
International journal of applied earth observation and geoinformation

Title

Assessing optical Earth Observation Systems for mapping and monitoring temporary ponds 

in arid areas 

Author names and affiliations

Valérie Sotia,b, Annelise Tranb,c, Jean-Stéphane Bailly c, Christian Puech c, Danny Lo Seen c, 

Agnes Bégué c

a - SAS Nevantropic, 14 bis av. du 14 juillet, 97300 Cayenne, French Guiana

b - French Agricultural Research Center for International Development (CIRAD), Animal 

and Integrated Risk Management Research Unit, Baillarguet Campus, 34398 Montpellier 

Cedex

 c - Territories, Environment, Remote Sensing and Spatial Information Joint Research Unit 

(UMR TETIS), Maison de la Télédétection, 500 rue J.-F. Breton, 34093 Montpellier Cedex 

5, France

Corresponding author

Valérie Soti

E-mail address: vs.nev@ntropic.fr

Tel: +33 4 67 54 87 10

Fax: +33 4 67 54 87 00

1

mailto:vs.nev@ntropic.fr


International journal of applied earth observation and geoinformation

Abstract (100-150 words)

Remote sensing methods for locating and monitoring temporary ponds over large areas in 

arid lands were tested on a study site in Northern Senegal. Three main results are presented, 

validated with field data and intended to highlight different spectral, spatial and temporal 

characteristics of the methods: 1) Among several water indices tested, two Middle Infra-

Red-based indices (MNDWI – Modified Difference Water Index and NDWI2 – Normalized 

Difference Water Index) are found to be most efficient; 2) an objective method is given 

prescribing the necessary sensor spatial resolution in terms of minimal detected pond area; 

and 3) the potential of multi-temporal MODIS imagery for tracking the filling phases of 

small ponds is illustrated. These results should assist in epidemiological studies of vector-

borne diseases that develop around these ponds, but also more generally for land and water 

management and preservation of threatened ecosystems in arid areas.

Keywords: Remote sensing, Monitoring, Temporary ponds, Water indices, Arid areas.
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1. Introduction

In West  Africa,  and particularly in  the semi-arid Sahel  region,  ponds and lakes  play a 

crucial  role  for the local  population and their  livestock (Diop, 2007).  Temporary water 

bodies are often the primary water supply for human and animal consumption, along with 

bores and wells that are periodically made available by the local or national authorities 

(Diop et al., 2004). Open water surfaces also enable vital ecological functions and provide 

the necessary natural habitats for a wide range of fauna. However, these are also sites with 

dense human and livestock populations, which favors the development and transmission of 

infectious and parasitic  diseases.  The biological  diversity and resources of these fragile 

aquatic  ecosystems  are  subject  to  various  natural  (recurrent  drought)  or  anthropogenic 

(overexploitation,  dams,  pollution,  drainage)  threats  that  also  need  to  be  monitored. 

However, it is considered particularly challenging to inventory these water bodies as they 

are  generally  small,  numerous,  temporary,  and  spread  over  large  and  often  poorly 

accessible areas. 

Data acquired by Earth Observation systems covering a wide range of spectral, spatial, and 

temporal characteristics can be used for locating these ponds over large areas. For instance, 

the Near Infra-Red (NIR) band is theoretically well-suited for detecting open water surfaces 

from optical images, due to the strong water absorption in the NIR range (Verdin, 1996). 

However, because of some complicating water characteristics such as turbidity and/or the 

presence of aquatic vegetation (seaweed, duckweed, and others), the NIR band alone is not 

sufficient to properly distinguish open water surfaces (Puech, 1994). Indices were therefore 

developed combining the NIR band with other bands, such as the Normalized Difference 

Water  Index as  defined by Gao et  al.  (1996) (NDWI1)  and the Normalized  Difference 
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Water Index as defined by Mc Feeters et al (1996) (NDWI2). The former is a combination 

of NIR and Green (G) bands, while the latter combines NIR and Middle Infrared (MIR). 

