
HAL Id: hal-00546362
https://hal.science/hal-00546362

Submitted on 14 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Design Environment for Discrete-Event Controllers
based on the Signal Language

Hervé Marchand, Patricia Bournai, Michel Le Borgne, Paul Le Guernic

To cite this version:
Hervé Marchand, Patricia Bournai, Michel Le Borgne, Paul Le Guernic. A Design Environment for
Discrete-Event Controllers based on the Signal Language. 1998 IEEE International Conference on
Systems, Man, And Cybernetics (SMC ’98), Oct 1998, San Diego, California, United States. pp.770-
775, �10.1109/ICSMC.1998.725501�. �hal-00546362�

https://hal.science/hal-00546362
https://hal.archives-ouvertes.fr

1998 IEEE Int. Conf. On Systems, Man, and Cybernetics, San Diego, USA Oct. 11-14A Design Environment for Discrete-Event Controllersbased on the Signal Language1Herv�e Marchand, Patricia Bournai, Michel Leborgne, Paul Le GuernicIRISA / INRIA - Rennes, Campus Universitaire de Beaulieu, F-35042 Rennes, Francee-mail: fhmarchan, bournai, leborgne, leguernig@irisa.frAbstract: In this paper, we present the integration ofa controller synthesis methodology in the Signal envi-ronment through the description of a tool dedicated tothe algebraic computation of a controller and then to thesimulation of the controlled system. The same languageis used to specify the physical model of the system andthe control objectives. The controller is then synthesizedusing the formal calculus tool Sigali. The result is thenautomatically integrated in a new Signal program in or-der to obtain a simulation of the result.Keywords: Control theory, Polynomial dynamical sys-tem, Synchronous Methodology, Signal.IntroductionIn this paper, we present the integration controller synthe-sis techniques in the Signal environment [1] through thedescription of a tool dedicated to the safe constructionand the simulation of reactive system controllers. Thesystem is speci�ed in Signal and the control synthesis isperformed on a logical abstraction of this program, namedpolynomial dynamical system (PDS) over Z=3Z[7]. Thecontrol of the system is performed by restricting the con-trollable input values to values suitable with respect to thecontrol objectives. This restriction is obtained by incorpo-rating new algebraic equations in the initial system. Thetheory of PDS uses classical tools in algebraic geometry,such as ideals, varieties and comorphisms. This theorysets the basis for the veri�cation and the controller syn-thesis tool, Sigali, of the Signal environment. In thispaper, we present a tool developed around the Signalenvironment allowing the visualization of the synthesizedcontroller by interactive simulation of the controlled sys-tem. In a �rst stage, the user speci�es in Signal both thephysical model and the control objectives to be ensured.A second stage is performed by the Signal compiler whichtranslates the initial Signal program into a PDS and thecontrol objectives in terms of polynomial relations and op-erations. The controller is then synthesized using Sigali.The result is a controller coded by a BDD(binary decisiondiagram) [3]. In a third stage, in order to visualize the newbehavior of the controlled system, the controller and somesimulation processes are automatically included in the ini-tial Signal program. It is then su�cient for the user to1This work is partially supported by �Electricit�e de France(EDF) under contract number 2M788-EP786

compile the resulting Signal program which generates asimulator. Academic examples are used to illustrate theapplication of the tool.1 The Signal environmentTo specify our model, we use the synchronous data
owlanguage Signal [1]. The aim of Signal is to supportthe design of safety critical applications, especially thoseinvolving signal processing and process control. The syn-chronous approach guarantees the determinism of thespeci�ed systems, and supports techniques for the de-tection of causality cycles and logical incoherences. Thedesign environment features a block-diagram graphicalinterface [2], a formal veri�cation tool, Sigali, and acompiler that establishes a hierarchy of inclusion of log-ical clocks (representing the temporal characteristics ofdiscrete events), checks for the consistency of the inter-dependencies, and automatically generates optimized ex-ecutable code ready to be embedded in environments forsimulation, test, prototyping or the actual system.1.1 The Signal language.The Signal language [1] manipulates signals X, which de-note unbounded series of typed values, indexed by time.An associated clock determines the set of instants at whichvalues are present. The constructs of the language canbe used in an equational style to specify the relations be-tween signals, i.e., between their values and between theirclocks. Data
ow applications are activities executed overa set of instants in time. At each instant, input data is ac-quired from the execution environment; output values areproduced according to the system of equations consideredas a network of operations.The Signal language is de�ned by a small kernel of op-erators. The basic language constructs are summarizedin Table (1). Each operator has formally de�ned seman-tics and is used to obtain a clock equation and the datadependencies of the participating signals. For a more de-tailed description of the language, its semantic, and ap-plications, the reader is referred to [1].1.2 Sigali: The formal proof systemThe Signal environment also contains a veri�cation andcontroller synthesis tool-box, named Sigali. This toolallows to prove the correctness of the dynamical behav-ior of the system. The equational nature of the Signallanguage leads naturally to the use of a method based

