Patricia Herv E Marchand

Michel Bournai
email: bournai@irisa.fr

Paul Leborgne
email: leborgne@irisa.fr

Le Guernic
email: leguernig@irisa.fr

A Design Environment for Discrete-Event Controllers based on the Signal Language 1

Keywords: Control theory, Polynomial dynamical system, Synchronous Methodology, Signal

In this paper, we present the integration of a controller synthesis methodology in the Signal environment through the description of a tool dedicated to the algebraic computation of a controller and then to the simulation of the controlled system. The same language is used to specify the physical model of the system and the control objectives. The controller is then synthesized using the formal calculus tool Sigali. The result is then automatically integrated in a new Signal program in order to obtain a simulation of the result.

Introduction

In this paper, we present the integration controller synthesis techniques in the Signal environment 1] through the description of a tool dedicated to the safe construction and the simulation of reactive system controllers. The system is speci ed in Signal and the control synthesis is performed on a logical abstraction of this program, named polynomial dynamical system (PDS) over Z= 3Z 7]. The control of the system is performed by restricting the controllable input values to values suitable with respect to the control objectives. This restriction is obtained by incorporating new algebraic equations in the initial system. The theory of PDS uses classical tools in algebraic geometry, such as ideals, varieties and comorphisms. This theory sets the basis for the veri cation and the controller synthesis tool, Sigali, of the Signal environment. In this paper, we present a tool developed around the Signal environment allowing the visualization of the synthesized controller by interactive simulation of the controlled system. In a rst stage, the user speci es in Signal both the physical model and the control objectives to be ensured. A second stage is performed by the Signal compiler which translates the initial Signal program into a PDS and the control objectives in terms of polynomial relations and operations. The controller is then synthesized using Sigali. The result is a controller coded by a BDD(binary decision diagram) 3]. In a third stage, in order to visualize the new behavior of the controlled system, the controller and some simulation processes are automatically included in the initial Signal program. It is then su cient for the user to compile the resulting Signal program which generates a simulator. Academic examples are used to illustrate the application of the tool.

The Signal environment

To specify our model, we use the synchronous data ow language Signal 1]. The aim of Signal is to support the design of safety critical applications, especially those involving signal processing and process control. The synchronous approach guarantees the determinism of the speci ed systems, and supports techniques for the detection of causality cycles and logical incoherences. The design environment features a block-diagram graphical interface 2], a formal veri cation tool, Sigali, and a compiler that establishes a hierarchy of inclusion of logical clocks (representing the temporal characteristics of discrete events), checks for the consistency of the interdependencies, and automatically generates optimized executable code ready to be embedded in environments for simulation, test, prototyping or the actual system.

1.1 The Signal language.

The Signal language 1] manipulates signals X, which denote unbounded series of typed values, indexed by time. An associated clock determines the set of instants at which values are present. The constructs of the language can be used in an equational style to specify the relations between signals, i.e., between their values and between their clocks. Data ow applications are activities executed over a set of instants in time. At each instant, input data is acquired from the execution environment; output values are produced according to the system of equations considered as a network of operations. The Signal language is de ned by a small kernel of operators. The basic language constructs are summarized in Table (1). Each operator has formally de ned semantics and is used to obtain a clock equation and the data dependencies of the participating signals. For a more detailed description of the language, its semantic, and applications, the reader is referred to 1].

Sigali: The formal proof system

The Signal environment also contains a veri cation and controller synthesis tool-box, named Sigali. This tool allows to prove the correctness of the dynamical behavior of the system. The equational nature of the Signal language leads naturally to the use of a method based Any Signal speci cation can then be translated into a set of equations called polynomial dynamical system (PDS). Formally, a PDS can be reorganized into three subsystems of polynomial equations of the form: S = 8 < :

X 0 = P(X;Y; U) Q(X;Y; U) = 0 Q0(X) = 0 (1)
where X; Y; U; X 0 are vectors of variables in Z= 3Z and dim(X) = dim(X 0) = n. The components of the vec-1 For the non boolean expressions, we just translate the synchronization between the signals.

tors X and X 0 represent the states of the system and are called state variables. They come from the translation of the delay operator. Y is a vector of variables in Z= 3Z , called uncontrollable event variables, whereas U is a vector of controllable event variables2 . The rst equation is the state transition equation; the second equation is called the constraint equation and speci es which event may occur in a given state; the last equation gives the initial states. The behavior of such a PDS is the following: at each instant t, given a state xt and an admissible yt, we can choose some ut which is admissible, i.e., such that Q(xt; yt; ut) = 0. In this case, the system evolves into state xt+1 = P(xt; yt; ut).