The  Normalized  Difference  Vegetation  Index (NDVI)  initially  defined  for  vegetation 

studies (Townshend, 1986; Tucker, 1979) was also proven useful for detecting water and 

silt-laden  open  water  from  lateritic  soils  (Caloz  et  al.,  1996).  Lastly,  the  Modified 

Normalized Difference Water Index (MNDWI) was derived from the NDWI2 by the use of 

MIR instead of NIR (Xu, 2006). The negative of the MNDWI has also been used in other  

studies,  and  is  called  the  Normalized  Humidity  Index  in  (Clandillon  et  al.,  1995)  or 

Normalized Difference Pond Index (NDPI) in (Lacaux et al., 2007).

A method using NDVI and NDWI2 indices  was developed by the Global  Environment 

Monitoring Unit of the European Joint Research Centre to map temporary ponds of about 

100 ha in size in Sahelian areas with SPOT4-Vegetation (Haas et al., 2006). Puech (1996) 

showed that SPOT4-XS images with 20 m pixel resolution could be used for estimating 

pond areas  (>  10  ha)  in  Niger  with  95% accuracy,  and  their  water  volume  with  70% 

accuracy.  Using high spatial  resolution data from SPOT5-HRG (10 m pixel resolution), 

Lacaux et al (2007) proposed the NDPI to detect small ponds of 0.5 ha.

Several studies have also reported the potential for producing time series images by coarse-

scale satellite sensors like AVHRR (Advanced Very High Resolution Radiometer), MODIS 

(Moderate  Resolution Imaging Spectroradiometer),  and SPOT-Vegetation for vegetation 

monitoring  (Beck et  al.,  2006;  Boles  et  al.,  2004;  Maignan,  2008;  McCloy and Lucht, 

2004).  Nevertheless, there are relatively few such studies on water body monitoring,  as 

most of them  monitor large water areas and are concerned with either flood monitoring 

(Barton and Bathols, 1989; Sandholt et al., 2003) or water storage in large lakes (Dingzhi P. 
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et al., 2005). The spatio-temporal dynamics of large water bodies can be monitored every 

10 days using SPOT-Vegetation images time series (Haas et al., 2006), whereas the follow-

up of small ponds derived from high spatial resolution images was only possible with 5 

images/year (Lacaux et al., 2007).

When facing the problem of detecting and monitoring temporary ponds over large areas, 

the  task  of  choosing  among  different  remote  sensing  options  in  terms  of  spatial  and 

temporal  resolutions,  spectral  indices,  or  methodological  approaches  can  be  quite 

challenging. A trade-off between spatial and temporal resolutions is often inevitable, but 

can be based only on a priori reasoning due to the lack of appropriate comparative studies. 

The objective of this study is to address this issue by reviewing available methods for the 

selection of optical sensors to detect, map, and monitor water bodies in arid areas. Methods 

built on radiometric, spatial, and multi-temporal characteristics are applied using different 

optical remote sensing datasets from the same study area, which is representative of the 

West African Sahel region, and then comparatively assessed.     

2. Study area and data

Study area.  The study was conducted within an area of approximately 11x10 km around 

the village of Barkedji (15.22° N, 14.86° W) in North Senegal (Figure 1). Located in the 

Ferlo Valley, the study area is characterized by a complex and dense network of ponds that 

are  filled  during  the  rainy  season (from July  to  mid-October).  These  temporary  ponds 

provide  water  to  semi-nomadic  and  nomadic  populations  that  herd  their  flocks  on  the 

surrounding arid lands. The arid climate causes the water level of these ponds to fluctuate 

and  decrease  from  July  to  October,  via  infiltration  favored  by  sandy-loam  soil,  high 
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evapotranspiration, and human and animal consumption (Diop et al., 2004). All ponds in 

the study area, except the large Barkedji pond, dry out during the dry season (Figure 1).

