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Abstract— The growing interest in predictive maintenance 
makes industrials and researchers turning themselves to artificial 
intelligence methods for fulfilling the tasks of condition 
monitoring and prognostics. Within this frame, the general 
purpose of this paper is to investigate the capabilities of an 
Evolving eXtended Takagi Sugeno (exTS) based neuro-fuzzy 
algorithm to predict the tool condition in high-speed machining 
conditions. The performance of evolving Neuro-Fuzzy model is 
compared with an Adaptive Neuro-Fuzzy Inference System 
(ANFIS) and a Multiple Regression Model (MRM) in term of 
accuracy and reliability through a case study of tool condition 
monitoring. The reliability of exTS also investigated. 
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I.  INTRODUCTION 
Monitoring of tool wear to prevent surface damage is one of 
the difficult tasks in the context of tool condition monitoring 
[1]. Currently, a general common approach is to measure 
several process parameters that are indirectly correlated to the 
tool performance, such as cutting force, tool vibration and 
acoustics emissions, transform the measured data into useful 
reference models for condition and performance monitoring. 
Numerous condition monitoring methodologies have been 
proposed and evaluated during the past two decades. Among 
them, Yamaguchi [2] investigated the cutting force and 
acoustic emission (AE) signals to gauge tool life of diamond 
cutting tool; Vallejo Jr [3] presented online monitoring of the 
cutting tool condition based on Hidden Markov Models. 

Fuzzy-logic, neural-network and their combinations like 
Neuro-Fuzzy (NF) networks are widely used in modeling and 
prediction in precision engineering. Haber [4] applied 
intelligent process supervision for predicting tool wear in 
machining processes; and Li et al [5]  applied the adaptive 
neuro-fuzzy inference system (ANFIS) [6]  and wavelet 
transforms to tool condition monitoring. Similar cases are also 
discussed by [1]. A fuzzy-neuro adaptive surface roughness 
control is proposed for the prediction of the surface roughness 
and adaptive feed-rate control [7]. A hybrid Taguchi-genetic 
learning algorithm is used to set up a nonlinear model to 
correlate the surface roughness values with distinct spindle-

speed, feed-rate and depth-of-cut [8]. It is shown that Gaussian 
membership functions are suitable choices for fuzzy layer of 
the network for predicting the surface-roughness in [8][9].  

Although fuzzy neural networks are widely used in 
modeling and prediction in milling machining processes, even 
the most promising methods are not easily adoptable in real 
industrial operations [10][11]  particularly due to insufficient 
generalisation capabilities (e.g. the use is restricted to a 
specific machine tool, only a small range of cutting conditions 
is allowed, or time-consuming ‘teach-in’ cycles are needed) or 
lack of precision. As such, there has been limited report on the 
development of a generic toolkit that provides reference 
models for on-line tool condition monitoring and remain 
useful life prediction.  It is therefore desirable to develop an 
intelligent predictive monitoring system (IPMS) [12][13] with 
capabilities in feature extraction, feature selection, correlation 
modelling, and data clustering for tool condition monitoring, 
non-destructive characterization and tool life span prediction.   

It is not easy to correlate sensory signals with tool 
conditions as each cutter will perform differently in a milling 
process. The technical challenge is to establish a model with 
acceptable repeatability and reliability for correlating signal 
data and the real performance from different cutters and use 
such model to predict cutter health condition and prevent the 
damage on work piece surface.  Neuro-fuzzy (NF) systems are 
a very promising type of machine learning method for being 
used as prediction tools because of their ability to learn from 
examples and to capture unapparent relationships among the 
data.  

This paper focuses on applying Neural-Fuzzy (NF) 
algorithms to tool wear estimation, which is part of an 
approach for monitoring the cutter health condition in a high 
speed milling process. We compared two NF algorithms, exTS 
and ANFIS, on their model accuracy, repeatability and 
reliability when dealing with signal data from 5 ball-nose 
tungsten carbide cutters on a hard to cut material in a 
machining process. The case study allows us to observe the 
predictions capabilities of the NF algorithms in a meaningful 
industrial application.    

II. NEURO-FUZZY ALGORITHMS 
Two commonly used neuro-fuzzy algorithms, ANFIS and 

exTS, are investigated on their model accuracy, repeatability 
and reliability for tool condition monitoring. 
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A. Adaptative Neuro-Fuzzy Inference System (ANFIS) 
First introduced by [14], ANFIS is a straightforward way to 

implement the Takagi-Sugeno fuzzy inference system in a 
neural network structure.  

The ANFIS architecture shown in Fig. 1 comports a neuron 
layer for each of the component needed by the fuzzy inference 
system. The first layer will be dedicated to the membership 
values of the inputs, the second layer will have the firing 
strength value associated to each rule, the third layer compute 
the weight of each rule (normalized firing strengths), the fourth 
layer determine the rule’s value based on the inputs and the last 
layer does the weighted sum to deliver the system’s output. 