Control synthesis problem: Given a

PDS S, as de ned by (1) a controller is de ned by a system of two equations C(X;Y; U) = 0 and C0(X) = 0, where the latter equation C0(X) = 0 determines initial states satisfying the control objectives and the former describes how to choose the instantaneous controls; when the controlled system is in state x, and an event y occurs, any value u such that Q(x; y; u) = 0 and C(x; y; u) = 0 can be chosen. The behavior of the system S composed with the controller is then modeled by: Sc = 8 < :

X 0 = P(X;Y; U) Q(X; Y; U) = 0; C(X; Y; U) = 0 Q0(X) = 0; C0(X) = 0 (2)
Using algebraic methods, avoiding state space enumeration, we are able to compute controllers (C; C0) which ensure:

the invariance of a set of states (S Security()), the reachability of a set of states from the initial states of the system (S Reachability()), the attractivity of a set of states E from a set of states F (S Attractivity()) 4],

the minimally restrictive control (choice of a command such that the system evolves, at the next instant, into a state where the maximum number of uncontrollable events is admissible

(S Free Max())) 8],
the stabilization of a system (choice of a command such that the system evolves, at the next instant, into a state with minimal change for the state variable values (S Stab())) 8].

For more details on the way others controllers are synthesized, the reader may refer to 4, 8].

2 Integration in the Signal environment

In this section we present how the controller synthesis methodology has been integrated in the Signal environment. First, to simplify the use of the tool, the same language is now used to specify the physical model of the system and the control objectives (as well as the verication objectives). Moreover, some obstacles prevent the di usion of formal methods for logical controller synthesis. The most important deals with the abstraction of the obtained controllers, coded, in our framework, by BDDs. The result is in general too complex to be satisfactorily understood. We developed a tool allowing the controller 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 In the third stage, the obtained controller is included in the initial Signal program in order to perform simulation.

First phase: Speci cation of the model

The physical model is rst speci ed in the language Signal. It describes the global behavior of the system. In the same stage we specify a process, that describes all the properties that must be enforced on the system. This process can also contain some property veri cation objectives. Using a new extension of the Signal language, named Signal+, it is now possible to express the properties to be checked as well as the control objectives to be synthesized, directly, in the Signal program. The syntax is shown in Table (3): In order to perform the computation of the controller with regard to the di erent control objectives, the Signal compiler produces a le which contains the PDS resulting from the abstraction of the complete Signal program and the algebraic control (as well as veri cation) objectives. We thus obtain a le that can be read by Sigali. Suppose that we must enforce, in a Signal program named \system.SIG" the invariance of the set of states where the boolean PROP is true. The corresponding Signal program is then given by Table [START_REF] Dutertre | Control of polynomial dynamic systems: an example[END_REF]. At the same time, the user has the option of adding in this new program some generic processes of simulation. These Signal processes perform, after compilation, the automatic construction of graphical input acquisition buttons and output display windows for the signals of the inter-face of the programs, in an oscilloscope-like fashion 3 ; with regard to the commands, the graphical acquisition button processes are automatically added in the Signal program when the resolver is included. We nally compile the resulting Signal program that generates executable code ready for simulation.

(| Sigali(Verif_Objective(Prop)) | Sigali(Control_Objective(Prop)) |)

Simulation principle: The event values

are chosen by the user under the control of the resolver through an interactive dialogue box. When a choice is performed by the user, this choice is automatically sent to the algebraic resolver, which returns the set of possible values for the remaining commands. In fact, each time a new choice is made by the user, a new controller is computed, in the sense that one variable of the polynomial controller has been instantiated. New constraints can then appear on the commands which are not totally speci ed. During this exchange between the dialogue box and the resolver, some commands can be totally speci ed by the resolver in which case their values are then imposed. The choice of the command values can be performed step by step by the user, or using a random process for a step of simulation. In the second case, the resolver chooses the command values. The user can also ask for a random simulation during an indeterminate number of simulation steps.

Some examples

This section illustrates the application of our design environment to two classical examples of control synthesis problems: the cat and mouse example 9] and a exible manufacturing cell control problem 5]. Initially, the cat and the mouse are in room 2 and 4 respectively. The problem is to control the doors in order to guarantee the two following requirements:

The cat and mouse example

1. The cat and the mouse never occupy the same room simultaneously. 2. It is always possible for the animals to return to their initial positions. In order to control the system, we assume that the controllable events are door opening and closing requests.