(Figure 1 here)

Pond locations. In total, 98 ponds were located using a Global Positioning System receiver 

(GPS), then surveyed and described in detail in terms of water quality and vegetation type 

(September 2006). The GPS points collected at  the pond boundary were later manually 

relocated  to  the  center  of  the  pond  by  photo-interpretation,  using  a  very-high  spatial 

resolution Quickbird image (see the remote sensing data section). This field survey showed 

that most of the ponds in the study area are small ponds (33% of ponds with an area less 

than 1000 m2 and 64% with less than 2600 m2), with the smallest covering only 74 m2 and 

the biggest being the Barkedji pond with ~347,400 m2.

Hydrological and meteorological  data.  We used water height data from the 2001 and 

2002 rainy seasons (July – December), collected daily from water level meters placed at the 

center of three ponds: Mous, Furdu and Barkedji (Figure 1). Rainfall data was collected 

daily during the same time period from a rain gauge located in the village of Barkedji.

Remote sensing data. Optical Earth Observation System (EOS) sensors data with different 

spectral  and  spatial  resolutions  were  acquired  between  2001  and  2005  (see  Table  1). 

Quickbird and Landsat Enhanced Thematic Mapper (ETM+) images were acquired during 

the rainy season in order to correspond with the time period of the pond location ground 

survey. Then 16-day composite images of NDVI (MOD13Q1/V05) were acquired for the 

period corresponding to the hydrological data survey (rainy seasons 2001 and 2002). We 

verified the homogeneity of the acquisition dates within our study area using the “250m 16 

days composite day of the year” product. As a result, 2 of the 24 initially selected MODIS 
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NDVI composite images were removed from the analysis because the NDVI values were 

acquired on different days.

 (Table 1 here)

3. Method

3.1 Spectral analysis

We used the ETM+ image (radiance values) to assess the capacity of different  spectral 

indices to correctly map the ponds within our study area. Indeed, with six spectral bands, 

the ETM+ sensor enabled us to compare the main water indices described in the scientific 

literature (Table 2). 

(Table 2 here)

The  98  GPS-located  ponds  were  used  as  ground-truth  reference  (“pond  pixels”).  One 

hundred additional pixels were randomly selected outside of the ponds (“non-pond pixels”) 

using  Geographic  Information  System  (GIS)  functionalities  (GIS  software:  ESRI 

ArcGISTM). 

The predictive accuracy of the indices was assessed using the ROC (Receiver Operating 

Characteristic) curve method (Park et al., 2004). The ROC curve represents variations in 

the sensitivity (% of pond-pixels properly classified) and the specificity (% of non-pond 

pixels properly classified) of an index with varying threshold-value. The AUC (Area Under 

Curve)  of  the  ROC curve  and its  95% confidence  interval  was calculated  for  the four 

indices.  The greater  the AUC, the more discriminating  the index, is  and the closer the 

predictions are to the observed data.

We completed this analysis by studying the spectral signatures of the primary land cover 

types represented in the study area. The values of the four water indices were extracted 
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from pixel samples of water, water colonized by aquatic vegetation, active vegetation, and 

bare soil and lateritic soil.

3.2 Spatial resolution analysis

The impact of spatial resolution on pond detection was studied using the Quickbird image. 

The initial radiance image was gradually degraded from high (pixel size of 2.44 m x 2.44 

m) to low spatial resolution (1 km x 1 km) by factors of 2. We obtained 159 images in order 

to create a continuous spatial resolution gradient. NDVI was derived from the NIR and R 

bands (in  radiance  unit)  from each image.  The ponds were detected  in  each image by 

radiometric thresholding. A threshold value of 0.041 was chosen according to the spectral 

analysis  results.  For each spatial  resolution,  we then calculated  the number of detected 

ponds and their mean area.

Finally, the Landsat image and a MODIS image (10 August 2005) were processed to detect 

the water bodies with the same method (NDVI / threshold 0.041) in order to compare the 

results obtained from the Quickbird image when resampled at 30 m and 232 m, with results 

from real EOS data.