 
Fig. 1: ANFIS architecture with two inputs and three membership functions 
per input.  

B. Evolving eXtended Takagi Sugeno (exTS) algorithm 
First presented in [15], The exTS structure as shown in Fig. 

2 is modular and it adapts itself to the process without needing 
a priori knowledge.  

 

 

Fig. 2: The exTS with Condition-Rule modules.  

During its learning phase, the system has to determine the 
rules and update the polynomial coefficients corresponding to 
each rule. For each new training value, the algorithm does two 
update operations:   

The first one is a clustering operation with an aim  to 
determine if the new inputs correspond to an existing condition, 

if they are close from an existing condition or if they are far 
from any existing condition. In the first case, no change is done 
in the model structure; the inputs are in a known configuration. 
In the second case – the inputs are close to an existing 
condition – the membership functions associated with this 
condition are modified. Finally, in the last case, a new 
condition of the process has been discovered, so we have to add 
a new condition - rule module to the structure.  

The second operation consists in adjusting the rules 
parameters. Here again, similarly to the ANFIS algorithm we 
can use a supervised recursive least square method to 
determine them. 

III. CASE STUDY 
A case study of tool wear prediction in high speed milling 
machining process is carried out to evaluate neuro-fuzzy 
modeling accuracy, repeatability and reliability.  

A. Experimental set-up and data acquisition 

A high speed CNC machine (Röders Tech RFM760) was 
selected as a test-bed for the case study. The workpiece 
material used in the machining test is Inconel 718. The 
workpiece was cut off from original stock and its surfaces 
were prepared through face milling to get rid of the original 
skin layer containing hard particles. The surface was then 
machined to have a slope with 60� to accommodate the 3-flute 
ball nose cutter. A Kistler quartz 3-component platform 
dynamometer was mounted between the workpiece and 
machining table to measure the cutting forces in the form of 
Newton, and converted them to voltages by the Kistler charge 
amplifier. A Kistler piezo accelerometer were mounted on the 
workpiece to measure the machine tool vibration during the  
cutting process in X, Y, Z direction, respectively. The cutting 
tools are 5 tungsten carbide ball-nose end mills with the 
operation at a spindle speed of 10,360 rpm, a feed rate of 
1.555mm/min. The cuts generated are 0.125mm wide and 
0.2mm deep. Fig. 3 illustrates the experimental setup. 

A Kistler acoustic emission (AE) sensor was mounted on the 
workpiece to monitor the high frequency stress wave 
generated by the cutting process.  

 
Fig. 3: The experimental set-up in a high speed milling machine  
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The outputs of these sensors were conditioned through 
corresponding signal conditioning accessories such as charge 
amplifiers or couplers and eventually converted into coltage 
signals. The voltage signals were captured by a NI DAQ PCI 
9239 board with 50KHz frequency. The DAQ board generates 
16-bit digitized data and directly streams the data to a hard 
disk of an Intel Core 2 Quad 2.66GHz based industrial PC 
with 8GB RAM.  

Seven channels of signals (force_x, force_y, force_z, 
acce_x, acce_y, acce_z, AE_RMS) were captured by the DAQ 
card with an accumulated sampling rate of 

kHz3507kHz50 =× .  

B. Data pre-processing 
The experimental data are used to built up the NF models. 
Input and output data sets for training and testing the models 
are extracted as described below. 

1) Data as model inputs 

Sensor signals are continuously received through data 
acquisition system in .txt files as model inputs. A data 
segmentation and pre-processing are carried out to filter noise 
and capture useful information. The signal stream is segmented 
to obtain data sets corresponding to each revolution [16]. The 
data length of one revolution, L is calculated with the sampling 
frequency and spindle speed that are known a priori. Assume 
sampling frequency is N Hz and the spindle speed S RPM 
(revolutions per minute). The data length of on revolution, L 
can be calculated with Equation 1. 

                
S

NL 60×=     (1) 

Hence, a data set for each revolution can be obtained by taking 
every L consecutive data points. Fig. 4 shows an example of 
force signal revolutions. 

 

 
Fig. 4: Force signal revolutions 

 
The segmented data sets are used as raw data, which were 
further processed to extract distinguished features for model 
set up.   

2) Data as model output 

During the experiment, the cutting process is stopped and the 
flank tool-wear value is measured with an Olympic microscope 
as model output.   

