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Statistical mechanics on isoradial graphs

Cédric Boutillier and Béatrice de Tiliere

Abstract Isoradial graphs are a natural generalization of regukgplgs which give,
for many models of statistical mechanics, the right franwor studying mod-
els at criticality. In this survey paper, we first explain hmeradial graphs natu-
rally arise in two approaches used by physicists: transfrioes and conformal
field theory. This leads us to the fact that isoradial grapbsigde a natural setting
for discrete complex analysis, to which we dedicate ond@ecThen, we give an
overview of explicit results obtained for different modelsstatistical mechanics
defined on such graphs: the critical dimer model when the nlyidg graph is bi-
partite, the 2-dimensional critical Ising model, randoniknand spanning trees and
theg-state Potts model.

1 Introduction

Statistical mechanics aims at describing large scale ptiepeof physics systems
based on models which specify interactions on a microsdepé. In this setting,
physics systems are modelled by random configurations @hgrambedded in a
d-dimensional space. Since vertices typically represamhat the goal is to let the
mesh size tend to zero and rigorously understand the ligiit@havior of the system.
Although real world suggests that we should focus on the c3adimensional
systems, we restrict ourselves to the case of dimension&eTdre two main rea-
sons guiding this choice: first, for models we consider, @rly few rigorous results
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exist in dimension 3, and more importantly, 2-dimensiogatems exhibit beautiful
and rich behaviors which are strongly related to this chofa@imension.

Historically, the most studied graph is certaitil¥, followed by the honeycomb
and triangular lattices. Since solving statistical meatgmodels involves dealing
with combinatorial and geometric features of the undedyraph, it has been most
convenient to handle the simplest and most regular onesekfavin this paper, we
deal with models defined on a more general class of graphedisdradial graphs

The motivation behind this generalization is to find the naggiropriate setting,
which exhibits some essential features required to soleeytiestions addressed,
thus allowing for proofs revealing the true nature of thehpems, and hopefully
a full understanding of the issues at stake. Before goingfartiier, let us define
isoradial graphs and the corresponding rhombus graph.

Definition 1. A graphG = (V,E) is said to basoradial [Ken02b], if it has an em-
bedding in the plane such that every face is inscribed incdeoif radius 1, and such
that all circumcenters of the faces are in the closure ofdbed.

From now on, when we speak of the graphwe mean the graph together with a
particular isoradial embedding in the plane. Examplesafidial graphs are given
in Figure 1 below, in particulaZ?, the honeycomb and triangular lattices are isora-
dial.

Fig. 1 Examples of isoradial graphs: the square lattice (lef§ fibneycomb lattice (center), and a
more generic one (right). Every face is inscribed in a ciofleadius 1, represented in dashed lines.

To such a graph is naturally associated dimemond graphdenoted byG°®, de-
fined as follows. Vertices d&° consist in the vertices db, and the circumcenters
of the faces of5. The circumcenter of each face is then joined to all vertigkish
are on the boundary of this face, see Figure 2. Staég isoradial, all faces o&°
are side-length-1 rhombi. Moreover, each eégef G is the diagonal of exactly
one rhombus$e of G°; we let 6; be the half-angle of the rhombus at the vertex it
has in common witte. For later purposes, we label vertices of the rhomRuby
V1, V2, V3, Vg, @S in Figure 2 (right).

Isoradial graphs naturally arise in two different apprascto statistical mechan-
ics. We describe them in the next two sections.
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Fig. 2 Anisoradial graph (left). The white dots are the circumeenbf the faces, which are also
the vertices of the duab*. Its diamond graph is represented in the center. On the iggtite
rhombusRe and the half-rhombus angl assigned to an edge

G<>

1.1 Transfer matrices, star transformations argtinvariance

The first question addressed when solving a model of stalsthechanics is to
compute thdree energywhich is the growth rate of thpartition function count-
ing the weighted number of configurations. An important teghe introduced by
physicists to solve two-dimensional models is the us&arisfer matriceswhich
appears for the first time in the work of Kramers and WanniéVgla, KW41b]. If

a model of statistical mechanics with local interactiondéfined on a torus of size
nx m, then the partition functioZm,n can be expressed as the trace of itHeld
product of atransfer matrix T, whose rows and columns are indexed by the config-
urations of the model in a strip x 1, and if4” and%” are two such configurations,
then the matrix elemerit, - is the contribution to the Boltzmann weight of the
interactions inf¢’ and%” are in consecutive strips. The free energy of the mddel
can be expressed in terms of the largest eigenvalliedenoted by;:

f=— lim iIog(Z,m,) = fnlqiLn %Iog()\l).