3.3 Times series analysis

The ability of optical EOS to monitor temporary ponds was assessed using a time series of 

MODIS NDVI images. Due to their simplicity, we used the MODIS NDVI layer. NDVI 

mean values were extracted within a 3x3 pixel window at the Mous, Furdu and Barkedji 

ponds (Figure 1) to avoid geometric transformation uncertainty.  Because of the MODIS 

spatial resolution and the small size of the ponds, this value reflects the state of the water 

area and of its surrounding environment (i.e., vegetation and soils). 
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To evaluate and quantify the relationship between NDVI and the water heights time series, 

we  used  an  empirical  temporal  cross-covariance  (see  Appendix),  which  is  useful  for 

comparing two temporal series with different temporal steps (i.e., 16 days for the MODIS 

NDVI data, 1 day for the water height measurements). The temporal cross-covariance was 

computed for each pond between the MODIS NDVI and the water height original time 

series, for  ∆t  ranging from -40 to +40 days with a temporal step of 4 days.  To test the 

statistical significance of the results, we followed a Monte-Carlo procedure, independently 

randomizing  the  values  of  the  temporal  series  1000  times.  The  cross-covariance  was 

computed on each simulated dataset to obtain 95% confidence intervals of cross-covariance 

value under the assumption of randomness. The statistical analysis was performed using R 

(R Development Core Team, 2006).

We applied this analysis to the entire time series (from July to mid-October) and to time 

series corresponding to only the rainy season (from July to mid-September)  in order to 

exclude the emptying phase of the ponds. Indeed, since NDVI indicates the chlorophyll 

activity of the vegetation, the NDVI index may remain high at the end of the rainy season 

even while precipitation is rare and ponds are empty (Schmidt and Karnieli, 2000). 

Finally, we used the same test to evaluate the relationships between cumulative rainfall and 

water heights and between cumulative rainfall and MODIS NDVI values.

4. Results

4.1 Spectral analysis

According to the ROC analysis, the two indices using the MIR band, i.e., the MNDWI and 

the NDWI1, are the more discriminating indices for the detection of water bodies,  with 
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AUC values of 0.90 and 0.77, respectively (Figure 2). The two other spectral indices, the 

NDVI and the NDWI2, are less appropriate according to our study area, with AUC values 

of 0.60 and 0.46, respectively. 

(Figure 2 here)

Studying the spectral  signatures of the primary land cover types allowed us to interpret 

these  results,  highlighting  confusion  between  some  land  cover  types  (Figure  3).  The 

MNDWI appears to be the most efficient at isolating free water areas, which return positive 

MNDWI values whereas all others land cover types return negative values. However, this 

index does not distinguish water with vegetation from vegetation alone.

The NDWI1 allows proper distinction of bare and lateritic soils from other land cover types, 

but does not separate water bodies from vegetation areas. 

The NDVI has a low level of free water detection,  often confusing bare soils with free 

water.  The  fact  that  most  water  ponds  are  turbid  in  the  Sahel  region  leads  to 

misinterpretation of turbid water bodies as bare soils.

Lastly, the NDWI2  appears to be inadequate for discriminating between the different land 

cover types in our study area, as they all return very similar index values. 

(Figure 3 here)

4.2 Spatial resolution analysis

As  expected,  the  results  of  the  spatial  resolution  analysis  showed  that  higher  image 

resolution corresponded to a higher number and smaller size of detected ponds (Figure 4). 

The shape of the curve highlights a quasi-linear relationship between the spatial resolution 

and  the  size  of  the  detected  ponds  for  ponds  less  than  26500  m2 in  size.  Above  this 
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threshold value, the size/resolution relationship is more difficult to interpret, since there are 

very few large ponds (2) within the study area.

The number of ponds detected using real EOS data from Landsat and MODIS imagery (32 

and  3,  respectively)  were  in  agreement  with  the  number  of  ponds  detected  using  the 

resampled Quickbird images at 30 and 232 meters (31 and 1, respectively).