 
     Fig. 5: Flank tool wear after 320 cuts 

The tool was dismounted and the wear-out taken in picture 
after the cut 4, 8, 16, 20, 32, 64, 96, 128, 160, 192, 224, 256, 
288 and 320  Fig 5 shows the flank tool wear after 320 cuts. 
The total of 320 tool wear values is calculated according to a 
nonlinear interpolation as shown in Fig. 6. All captured tool 
wear values are used for training NF models and testing model 
prediction accuracy, repeatability and reliability. 

       
  Fig. 6: Measured tool wear values 
 

C. Feature extraction and selection  
In this case study, 16 main features are extracted from force 
signals and 16 main features from acoustic emission signals as 
summarized in Table 1. The details of the feature extraction 
method are described elsewhere [17]. The 32 features have 
been shown to be effective.  
 

Table 1: Extracted Features for Force and Acoustic Emission 

No Force Feature AE Features 

1 Residual Error Standard deviation of 
band power 

2 First Order Differencing Peak 

3 Second Order Differencing Skewness 

4 Maximum Force Level Kurtosis 
5 Total Amplitude of Cutting Force Peak to peak 

6 Combined Incremental Force 
Changes Count 

7 Amplitude Ratio Rise time 
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8 
Standard Deviation of the Force 
Components in Tool Breakage 

Zone 
Delta (change in signal) 

9 Sum of the Squares of Residual 
Errors Mean 

10 Peak Rate of Cutting Forces Standard deviation 

11 Total Harmonic Power Absolute deviation 

12 Average Force Mean of band power 

13 Variable Force Mean of RMS 

14 Standard Deviation Crest-factor 

15 Skew Duration 

16 Kurtosis Area under curve 

 
Further feature subset selection is worked out with the 
extracted 32 features. The main goal of feature subset 
selection is to reduce the number of features used in 
classification without compromising on accuracy. The feature 
subset selection is necessary as it has been observed that, 
beyond a certain point, the inclusion of additional features 
leads to a worse performance.  Moreover, the choice of 
features affects several aspects of the recognition process such 
as accuracy, learning time and the necessary number of 
samples.  Most importantly, this leads to an increase in time 
and computational space complexity of the recognition 
process. Using Ant Colony Optimization to perform the 
feature subset selection, the selected features are summarized 
in Table 2.  The details of the feature subset selection has been 
presented elsewhere  [18]. 

 

Table 2: Selection of features for Force and Acoustic Emission 

No Force Feature AE Features 
1 Maximum Force Level Peak to peak 

2 Total Amplitude of Cutting Force Skewness 

3 Amplitude Ratio Kurtosis 
4 Average Force Mean of band power 

D. Correlation modeling through exTS  and ANFIS models 

The selected feature data and measured tool wear are then 
stored into a database. A total of 320 data sets of feature data 
were generated from raw signals matched with the interpolated 
tool wear data, half of which are used for rule training and the 
remaining for testing. The exTS modelling and tool wear 
prediction are realized by MATLab 2009.  

The exTS model establishment starts from feeding the 
training data sets, one at a time, to the network from layer 1. 
The input data are fuzzified in layer 2.  The exTS then goes to 
its self learning of fuzzy membership parameters (mean and 
variance). After the membership functions have been 
constructed, the next stage is to generate the fuzzy rules. Once 
the clustering and rule generation are completed, the exTS 
continues on correlation modeling with supervised leaning 
algorithm as to fine tune the rule values till mean squared error 
reaches an accepted level. Tool wear prediction is then 
conducted using established exTS correlation models. Similar 

procedure was adopted for setting up the ANFIS model with 
the same data sets.   

IV. RESULTS DISCUSSION 

A. Prediction test on a single cutter 
The first test aims to evaluate the prediction accuracy of two 
NF algorithms, exTS and ANFIS with a single cutter in order 
to benchmark their accuracy performance and repeatability.  

A training set for a cutter is created by selecting randomly a 
half of the data set of this cutter. The remaining samples are 
used to test the accuracy of the generated model (for a more 
convenient display, they are presented in chronological order).  

 
Fig. 7: Prediction performance comparison between ANFIS and exTS 

(Tool wear  prediction of cutter 3, with a training set of 150 samples. The 
ANFIS structure uses 2 membership functions per input. The input data are 
acoustic emission signal features.) 