Speci cation in Signal: The complete behavior of the system is speci ed in Signal. Two processes compose the system. One describes the state of the doors (open or closed) and the second describes the state of the rooms (i.e., in which room the cat and the mouse are). Table [START_REF] Le Borgne | Polynomial dynamical systems over nite elds[END_REF] represents a part of this process. Table 7: Speci cation of the states of the rooms The control objectives are speci ed by another process. Table [START_REF] Le Borgne | Formal veri cation of signal programs: application to a power transformer station controller[END_REF] describes this speci cation. We rst introduce the signals cat mouse room i, (i=0,...,4) which are true when the cat and the mouse are both in room i.

Then, the boolean error is true when one of the signals cat mouse room i is true and it is false otherwise (in terms of automata, we describe the set of states where objective 1 is violated). To ensure the two objectives, we require Sigali to compute a controller which ensures (i) the invariance of the set of states where the boolean error is false (objective 1) and (ii) the reachability of the cat and mouse initial positions (objective 2).

The AGV example

We now consider a exible manufacturing cell composed by ve workstations, as shown in Figure [START_REF] Dutertre | Control of polynomial dynamic systems: an example[END_REF]. Five Automated Guided Vehicles (AGV's) transport materials between pairs of stations, passing through con ict zones shared with other AGV's. We assume that the controller receives signals from the AGV's indicating their current positions in the manufacturing cell and that we can stop the AGV's before they enter in some con ict zones (Ci transitions in Figure (5)). The control synthesis problem Speci cation in Signal: The global system has been decomposed into 10 sub-systems, respectively coding the 5 work-stations, and the 5 AGV circuits (processes Work Station i and Agv i). The movement in each subsystem is cadenced by a clock, possibly di erent for each subsystem. Synchronizations between the di erent subsystems are performed through exchanged messages, coding the state of each subsystem. To realize the control objective, we de ne the states of the system where two AGV's are at the same time in a common zone. For example, the signal Con ict area 1 is a boolean which is true when the AGV 1 and the AGV 2 are both in the con ict zone 1. Each con ict zone can be speci ed in Signal in this manner. The boolean Con ict area is true when one of the Con ict area i is true, it is false otherwise. It corresponds to the forbidden states (i.e., the states where two AGV's share a con ict zone). We also add in the Signal program the control objectives (Sigali(S Security(False(Con ict Area)))). Once the PDS is obtained, the controller is computed and incorporated in the new Signal program.

Simulation: Even if an animated simulation (similar to the cat and mouse simulation) has been realized, we choose to show here a simulation using the generic Signal processes dedicated to the simulation.

Conclusion

In this paper, we have presented the integration of a controller synthesis methodology in the Signal environment through the description of a tool dedicated to the alge-braic computation of a controller and then to the simulation of the controlled system. The speci cation of the system is done in a discrete event framework using the language Signal. In order to facilitate this step, the user can use a block-diagram graphic interface. This environment allows the user to have graphical and textual representations of the language structures. These representations may be used together during the building or the \reading" of the program. The formal veri cation of a Signal program, as well as the automatic controller design are performed using a formal calculus system named Sigali. Finally, in order to facilitate the use of the controller synthesis methodology, we have added in the Signal language the possibility of directly expressing the control objectives (and the veri cation objectives) in the initial Signalprogram. Therefore, it is not necessary for the user to know (or to understand) the mathematical framework that is necessary to perform the computation of the controller. Moreover, as the result is an equation encoded by a BDD, we have developed a simulator in the Signal environment which allows the user to visualize the new behavior of the controlled system.

 Translation of the primitive operators.

Figure 1 :

 1 Figure 1: Description of the tool synthesis as well as the visualization of the result by interactive simulation of the controlled system.Figure (1) sums up the di erent stages necessary to perform such simulations. In the rst stage, the user speci es the physical model and the control objectives in Signal. The second stage is performed by the Signal compiler which translates the initial Signal program into a PDS and the control objectives in terms of polynomial relations and operations. The controller is then synthesized, using Sigali.In the third stage, the obtained controller is included in the initial Signal program in order to perform simulation.