Language Construct Signal syntax Descriptionstepwise extensions C := A op B where op : arithmetic/relational/boolean operatordelay ZX := X $ n memorization of the nth past value of Xextraction C := A when B C equal to A when B is present and truepriority merging C := A default B if A is present C:=A else if B present C:= B else C absentProcess Composition (jPjQj) processes are composed, common names correspond to shared signalsuseful extensions when B the clock of the true instants of Bevent B the presence instants of BA^= B Clock of A equal with clock of BTable 1: Basic Signal language constructson polynomial dynamical equation systems (PDS) overZ=3Z(i.e., integers modulo 3: f-1,0,1g) as a formal modelof program behavior. The theory of PDS uses classicaltools in algebraic geometry, such as ideals, varieties andcomorphisms [6]. The techniques consist in manipulatingthe system of equations instead of the sets of solutions,which avoids enumerating the state space.1.2.1 Logical abstraction of a Signal pro-gram: To model its behavior, a Signal process istranslated into a system of polynomial equations overZ=3Z [6]. The three possible states of a boolean sig-nal X (i.e., present and true, present and false, or absent)are coded in a signal variable x by (present ^ true ! 1,present ^ false ! 1 and absent ! 0). For the non-boolean signals, we only code the fact that the signal ispresent (by 1) or absent (by 0). Each of the primitiveprocesses of Signal are then encoded in a polynomialequation (cf Table (2))1.Signal Processes Boolean InstructionsB := not A b = �aC := A and B c = ab(ab� a� b� 1)a2 = b2C := A or B c = ab(1� a� b� ab)a2 = b2C := A default B c = a+ (1� a2)bC := A when B c = a(�b� b2)B := A $1 (init b0) x0 = a+ (1� a2)xb = a2xx0 = b0Table 2: Translation of the primitive operators.Any Signal speci�cation can then be translated into a setof equations called polynomial dynamical system (PDS).Formally, a PDS can be reorganized into three subsystemsof polynomial equations of the form:S = 8<: X 0 = P (X;Y; U)Q(X;Y; U) = 0Q0(X) = 0 (1)where X;Y;U;X 0 are vectors of variables in Z=3Zanddim(X) = dim(X 0) = n. The components of the vec-1For the non boolean expressions, we just translate the syn-chronization between the signals.

tors X and X 0 represent the states of the system and arecalled state variables. They come from the translation ofthe delay operator. Y is a vector of variables in Z=3Z,called uncontrollable event variables, whereas U is a vec-tor of controllable event variables2. The �rst equation isthe state transition equation; the second equation is calledthe constraint equation and speci�es which event may oc-cur in a given state; the last equation gives the initialstates. The behavior of such a PDS is the following: ateach instant t, given a state xt and an admissible yt, wecan choose some ut which is admissible, i.e., such thatQ(xt; yt; ut) = 0. In this case, the system evolves intostate xt+1 = P (xt; yt; ut).1.2.2 Control synthesis problem: Given aPDS S, as de�ned by (1) a controller is de�ned by a sys-tem of two equations C(X;Y; U) = 0 and C0(X) = 0,where the latter equation C0(X) = 0 determines initialstates satisfying the control objectives and the former de-scribes how to choose the instantaneous controls; whenthe controlled system is in state x, and an event y occurs,any value u such that Q(x; y; u) = 0 and C(x; y; u) = 0can be chosen. The behavior of the system S composedwith the controller is then modeled by:Sc = 8<: X 0 = P (X;Y; U)Q(X;Y;U) = 0; C(X;Y;U) = 0Q0(X) = 0; C0(X) = 0 (2)Using algebraic methods, avoiding state space enumera-tion, we are able to compute controllers (C;C0) whichensure:� the invariance of a set of states (S Security()),the reachability of a set of states from the initialstates of the system (S Reachability()), the at-tractivity of a set of states E from a set of states F(S Attractivity()) [4],� the minimally restrictive control (choice of acommand such that the system evolves, at thenext instant, into a state where the maximum2For simplicity, we can consider that the uncontrollableevent variables are emitted by the system in the direction of thecontroller, whereas the controllable event variables are emittedby the controller in the direction of the system.

