not_busy

H

busy

call(u) /

network.forward(id,u,fwd)

network.forward(id,u,fwd)

call(u) /dial(v) / network.call(id,v); hangup(v); user.busytone()
calling

dialing

user.busytone()

hangup(u) [u=peer] /

onhook() /

onhook()

called

dial(v) /
/ peer := selfdial; network.call(id,selfdial)

selfdial := w

 progress(selfdial); user.audiblering()

/ network.call(id,selfdial)

forward(selfdial,w)
selfdial := w

forward(v,w)

/ network.call(id,selfdial); hangup(selfdial); user.busytone()

network.call(id,v)

forwarded

Fig. 5. State diagram of the modified class Telephone

unique unique

uniqueunique

unique

hangup(u,v) /
telephone[v].hangup(u)

forward(u,v,f) /
telephone[v].forward(u,f)

call(u,v) /

progress(u,v) /

established(u,v) /

telephone[v].call(u)

telephone[v].progress(u)

telephone[v].established(u)

Fig. 6. State diagram of the modified class Network

26

state: idle in our example):

last state=(pre i) self.state

Activated states For each state a (base state or not), we introduce a signal from a that
is synchronous with state. It indicates whether a is activated (or contains an activated sub-
state) just before a transition. In the case of a basic state, we just have to check last state.
In the case of a super-state, we use a logical “OR” between the sub-states:

cb

a

a

from a = (self.last state = a)

from a = (self.from b ∨ self.from c)

Initial states For each state a, we introduce a signal init a that is synchronous with state.
It carries the name of the starting sub-states:

cb

a

a

init a = a

init a = self.init b

Historic The transition to the special (history) state H is encoded by a signal h a that is
synchronous with state, for each state a. If a is activated, then h a is updated by last state.
Otherwise, the previous value of h a is kept unchanged thanks by using a delayed version
zh a of h a.


 (zh a=(pre a) self.h a)

∣∣∣∣

 (h a=self.last state) | (when self.from a)

+ (h a=self.zh a) | (when(not self.from a))





 /zh a

Transitions A transition labeled by c from a to b corresponds to an update of state. If
the target of the transition is the history state H , the new state is h b. This transition is
guarded by JcK, the encoding of the label c.

27

ba
c

(when self.from a) | JcK | (state = self.init b)

a
c

H

(when self.from a) | JcK | (state = self.h b)

Labels of transitions The labels of the transitions correspond to synchronous constraints
(signal calls) and to definitions of local signals.

Jc/c′K = Jc; c′K = JcK | Jc′K
The definition of a variable is encoded by the definition of a local signal, and the call of a
method is encoded by the definition of its parameters. The translation of guards is straight-
forward.

Jx := f(ỹ)K = (x=f ỹ) Jm(ỹ)K = (ỹ=m) J[condition]K = (when condition)

4.2.2 Call forward on busy

We focus on the translation of Telephone and its upgrade via inheritance. Assume that
ptel is the abstract behavior of the Telephone built using the translation scheme previously
presented. Then, the class Telephone has the following interface:

Telephone
def
= [user, net].[ptel]

The parameters user and net stand for the instance of User and Network required by the
class diagram of figure 1.

Now, let us define the wrapper CallForward of Telephone to implement service adaptation
without breaking encapsulation. We need to introduce the new state “forwarded”. Thus, the
signal state needs to be overridden. As in the example of the balance, the signal last state now
maintains a delayed version of the new version of state. The wrapper is a choice between the
initial behavior and the new transitions to and from the state “forwarded”. In the follow-
ing definition of CallForward, we only make the transition from “dialing” to “forwarded”

28

explicit. The other transitions have a similar encoding:

CallForward
def
=

[user, net].[].


(
state=super.state

)

+




(
(x=(super.last state = dialing)) | (when self.x)

)
/x

| state=forwarded

| v=self.dial

| (id, v)=net.call

| (u, w)=self.forward

| selfdial=self.w




+ . . .