 (Figure 4 here)

4.3 Times series analysis

A significant correlation was observed between the MODIS NDVI series and the water 

heights measured in the field for the three ponds of Mous, Furdu and Barkedji (Figure 5). 

The  cross-covariance  maxima  (Barkedji:  cov=0.64,  p<0.05;  Furdu:  cov=0.71,  p<0.05; 

Mous:  cov=0.55, p<0.05)  were observed for different  time lags  (Barkedji:  ∆t=+6 days; 

Furdu: ∆t=-6 days; Mous: ∆t=-2 days), indicating that MODIS NDVI increases a few days 

before  the  rise  in  water  height  in  the  smaller  ponds  (Furdu  and  Mous),  whereas  that 

relationship is inverse for the larger pond (Barkedji pond).

When the emptying phase water height values are removed from the analysis, the results 

show a higher correlation between MODIS NDVI values and water heights for the Furdu 

and Mous ponds (Furdu: cov= 0.81, p<0.05 and Mous: cov=0.80, p<0.05), and no change 

for the Barkedji pond (cov=0.61, p<0.05) except for a shortened time lag.

On  the  other  hand,  water  heights  are  poorly  correlated  with  cumulative  rainfall  data 

(Barkedji:  cov= 0.25, p<0.05; Furdu:  cov= 0.29, p<0.05; Mous:  cov=0.40, p<0.05), with 

short time lags ranging from – 2 days to – 10 days, meaning that the increase in water 

height occurs a few days after the increase in rainfall.
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(Figure 5 here)

5. Discussion

Unlike a review article, the results presented above pertain to one particular study area for 

which significant baseline, or ground-truthing, work had also been carried out. This ensures 

that different methods or indices can be compared directly for identical situations, and their 

relative performances can thus be quantitatively assessed. In this way, the present work 

brings  useful  new information  that  may  help  substantiate  the  choice  of  an  appropriate 

remote sensing option for monitoring water bodies in arid areas. 

The study on spectral indices showed that the indices using the MIR band as the MNDWI 

(Xu, 2006) and the NDWI1 (Gao, 1996; Hardisky, 1983) are the most efficient indices for 

detecting water bodies in arid areas. According to our results, the MNDWI is particularly 

suited to the detection of free water (Xu, 2006). Neither of those two indices enables the 

distinction of aquatic vegetation from the vegetation surrounding the ponds. However, this 

may not limit the use of remote sensing for the detection of water bodies in Sahel areas, as 

in such areas ponds are typically surrounded by land with sparse vegetation cover, which is 

a  symptom of  continuous  over-use,  trampling,  and overgrazing.  The  two other  indices 

tested in our study, the NDVI (Townshend, 1986; Tucker, 1979) and NDWI2 (McFeeters, 

1996), showed a low capacity for detecting free water bodies at the spatial resolution of 

Landsat ETM+. Nevertheless, higher scores might be expected if these indices were to be 

derived from higher spatial resolution data.

The results of the spatial analysis highlighted the strong impact of the spatial resolution on 

the characteristics of the detected ponds. Moreover, the results lead to a recommendation in 

terms of sensor system choice for a given minimal pond area. According to our results (see 
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Figure 4), Very High Spatial Resolution imagery such as Quickbird, Ikonos and SPOT5 

sensors may be useful to detect small ponds with an area of as low as 70 m2 (one pond in 

our study area). High-resolution satellite data such as SPOT 4-HRVIR and Landsat ETM+ 

allows the identification of ponds with sizes ranging from about 1100 m2 to 2500 m2 (27 % 

ponds). Medium spatial resolution sensors like MODIS allow the detection of ponds greater 

than 1,700,000 m² (3). Finally, the SPOT Vegetation sensor, with a pixel size of 1 km x 1 

km, is found inappropriate for identifying the ponds in the study area. 