number of uncontrollable events is admissible(S Free Max()))[8],� the stabilization of a system (choice of a commandsuch that the system evolves, at the next instant,into a state with minimal change for the state vari-able values (S Stab()))[8].For more details on the way others controllers are synthe-sized, the reader may refer to [4, 8].2 Integration in the Signal environmentIn this section we present how the controller synthesismethodology has been integrated in the Signal environ-ment. First, to simplify the use of the tool, the samelanguage is now used to specify the physical model of thesystem and the control objectives (as well as the veri�-cation objectives). Moreover, some obstacles prevent thedi�usion of formal methods for logical controller synthe-sis. The most important deals with the abstraction of theobtained controllers, coded, in our framework, by BDDs.The result is in general too complex to be satisfactorilyunderstood. We developed a tool allowing the controller
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

)

(|
|
|
|)

and

(|

|

Control

verification

)

Polynomial

|

objectives

|

|

Sigali
file

|
|

dynamical
system(|

in
Specified
System

Signal

Signal file

SIGALI

Controller

results
Verification

Simulator
 Resolver

Simulation

First phase: Specification
Second phase: Controller synthesis

Third phase: Simulation

SystemFigure 1: Description of the toolsynthesis as well as the visualization of the result by in-teractive simulation of the controlled system. Figure (1)sums up the di�erent stages necessary to perform suchsimulations. In the �rst stage, the user speci�es the phys-ical model and the control objectives in Signal. Thesecond stage is performed by the Signal compiler whichtranslates the initial Signal program into a PDS and thecontrol objectives in terms of polynomial relations and op-erations. The controller is then synthesized, using Sigali.In the third stage, the obtained controller is included inthe initial Signal program in order to perform simulation.2.1 First phase: Speci�cation of the modelThe physical model is �rst speci�ed in the language Sig-nal. It describes the global behavior of the system. Inthe same stage we specify a process, that describes allthe properties that must be enforced on the system. Thisprocess can also contain some property veri�cation ob-jectives. Using a new extension of the Signal language,named Signal+, it is now possible to express the proper-ties to be checked as well as the control objectives to besynthesized, directly, in the Signal program. The syntaxis shown in Table (3):

(| Sigali(Verif_Objective(Prop))| Sigali(Control_Objective(Prop))|)Table 3: Basic syntax of Signal+The keyword Sigali means that the subexpression has tobe evaluated by Sigali. The function Verif Objective(it could be invariance, reachability, attractivity)means that Sigali has to check the veri�cation objec-tives according to the boolean PROP, which can be seenas a set of states in the corresponding PDS. The functionControl Objectivemeans that Sigali has to compute acontroller in order to ensure the control objective for thecontrolled system (it could be one of the control objectivespresented in section (1.2.2).The complete Signal program is obtained by putting inparallel the two processes (see Table (4)).(| System() (Physical model in Signal)| Objectives() (verif and control Objectives)|)Table 4: The complete Signal program2.2 Second phase: Veri�cation & Controller Syn-thesisIn order to perform the computation of the controllerwith regard to the di�erent control objectives, the Signalcompiler produces a �le which contains the PDS resultingfrom the abstraction of the complete Signal program andthe algebraic control (as well as veri�cation) objectives.We thus obtain a �le that can be read by Sigali.Suppose that we must enforce, in a Signal programnamed \system.SIG" the invariance of the set of stateswhere the boolean PROP is true. The correspondingSignal program is then given by Table (5).(| (| system{} (the physical specified in Signal) |)| PROP : definition of the boolean PROP in Signal| Sigali(S_Invariance(True(PROP))|)Table 5: A part of the Signal programThe corresponding Sigali �le, obtained after the compila-tion of the global Signal program, is the following (Table(6)):The �le \system.z3z" is the PDS that represents theinitial system. The PROP signal becomes a polyno-mial Set States expressed by state variables and events,which is equal to 0 when PROP is true. The last line ofthe �le consists in synthesizing a controller which ensurethe invariance of the set of states where the polynomialSet States takes the value 0. This �le is then interpretedby Sigali that checks the veri�cation objective and com-putes the controller. The result of the controller synthesisis a polynomial which is represented by a BDD which issaved in a �le, used to perform simulation.