(

 | (| system{} (the physical specified in Signal) |) | PROP : definition of the boolean PROP in Signal | Sigali(S_Invariance(True(PROP)) |)

Figure 2 :

 2 Figure 2: The resulting Signal program 2.3.1 Integration of the resolver in a Signal program & simulator building: A controller is a polynomial coded in a BDD. In most cases, several values are possible for each command, when the system evolves into a state. Therefore, an algebraic equation resolver has been developed in Signal for the control part of the resolver process and in C ++ for the algebraic equation resolver part. This process solves polynomial equations (i.e., controllers) according to the internal state values and the input event values. The constraint part of the controller is given by a polynomial C(X;Y; U) = 0. The resolver process provides, for given values x;y , all the possible values for the command u. Note that not only one but all the alternatives of commands are proposed. This process is automatically integrated in the initial Signal program, following the diagram of Figure (2). The links (i.e., the connections through signals) between the process resolver and the process which speci es the system are automatically added in order to obtain the new Signal program. At the same time, the user has the option of adding in this new program some generic processes of simulation. These Signal processes perform, after compilation, the automatic construction of graphical input acquisition buttons and output display windows for the signals of the inter-

A

 cat and a mouse are placed in a maze shown in Figure (3). The animals can move through doors represented by arrows in this gure. Doors C1; : : : ; C7 are exclusively for the cat, whereas the doors M1; : : : ; M6 are exclusively for the mouse. Each doorway can be traversed in only one direction, with the exception of the door C7. A sensor associated with each door detects the passages and a control mechanism allows each door to be opened or closed, except for door C7 which always stays opened.

Figure 3 :

 3 Figure 3: The cat and mouse example.

8 :Figure 4 :

 84 Figure 4: Cat and Mouse Problem Simulation lable events (i.e., the cat and mouse movements). Figure (4(c)) represents the commands (i.e., the opening and closing requests). The choice of the user is limited by the resolver in order to ensure the two objectives. Figure (4(b)) represents the graphical interface of simulation.

Figure 5 :

 5 Figure 5: The manufacturing cell is to coordinate the movement of the various AGV's in order to avoid collisions in the con ict zones.

Figure 6 :

 6 Figure 6: Simulation of the AGV's synthesis problem In this simulation, the position of an AGV (AGV i) in each subsystem is encoded by an integer corresponding to the current position of the AGV in the sub-Petri net. The scopes WST i code the positions inside the corresponding workstation and nally the scopes Zone i are integers which are equal to 1 when two AGV's are in zone number i at the same time, and equal to 0 otherwise.

Table 3 :

 3 Basic syntax of Signal+The keyword Sigali means that the subexpression has to be evaluated by Sigali. The function Verif Objective (it could be invariance, reachability, attractivity) means that Sigali has to check the veri cation objectives according to the boolean PROP, which can be seen as a set of states in the corresponding PDS. The function Control Objective means that Sigali has to compute a controller in order to ensure the control objective for the controlled system (it could be one of the control objectives presented in section (1.2.2). The complete Signal program is obtained by putting in parallel the two processes (see Table[START_REF] Bryant | Symbolic boolean manipulation with ordered binary-decision diagrams[END_REF]).

(| System() (Physical model in Signal) | Objectives() (verif and control Objectives) |)

Table 4 :

 4 The complete Signal program 2.2 Second phase: Veri cation & Controller Synthesis

Table 5 :

 5 A part of the Signal program

	The corresponding Sigali le, obtained after the compila-tion of the global Signal program, is the following (Table (6)):
	The le \system.z3z" is the PDS that represents the initial system. The PROP signal becomes a polyno-mial Set States expressed by state variables and events, which is equal to 0 when PROP is true. The last line of the le consists in synthesizing a controller which ensure the invariance of the set of states where the polynomial Set States takes the value 0. This le is then interpreted by Sigali that checks the veri cation objective and com-putes the controller. The result of the controller synthesis is a polynomial which is represented by a BDD which is saved in a le, used to perform simulation.

Table 6 :

 6 The resulting Sigali le 2.3 Third phase: Result Simulation

	To obtain a simulation that allows to visualize the new behavior of the controlled system, the controller (more precisely, a resolver process) is automatically integrated in the initial Signal program as well as simulation processes following the architecture of Figure (2).

This work is partially supported by Electricit e de France (EDF) under contract number

2M788-EP786

For simplicity, we can consider that the uncontrollable event variables are emitted by the system in the direction of the controller, whereas the controllable event variables are emitted by the controller in the direction of the system.

We are also able to perform real graphical animation in order to simulate the behavior of the system (see section 3)