The tool wear prediction performance of exTS model has 
been compared with an ANFIS model with single cutter as 
shown in Fig. 7.  A total of five cutters are tested with force 
features and acoustic emission features. The table 3 gives the 
accuracy indicators for this test, averaged between the five 
cutters.  
Table 3: Prediction performance comparison between exTS and ANFIS 

  Accuracy indicators 

Modeling 
algorithm 

Features 
from 
signal 

Training 
set size RMSE MAPE R2 

ANFIS (2mf) Force 50 28.12 0.15 0.59 
ANFIS (2mf) AE 50 30.83 0.17 0.54 
ANFIS (3mf) Force 50 23.34 0.14 0.66 
ANFIS (3mf) AE 50 27.55 0.17 0.62 

exTS Force 50 5.96 0.04 0.95 

exTS AE 50 6.34 0.04 0.94 

ANFIS (2mf) Force 100 14.22 0.09 0.82 
ANFIS (2mf) AE 100 15.45 0.09 0.8 
ANFIS (3mf) Force 100 13.15 0.08 0.84 
ANFIS (3mf) AE 100 15.62 0.11 0.81 

exTS Force 100 4.07 0.02 0.96 
exTS AE 100 5.12 0.03 0.96 
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ANFIS (2mf) Force 150 10.19 0.05 0.97 

ANFIS (2mf) AE 150 11.26 0.06 0.89 
ANFIS (3mf) Force 150 9.64 0.05 0.95 

ANFIS (3mf) AE 150 11.92 0.07 0.91 
exTS Force 150 2.97 0.02 0.99 

exTS AE 150 3.21 0.02 0.97 
ANFIS (2mf) Force 200 5.17 0.04 0.97 

ANFIS (2mf) AE 200 8.27 0.04 0.94 
ANFIS (3mf) Force 200 4.13 0.03 0.98 
ANFIS (3mf) AE 200 6.06 0.04 0.95 

exTS Force 200 2.38 0.02 0.99 
exTS AE 200 2.75 0.02 0.98 

 

From the results we can conclude that the exTS produces 
better results in terms of accuracy and repeatability than 
ANFIS, especially when the model is generated by acoustic 
emission features. As such, further investigation on model 
reliability was done with the exTS only. 

B. exTS prediction test with a multi-tool model 
In the second test, the training data sets are generated by 

taking samples randomly from different cutters and test data 
from a single cutter to evaluate exTS reliability. The purpose is 
to observe how severely the prediction capabilities are affected 
in the case when the same model has to be used with multiple 
cutters.  

The exTS model is evaluated with two cutters (cutters 3 and 
5) and three cutters (cutter 3, 4 and 5). The results are shown in 
Fig. 8 and Table 4. 

 
  Fig. 8: Reliability performance with 3 cutters 

(Prediction results of cutter 5, with a training set of 450 samples from cutter 
3,4 and 5. The input data are force signal features.) 

Table 4: The exST reliability performance with a multi-tool model 

  Accuracy indicators 
Number of cutters 
used to build the 

model 
Features used 

RMSE MAPE R2 

2 Force 7.07 0.07 0.93 
2 AE 10.7 0.10 0.91 

3 Force 12.2 0.13 0.90 

3 AE 14.1 0.17 0.87 

As expected, the accuracy indicator decreases. However, 
the prediction accuracy is still more than 85% which is within 
an acceptable level. So as we can conclude that the exTS model 
can be applied the case when the same model has to be used 
with multiple cutters.  

C. exTS prediction test on an unknown tool 
In this test we want to see if a reference model built by 

learning from two cutters can be used to predict the tool wear 
of a third, unknown cutter.   

The training set is composed by all the samples of two 
cutters, put in random order. The generated model is then tested 
on a third cutter. We used the cutter 1, 3 and 5 for this test. For 
example, when cutter 1 is used for prediction, the cutters 3 and 
5 are used to build the model. The results show in Table 5 and 
Fig. 9. 
Table 5: The exST reliability performance with an unknown tool 

  Accuracy indicators 
Cutter used 

for 
prediction 

Features 
used RMSE MAPE R2 

cutter 1 Force 21.4 0.17 0.42 

cutter 1 AE 22.1 0.16 0.40 
cutter 3 Force 19.7 0.21 0.67 

cutter 3 AE 21.5 0.19 0.65 
cutter 5 Force 11.6 0.06 0.86 

cutter 5 AE 17.0 0.09 0.71 
 

The accuracy is poor when we try to predict the tool wear 
of cutter 1 and 3, and is acceptable for the cutter 5 if requested 
accuracy is more than 70%. This is mostly because the model 
predicts values located only between the boundaries of the 
cutters used for training.  

 
   Fig. 9: Reliability performance on an unknown cutter.  

(Prediction results of the cutter 1. The training set is composed from cutter 3 
and 5 -630 samples-. The input data are acoustic emissions signal features.) 

V. CONCLUSION 
A method for predicting the tool wear using correlation models 
built by the exTS and ANFIS algorithms is presented. The 
exTF model performs better than a standard ANFIS algorithm 
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in accuracy, and is able to predict the tool wear based on both 
force and acoustic emission signals. The learning ability of the 
exTF algorithm allows building a reference model for multiple 
tools. However the accuracy of the model concerning an 
unknown tool is still insufficient. Improving the model 
reliability is still a future target.  
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