read(``system.z3z''); => loading of the PDSSet_States : True(PROP)=> Compute the states where PROP is trueS_c: S_Invariance(S,Set_States) => Synthesize the con--troller that ensures the invariance of Set_StatesTable 6: The resulting Sigali �le2.3 Third phase: Result SimulationTo obtain a simulation that allows to visualize the newbehavior of the controlled system, the controller (moreprecisely, a resolver process) is automatically integrated inthe initial Signal program as well as simulation processesfollowing the architecture of Figure (2).
Model

Physical

resolver

Interactive

Choice of
the user

Dialogue Box

Algebraic equation

Choices for
the events

Dialogue Box

Interactive
Dialogue Box for the uncontrollable

events Interactive

Variables

Useful

Set of final

Set of admissible values

Set of admissible values
for the commands

the commands
Choices for
Set of final

Choice of
the user

Algebraic equation
resolver

If assumptions (1)

If no assumption (2)

Figure 2: The resulting Signal program2.3.1 Integration of the resolver in a Signalprogram & simulator building: A controller is apolynomial coded in a BDD. In most cases, several valuesare possible for each command, when the system evolvesinto a state. Therefore, an algebraic equation resolver hasbeen developed in Signal for the control part of the re-solver process and in C++ for the algebraic equationresolver part. This process solves polynomial equations(i.e., controllers) according to the internal state valuesand the input event values. The constraint part of thecontroller is given by a polynomial C(X;Y; U) = 0. Theresolver process provides, for given values x;y , all thepossible values for the command u. Note that not onlyone but all the alternatives of commands are proposed.This process is automatically integrated in the initial Sig-nal program, following the diagram of Figure (2). Thelinks (i.e., the connections through signals) between theprocess resolver and the process which speci�es the sys-tem are automatically added in order to obtain the newSignal program.At the same time, the user has the option of adding in thisnew program some generic processes of simulation. TheseSignal processes perform, after compilation, the auto-matic construction of graphical input acquisition buttonsand output display windows for the signals of the inter-

face of the programs, in an oscilloscope-like fashion3 ; withregard to the commands, the graphical acquisition buttonprocesses are automatically added in the Signal programwhen the resolver is included. We �nally compile the re-sulting Signal program that generates executable codeready for simulation.2.3.2 Simulation principle: The event valuesare chosen by the user under the control of the resolverthrough an interactive dialogue box.When a choice is performed by the user, this choice is au-tomatically sent to the algebraic resolver, which returnsthe set of possible values for the remaining commands.In fact, each time a new choice is made by the user, anew controller is computed, in the sense that one variableof the polynomial controller has been instantiated. Newconstraints can then appear on the commands which arenot totally speci�ed. During this exchange between thedialogue box and the resolver, some commands can be to-tally speci�ed by the resolver in which case their valuesare then imposed. The choice of the command values canbe performed step by step by the user, or using a ran-dom process for a step of simulation. In the second case,the resolver chooses the command values. The user canalso ask for a random simulation during an indeterminatenumber of simulation steps.3 Some examplesThis section illustrates the application of our design en-vironment to two classical examples of control synthesisproblems: the cat and mouse example [9] and a
exiblemanufacturing cell control problem [5].3.1 The cat and mouse exampleA cat and a mouse are placed in a maze shown in Figure(3). The animals can move through doors represented byarrows in this �gure. Doors C1; : : : ; C7 are exclusively forthe cat, whereas the doors M1; : : : ;M6 are exclusively forthe mouse. Each doorway can be traversed in only onedirection, with the exception of the door C7. A sensorassociated with each door detects the passages and a con-trol mechanism allows each door to be opened or closed,except for door C7 which always stays opened.Figure 3: The cat and mouse example.Initially, the cat and the mouse are in room 2 and 4 re-spectively. The problem is to control the doors in order3We are also able to perform real graphical animation inorder to simulate the behavior of the system (see section 3)