This wrapper overrides the signal state. The first branch of the choice allows to reuse the
previous behavior of Telephone, only when the signals introduced in the other choices
of the wrapper, namely forward, are absent. When forward is present, the new definition
of state prevails (preemption). In this case, the last state must be “dialing” and the new
state is “forwarded”. The interface of CallForward holds the parameters user and net,
which correspond to the same parameters as in the Telephone. Finally, the modification of
Telephone by CallForward is simply achieved as follows:

NewTelephone
def
= Telephone&CallForward

5 Conclusion

There has been a lot of work aiming at combining object orientation and concurrency, espe-
cially within the framework of practical object-oriented languages like Eiffel [15,2]. However,
our work aims at combining the notions of encapsulation and of inheritance found in object-
oriented programming to a concurrency model that supports formal methods for modeling,
verification and valid code generation purposes. To this end, many different approaches have
already been considered for introducing object-oriented concepts in algebraic models of con-
currency . In [18], Pierce and Turner introduce a simple object-based programming style in
Pict, an implementation of the π-calculus. In Pict, objects are units of concurrency com-
posed of several communicating agents. Objects in Pict aim at structuring a system, like
modules (yet without functors). They encompass mobility but do not implement inheritance
or overriding. A type-based notion of behavioral refinement of processes in Pict is obtained
by superimposing a type inference system with subtyping to the process calculus. In [9], Four-
net et al. propose an object-oriented extension of the join-calculus. A class-based inheritance
mechanism is introduced that avoids the inheritance anomaly. In [5,6], Boussinot and Laneve

29

introduce an object-based reactive language. A notion of global instants is introduced. The
same method cannot be executed more than once in the same instant. It is possible to clone
an object, to add a method to an object and to rename a method. These operations imple-
ment a “derivation” mechanism rather than a “behavioral inheritance” mechanism stricto
senso. For instance, if a modified object uses a currently overridden method, it still uses the
previous version of this method.

In conclusion, we have introduced a new paradigm to express the essence of encapsulation
and inheritance in a synchronous concurrent modeling framework. We introduced Ists and
Objective Signal, an extended version of Ists build upon this paradigm. Reusability of com-
ponents is achieved by an encapsulation mechanism. A static interpretation of inheritance
allows a natural formulation of behavior refinement where overriding is taken into account.
The proposed model supports a compile-time resolution of inheritance: overriding is inter-
preted statically and the inheritance combinator is translated into a primitive synchronous
constructs. The benefits of our approach are illustrated by the adaptation of services to a
plain old telephone service specification.

We implemented a prototype compiler from Objective Signal to Signal based on the trans-
lation schemes from Objective Signal to Ists (presented in this paper) and from Ists to
Signal (presented in [14]). The use of enhanced features of Signal (like modules to imple-
ment encapsulation), and the direct production of executable code from an executable Ists

specification are promising prospects.

References

[1] M. Abadi and L. Cardelli A Theory of Objects Springer-Verlag 1996.

[2] C. Atkinson. Object-Oriented Reuse, Concurrency and Distribution ACM Press and Addison-
Wesley, 1991.

[3] A. Benveniste, P. Le Guernic, C. Jacquemot. Synchronous programming with events
and relations: the Signal language and its semantics. In Science of Computer Programming,
v. 16, 1991.

[4] G. Berry, G. Gonthier. The Esterel synchronous programming language: design,
semantics, implementation. In Science of Computer Programming, v. 19, 1992.

[5] F. Boussinot, C. Laneve. Two Semantics for a Language of Reactive Objects Research
report n. 2511. Inria, March 1995.

[6] F. Boussinot, G. Doumenc, J.-M. Stefani. Reactive Objects Research report n. 2664.
Inria, October 1995.

[7] B. Caillaud, J.-P. Talpin, J.-M. Jézéquel, A. Benveniste and C. Jard BDL: A
Semantics Backbone for UML Dynamic Diagrams Irisa/INRIA Rennes, research report RR-
4003 2000

30

[8] C. Flanagan and M. Abadi Object Types against Races Proceedings International
Conference on Concurrency Theory (CONCUR 99) 1999.

[9] C. Fournet, L. Maranget, C. Laneve, D. Rémy. Inheritance in the Join Calculus.
In Foundations of Software Technology and Theoretical Computer Science. Lecture Notes in
Computer Science v. 1974. Springer, 2000.

[10] C. Fournet and G. Gonthier. The Reflexive CHAM and the Join-CalculusProceedings of
the 23rd ACM Symposium on Principles of Programming Languages 1996.

[11] A. D. Gordon and P. D. Hankin A Concurrent Object Calculus: Reduction and Typing
Proceedings High-Level Concurrent Languages (HLCL 98) 1998.