Since optical EOS allows the detection of water bodies in arid areas at different spatial 

resolutions  as  assessed  in  the  previous  section,  the  monitoring  of  the  ponds’  temporal 

dynamics may be performed using the same type of imagery. Nevertheless, because of a 

common compromise between EOS spatial and temporal resolutions, high spatial resolution 

sensors may only provide a punctual  information,  such as about  5 images/year  for one 

given site covered by SPOT5-HRG data (Lacaux et al., 2007).

Thus,  the  utility  of  medium  spatial  resolution  image  time  series  for  monitoring  the 

hydrologic dynamics of water bodies in arid areas with a high temporal frequency appears 

very promising. Our results show a strong correlation between MODIS NDVI values and 

water heights collected in the field. Further, the MODIS NDVI time series data seem to be 

efficient at identifying the filling phases of the ponds. Indeed, the statistical relationship 

between MODIS NDVI and the water height time series was strengthened by removing all 

water height data corresponding to the emptying phase of the ponds.

These results highlight the added value of using remotely sensed data over meteorological 

data for monitoring ponds in arid areas. The shortened time lag (-2 to -6 days) between the 

NDVI value and the water height is in agreement with hydrological studies showing that 
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the filling of ponds in arid areas is mainly due to water streaming, and not to direct rain 

contribution (Desconnets et al., 1993) In the Sahelian context of the study, the vegetation 

indices such as the NDVI are good proxies for detecting variations in humidity and water 

heights, as they are linked to the chlorophylian activity of the vegetation surrounding the 

ponds.

Moreover,  it  is  interesting  to  note that  water  heights  could be monitored  with MODIS 

imagery not only for larger ponds as Barkedji (347,400 m2), but also for smaller ponds of 

about 2000 m2 such as Furdu and Mous, which were not detected as ponds using a single 

date of MODIS imagery according to the results of the spatial  resolution analysis.  This 

suggests a complementary use of optical EOS for water body detection and monitoring in 

arid  areas.  Indeed,  for  the  MODIS  sensor  to  be  efficient  in  the  monitoring  temporal 

dynamics of smaller ponds, they must be geo-located beforehand. If the monitoring begins 

just before the beginning of the rainy season, an initial reference state can be obtained from 

which it would be possible to track successive filling phases of each pond during the rainy 

season. Even if the water height cannot be directly obtained, the hydrological phasing of the 

water bodies is in itself an interesting parameter that could be useful to various disciplines.

1. Conclusion  

In this paper, we reviewed available methods of locating and monitoring temporary water 

areas, in terms of their  spatial  and temporal  resolutions and spectral  indices,  over large 

areas in arid lands. The study highlights three main results that are validated with field data. 

Until now, among the water indices tested (MNDWI, NDWI1, NDWI2 and NDVI) from a 

Landsat ETM+ image, the MNDWI and the NDWI2, which both use the MIR band, are 

found to be more efficient for detecting water bodies in arid areas. However, our study of 
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the effects of resolution on detection of temporary ponds showed that the resolution could 

improve a less efficient  index like the NDVI or the NDWI1.  Herein we have provided 

detailed criteria to help any user choose the optical sensor best fitted to the minimum size 

of ponds that need to be located. Finally, the results of the temporal study demonstrated the 

potential of EOS, like MODIS, to monitor small ponds dynamics; the analysis of MODIS 

data time series enables the identification of important  rainfall  events,  and thus enables 

estimation of the filling phases of small  ponds,  even if  they have not been detected in 

MODIS images. 

Results  concerning  the  location  and the  monitoring  of  water  bodies  using  EOS should 

prove interesting for a large array of applications: in epidemiology, for the prevention of 

vector-borne diseases,  and especially  to  study and assess ponds known to be favorable 

mosquito breeding sites (Mondet, 2005); in pasture land management, for water resource 

assessment; and in ecology, to contribute to the preservation of threatened ecosystems that 

natural habitats to a variety of species.
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Appendix

The cross-covariance is defined by:

BA
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∑
= (Equation. 1)

where A=(a1,a2,…,ana) and B=(b1,b2,…,bnb) are the two series to be compared (with na≠nb), 

A , B , σA and σB their respective mean-values and standard deviations and n the number 

of pairs (ai, bj) with a temporal distance < ∆t.