to guarantee the two following requirements:1. The cat and the mouse never occupy the same roomsimultaneously.2. It is always possible for the animals to return totheir initial positions.In order to control the system, we assume that the con-trollable events are door opening and closing requests.Speci�cation in Signal: The complete behavior of thesystem is speci�ed in Signal. Two processes composethe system. One describes the state of the doors (open orclosed) and the second describes the state of the rooms(i.e., in which room the cat and the mouse are). Table(7) represents a part of this process.(| (| Mouse_Room_0 := (when Z_Mvt_Mouse_3)default (when Z_Mvt_Mouse_6)default (false when Z_Mvt_Mouse_1)default (false when Z_Mvt_Mouse_4)default Z_Mouse_Room_0| Z_Mouse_Room_0 := Mouse_Room_0 $1 |)| (| Mouse_Room_1 := (when Z_Mvt_Mouse_2)default (false when Z_Mvt_Mouse_3)default Z_Mouse_Room_1| Z_Mouse_Room_1 := Mouse_Room_1$1 |)| Mouse_Room_1 ^= Mouse_Room_0|)Table 7: Speci�cation of the states of the roomsThe control objectives are speci�ed by another process.Table (8) describes this speci�cation. We �rst intro-duce the signals cat mouse room i, (i=0,...,4) which aretrue when the cat and the mouse are both in room i.Then, the boolean error is true when one of the signalscat mouse room i is true and it is false otherwise (interms of automata, we describe the set of states whereobjective 1 is violated). To ensure the two objectives, werequire Sigali to compute a controller which ensures (i)the invariance of the set of states where the boolean er-ror is false (objective 1) and (ii) the reachability of thecat and mouse initial positions (objective 2).(| (| Cat_Mouse_Room_0:= when(Z_Cat_Room_0 and Z_Mouse_Room_0)| |)| (| Error:= Cat_Mouse_Room_0 default Cat_Mouse_Room_1default Cat_Mouse_Room_2 default Cat_Mouse_Room_3default Cat_Mouse_Room_4 default false |)| (| Initial_States:= Z_Cat_Room_2 and Z_Mouse_Room_4 |)| (| Sigali(S_Security(False(Error)))| Sigali(S_Reachability(True(Initial_States)))|)|)Table 8: Speci�cation of the control objectivesController synthesis and simulation of the results:The global system (the model process, and the control ob-jectives process) is automatically translated by the com-piler in a PDS. Once the controller has been synthesizedby Sigali it is integrated in the Signal environment asexplained in Section 2.3.1. After the compilation of this

new Signal program, a graphical simulation is obtained(see Figure (4)). Figure (4(a)) represents the uncontrol-
(a) Theevents (b) The simulatorinterface (c) The com-mandsFigure 4: Cat and Mouse Problem Simulationlable events (i.e., the cat and mouse movements). Figure(4(c)) represents the commands (i.e., the opening andclosing requests). The choice of the user is limited bythe resolver in order to ensure the two objectives. Figure(4(b)) represents the graphical interface of simulation.3.2 The AGV exampleWe now consider a
exible manufacturing cell composedby �ve workstations, as shown in Figure (5). Five Auto-mated Guided Vehicles (AGV's) transport materials be-tween pairs of stations, passing through con
ict zonesshared with other AGV's. We assume that the controllerreceives signals from the AGV's indicating their currentpositions in the manufacturing cell and that we can stopthe AGV's before they enter in some con
ict zones (Citransitions in Figure (5)). The control synthesis problem

Figure 5: The manufacturing cellis to coordinate the movement of the various AGV's inorder to avoid collisions in the con
ict zones.