[12] N. Halbwachs, P. Caspi, P. Raymond, D. Pilaud. The synchronous data-flow
programming language Lustre. In Proceedings of the Ieee, v. 79(9). Ieee, 1991.

[13] D. Harel. Statecharts: a visual formalism for complex systems. In Science of Computer
Programming, v. 8, 1987.

[14] M. Kerbœuf. Orientation objet d’un calcul de processus synchrones. Thèse de doctorat.
Universit de Rennes 1, December 2002.

[15] B. Meyer. Systematic Concurrent Object-Oriented Programming ISE, TR-EI-37/SC” 1993.

[16] R. Milner. The Polyadic π-Calculus: A Tutorial Logic and Algebra of Specification,
Proceedings of International NATO Summer School 1991.

[17] R. Milner. Communicating and Concurrency Prentice-Hall International 1989.

[18] B.C. Pierce, D.N. Turner Concurrent Objects in a Process Calculus In Proceedings Theory
and Practice of Parallel Programming (TPPP 94) pp. 187-215. Takayasu Ito and Akinori
Yonezawa, 1995.

[19] Pnueli, A., Shankar, N., Singerman, E. Fair synchronous transition systems and their
liveness proofs. In International School and Symposium on Formal Techniques in Real-time
and Fault-tolerant Systems. Lecture Notes in Computer Science v. 1468. Springer Verlag, 1998.

[20] B. C. Pierce and D. N. Turner Concurrent Objects in a Process Calculus Proceedings
Theory and Practice of Parallel Programming (TPPP 94) 1994.

[21] J.-P. Talpin. Model checking robustness to desynchronization. In Distributed and parallel
embedded systems, IFIP World Computer Congress. Kluwer Academic Publishers, August 2002.

31

A Implicit synchronous transition systems

A.1 Syntax

A.1.1 Kernel

p, q ::= ỹ=fx̃ (equation)

| y=(pre c)x (transition)

| p | q (composition)

| p+q (choice)

| p/x (restriction)

c, d ∈ C = B + Z (constant)

f, g ∈ F (function)

x, y ∈ X (signal)

(x1, . . . , xk) ∈ X k (sequence)

x̃ ∈ X ∗ =
⋃

k∈N
(
X k

)

A.1.2 Derived processes

(guards) (when x)
def
= (()=when x)

(when(not x))
def
= (()=when(not x))

(event x)
def
= (()=event x)

(constants) (x=tt)
def
= (x=true ())

(x=ff)
def
= (x=false ())

(x=n)
def
= (x=n ()) (∀n ∈ Z)

(silence) 1
def
= (()=1 ())

A.2 Algebraic laws

fv(ỹ = fx̃) = ỹ ∪ x̃

dv(ỹ = fx̃) = ỹ

fv(p+q) = fv(p | q) = fv(p) ∪ fv(q)

dv(p+q) = dv(p | q) = dv(p) ∪ dv(q)

fv(p/x) = fv(p) \ {x}
dv(p/x) = dv(p) \ {x}

p/y≡(p[x/y])/x(∗)

p/x/y≡p/y/x

p | q/x≡(p | q)/x(∗)

p | (q | r)≡(p | q) | r
p+(q+r)≡(p+q)+r

p+q/x≡(p+q)/x(∗)

p+q≡q+p

p | q≡q | p
p | 1≡p+p ≡ p

p/x≡p(∗)

32

A.3 Operationnal semantics

A.3.1 Environment and predefined functions

e, f ∈ E = X ⇀ C∗ (environment)

δ : F ⇀ (C∗ ⇀ C∗) (predefined functions)

∀f ∈ dom δ, ∃k, k′ s.t. δ(f) : Ck ⇀ Ck′

δ(+) = {((c,c′) 7→ (d)) | (c,c′,d) ∈ Z
3 ∧ d=c+c′}

δ(id) = {((c) 7→ (c))|c ∈ C}
δ(=) = {((c,c) 7→ (tt))|c ∈ C} ∪ {((c,c′) 7→ (ff))|c 6= c′}

δ(event) = {((c) 7→ ()) | c ∈ C}

δ(when) = {((tt) 7→ ())}
δ(true) = {(() 7→ (tt))}
δ(false) = {(() 7→ (ff))}

δ(1) = {(() 7→ ())}

A.3.2 Rules and axioms

(eqv)

p ≡ p′ e−→ q′ ≡ q

p e−→ q

(or)

p e−→ r

p+q e−→ r+q

(let)

p e−→ q

p/x
ex−→ q/x

(and)
p e−→ p′ q

f−→ q′

p | q e ∪ f−−−−→ p′ | q′
iff ∀x ∈ fv(p) ∩ fv(q),




(x ∈ dom e ⇔ x ∈ dom f)