This statistical index allows for the test of whether two temporal series are correlated with a 

given temporal  time-lag.  It  returns  values  ranging from -1 (negative  correlation)  to  +1 

(positive correlation). A maximum of cross-covariance observed for  ∆t =  ∆tmax indicates 

that the values of the first time series at time t are correlated with the data of the second 

temporal series at time t + ∆tmax.
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Tables

Table 1. Characteristics of the satellite data used in the study

Satellite / Sensor Acquisition date Bands  and  indices 
available*

Pixel  
width (m) 

Number of  
images

Quickbird 2005 - 08 - 04 B, G, R, NIR 2.47 1 
Landsat7 / ETM+ 2000 - 09 - 12 B, G, R, NIR, MIR, 30 1
Terra / MODIS** Rainy season 

2001 and 2002, 
(from July to 
November )

B, R, NIR, MIR, NDVI, EVI 231 24

2005-08-10 B, R, NIR, MIR, NDVI, EVI 231 1

* B: Blue; G: Green; R: Red; NIR: Near Infrared; MIR: Middle Wave Infrared; NDVI: Normalized Difference 

Vegetation Index; EVI: Enhanced Vegetation Index
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**  Product  ‘MOD13Q1  MODIS  Terra  Vegetation  Indices  16-Day  L3  Global  250m  SIN  Grid  V005’  (Land 

Processes Distributed Active Archive Center, http://lpdaac.usgs.gov/datapool/datapool.asp)
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Table 2. Spectral indices from the scientific literature used for water body detection

Index Band ratios* Reference
NDVI = Normalized 
Difference 
Vegetation Index

(NIR – R) / (NIR+R) Tucker (1979) ;  Towshend and 
Justice (1986)

NDWI1 = 
Normalized 
Difference Water 
Index

(NIR-MIR) / (NIR+MIR) Gao (1996),Hardisky (1983); 

NDWI2 = Normalized 
Difference Water 
Index

(G-NIR) / (G+NIR) Mc Feeters (1996)

MNDWI = Modified 
Difference Water 
Index 

(G-MIR) / (G+MIR) Xu (2006)

NHI = Normalized 
Humidity Index

NDPI = Normalized 
Difference Pond 
Index

(MIR-G) / (G+MIR) Clandillon, (1995), Lacaux & al 
(2007)

* NIR: Near Infrared; R: Red; G: Green; MIR: Middle Infrared 

Figures

Figure 1: 

Part of the study area (~11*10 km), centered on the Barkedji village, Ferlo Region, 

Senegal. The yellow line indicates the contours of Barkedji, Mous, Furdu ponds.
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Figure 2

Results of the ROC (Receiver Operating Characteristic) analysis of four spectral indices 

used for water body detection in a Sahelian area.
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Figure 3

Values of MNDWI, NDVI, NDWI1 and NDWI2 indices derived from a Landsat ETM+ 

image for different land cover types, Ferlo region, Senegal.
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Figure 4

Relationship between spatial resolution of remote sensing images and the characteristics of 

detected ponds (area and number).

The line corresponds to the simulated values (degradation of the Quickbird image spatial 

resolution). The dots indicate the spatial resolution of the main optical EOS (QuickBird, 

Ikonos, SPOT 4, SPOT 5, Landsat, Modis, SPOT Vegetation).
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Figure 5

Cross-covariance of (a) water-levels and MODIS NDVI data, (b) water-levels and MODIS 

NDVI from July to September and (c) rainfall  and water-levels.  The Mous, Furdu, and 

Barkedji ponds, in the Ferlo region, Senegal, 2001-2002. 

The red line indicates  the temporal-lag with the maximum value for the cross-variance 

index.  Dot-lines  are  envelopes  of  the  95% confidence  interval  of  the  cross-covariance, 

under the assumption of randomness.
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