Speci�cation in Signal: The global system has beendecomposed into 10 sub-systems, respectively codingthe 5 work-stations, and the 5 AGV circuits (processesWork Station i and Agv i). The movement in eachsubsystem is cadenced by a clock, possibly di�erent foreach subsystem. Synchronizations between the di�erentsubsystems are performed through exchanged messages,coding the state of each subsystem. To realize the con-trol objective, we de�ne the states of the system wheretwo AGV's are at the same time in a common zone. Forexample, the signal Con
ict area 1 is a boolean whichis true when the AGV 1 and the AGV 2 are both in thecon
ict zone 1. Each con
ict zone can be speci�ed in Sig-nal in this manner. The boolean Con
ict area is truewhen one of the Con
ict area i is true, it is false oth-erwise. It corresponds to the forbidden states (i.e., thestates where two AGV's share a con
ict zone). We alsoadd in the Signal program the control objectives (Si-gali(S Security(False(Con
ict Area)))). Once thePDS is obtained, the controller is computed and incor-porated in the new Signal program.Simulation: Even if an animated simulation (similarto the cat and mouse simulation) has been realized, wechoose to show here a simulation using the generic Sig-nal processes dedicated to the simulation.
Figure 6: Simulation of the AGV's synthesis problemIn this simulation, the position of an AGV (AGV i) ineach subsystem is encoded by an integer corresponding tothe current position of the AGV in the sub-Petri net. Thescopes WST i code the positions inside the correspond-ing workstation and �nally the scopes Zone i are integerswhich are equal to 1 when two AGV's are in zone numberi at the same time, and equal to 0 otherwise.4 ConclusionIn this paper, we have presented the integration of a con-troller synthesis methodology in the Signal environmentthrough the description of a tool dedicated to the alge-

braic computation of a controller and then to the simula-tion of the controlled system.The speci�cation of the system is done in a discrete eventframework using the language Signal. In order to facili-tate this step, the user can use a block-diagram graphic in-terface. This environment allows the user to have graphi-cal and textual representations of the language structures.These representations may be used together during thebuilding or the \reading" of the program. The formal ver-i�cation of a Signal program, as well as the automaticcontroller design are performed using a formal calculussystem named Sigali.Finally, in order to facilitate the use of the controller syn-thesis methodology, we have added in the Signal lan-guage the possibility of directly expressing the controlobjectives (and the veri�cation objectives) in the initialSignalprogram. Therefore, it is not necessary for theuser to know (or to understand) the mathematical frame-work that is necessary to perform the computation of thecontroller. Moreover, as the result is an equation encodedby a BDD, we have developed a simulator in the Signalenvironment which allows the user to visualize the newbehavior of the controlled system.References[1] A. Benveniste and P. Le Guernic. Hybrid dynamicalsystems and the signal programming language. IEEETrans. Automat. Control, 35:535{546, May 1990.[2] P. Bournai and P. Le Guernic. Un environnementgraphique pour le langage Signal. Technical Report 741,IRISA, September 1993.[3] R. E. Bryant. Symbolic boolean manipulation withordered binary-decision diagrams. ACM computing Sur-veys, pages 293{318, September 1992.[4] B. Dutertre and M. Le Borgne. Control of poly-nomial dynamic systems: an example. Technical Report798, IRISA, January 1994.[5] B. H. Krogh. Supervisory control of petri nets. InBelgian-French-Netherlands' Summer School on DiscreteEvent Systems, June 1993.[6] M. Le Borgne, A. Benveniste, and P. Le Guernic.Polynomial dynamical systems over �nite �elds. In Alge-braic Computing in control, volume 165, pages 212{222.LNCIS, March 1991.[7] M. Le Borgne, H. Marchand, E. Rutten, andM. Samaan. Formal veri�cation of signal programs: ap-plication to a power transformer station controller. InProc. of the 5th Int. Conf. AMAST'96, LNCS No 1101,pages 270{285, Munich, Germany, July 1996.[8] H. Marchand and M. Le Borgne. Partial order con-trol and optimal control of discrete event systems modeledas polynomial dynamical systems over galois �elds. Tech-nical Report 1125, IRISA, October 1997.[9] W. M. Wonham and P. J. Ramadge. On the supre-mal controllable sublanguage of a given language. SIAMJ. Control Optim., 25(3):637{659, May 1987.