∧ (x ∈ dom e ∩ dom f ⇒ e(x) = f(x))

(com) (ỹ=fx̃) e−→(ỹ=fx̃) iff dom e = x̃ ∪ ỹ ∧ δ(f)(e(x̃)) = e(ỹ)

(pre) (y=(pre c)x)
x 7→ d, y 7→ c−−−−−−−−−→(y=(pre d)x)

33

A.3.3 Axioms derived from (com)

(z=x+y)

x 7→ c, y 7→ d
z 7→ c+d

−−−−−−−−−−→(z=x+y)

1 ∅−−−→ 1

x=tt x 7→ tt−−−−→x=tt

x=ff
x 7→ ff−−−−−→x=ff

when x x 7→ tt−−−−→when x

event x x 7→ c−−−−→ event x

B Objective Signal

B.1 Syntax

p, q ::= p | q | p+q | p/m | m̃=fm̃′ | m=(prec)m′ | o′ = new C(õ) (instanciated process)

m ::= o.x (instanciated path)

o ∈ O (object name)

C ::= [C̃r].[C̃].[pa] | C&C
′ (class)

pa, qa ::= pa | qa | pa+qa | pa/x | ỹ=fñ | y=(prec)n (abstract process)

n ::= C.x (abstract path)

C ∈ M ⊃ {super, self} (class parameter)

B.2 Operationnal semantics

B.2.1 Renaming operators

bindo
σ(pa | qa) = bindo

σ(pa) | bindo
σ(qa)

bindo
σ(pa+qa) = bindo

σ(pa)+bindo
σ(qa)

bindo
σ(pa/x) = (bindo

σ(pa))/o.x

bindo
σ(ỹ=fñ) = (o.ỹ=f(ñσ))

βpaqa :




dom βpaqa = dv(pa) ∩ dv(qa)

∀x ∈ dom βpaqa , xβpaqa = x′ /∈ dv(pa) ∪ dv(qa)

34

Lβ (pa | qa) = Lβ(pa) | Lβ(qa)

Lβ (pa+qa) = Lβ(pa)+Lβ(qa)

Lβ(pa/x) = Lβx (pa) /x

Lβ(ỹ=fñ) =
(
(ỹβ)=fñ

)

lookup


 [C̃r1] . [C̃1] . [pa]

& [C̃r2] . [C̃2] . [qa]




= [C̃r1].[C̃1C̃2] .



 Lβpaqa

(pa)

| qa[C̃r1C̃1/C̃r2][self.(xβpaqa)/super.x]


 /im βpaqa




lookup (C&C′) = lookup (lookup(C)&lookup(C′))

lookup(C) = C (with C: base class)

B.2.2 Rule for class instanciation

(inst)
lookup(C) = [C̃].[pa] bindo′

[o′õ/selfC̃](pa)
e−→ p

o′ = new C(õ) e−→ p

B.3 From Objective Signal to Ists

Jo′ = new C(õ)K = Jo′ = new lookup(C)(õ)Kr
o′ = new [C̃].[pa](õ)

z
=

r
bindo′

[o′õ/selfC̃](pa)
z

Jm̃ = fm̃′K = (m̃σ = fm̃′σ)

Jp | qK = JpK | JqK
Jp+qK = JpK+ JqK
Jp/mK = JpK /(mσ)

Contents

1 Introduction 2

2 A synchronous approach for the design of reactive systems 3

2.1 Synchrony and asynchrony 3

2.2 Synchronous languages 4

35

2.3 A calculus of synchronous processes 4

2.4 Related models 9

3 Object-orientated aspects 9

3.1 Motivations and principles 10

3.2 Encapsulation 12

3.3 Inheritance 15

4 Case study: the Plain Old Telephone Service 23

4.1 Specification 23

4.2 Synchronous adaptation 25

5 Conclusion 29

References 30

A Implicit synchronous transition systems 32

A.1 Syntax 32

A.2 Algebraic laws 32

A.3 Operationnal semantics 33

B Objective Signal 34

B.1 Syntax 34

B.2 Operationnal semantics 34

B.3 From Objective Signal to Ists 35

36