m,n—c MN

If the interaction constants on the graph are not homogeneban the trans-
fer matrices used to pass from one strip to another are éifteff we want to be
able to compute the free energy, as in the homogeneous oaseiris of spectral
characteristics of the transfer matrices, then these dramwhmute.

N

L
(7

m

Fig. 3 Transfer matrices for an inhomogeneous model omihen torus.
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Since the interactions are local, the transfer matricetharaselves sums of local
operatorfk acting on configurations at neighboring sites, and diagratizaily rep-
resented by one rhombus of a strip. A sufficient conditiomisuee the commutation
of transfer matrices is to demand that th&smatrices satisfy some algebraic rela-
tion, called thevang-Baxter equationsvhich can be loosely formulated as follows.
Consider the two ways to tile a hexagon with the same thrembhon Figure 4.
The transformation from one to the other is callestar-star transformationThe
model satisfies the Yang-Baxter equations if the sum of Budtzn weights over lo-
cal configurations of the left hand-side equals those ofitte hand side. This very
strong constraint gives a set of equations which needs tatisfisd by Boltzmann
weights, see [PAY06, Bax89] for more details. If a non trigalution is found, we

-

Fig. 4 Star-star transformation (the narsir referring to the 3-branches stars).

say that the model ig-invariant

The condition ofZ-invariance yields a natural generalization. Supposettieat
graph embedded on the torus of sire< n is a periodic tiling by rhombi (where
the period is independent af andn). Then by performing a sequence of star-star
moves, this graph can be transformed into big pieces ofitilties ofZ? [Ken02a)].
If boundary effects can be neglected, then it suffices toestiie model on each of
the copy of pieces df? using transfer matrices. Summarizing, if the modetis
invariant, then it can be solved on any periodic graph ctingi®f rhombi.

Consider an isoradial grafghand recall that a unique rhombus of the underlying
diamond grapl&® can be assigned to every edge&fThen, looking at edges rather
than rhombi, the star-star transformation becomesaatriangle transformation

see Figure 5 below.

Fig. 5 Star-triangle transformation for isoradial graphs.

The definition oZ-invariance naturally extends to this setting, and if theleids
Z-invariant the transfer matrix approach can be performe@ihus explaining the
occurrence of isoradial graphs afdnvariance in the context of transfer matrices.
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1.2 Conformal field theory and discrete complex analysis

Conformal field theory (CFT), introduced by Belavin, Polgaland Zamolodchikov
[BPZ84] (see also [DFMS97]) is a theory which aims at deseghnodels at crit-
icality, supposed not to depend on specificities of the graptl to beconformally
invariant This very strong statement remained largely inaccessibtee mathe-
matics community (except for a few models, such as dimerersguare lattice
[Ken0Q]) until the introduction of the SLE process by Schrnaim 1999. The SLE
is conformally invariant and conjectured to be the limitpicess for many mod-
els of statistical mechanics, thus filling a huge gap with GFr relations between
CFT and SLE, see for example [FWO03, BB04]. Several of thesgectures are
now solved: loop erased random walk and uniform spannirgtrawler, Schramm,
Werner [LSWO04]), site percolation on the triangular la&t{&mirnov [Smi01]), Ising
(Smirnov [Smil0], Chelkak and Smirnov[CSb]). ..

It is thus of key importance to have a setting suitable fondaliscrete complex
analysis, and proving convergence to its continuous copate To this purpose,
isoradial graphs are a perfectly suited object. Indeednveoasidering an edge and
its dual, they consist in the two diagonals of a rhombus, ardfaus orthogonal.
This allows for a natural discretization of the Cauchy-Rieam equation. Since a
lot of developments have happened in this direction, weade€it the next section.

2 Discrete complex analysis on isoradial graphs

As mentioned above, isoradial graphs provide a naturaldveank for a generaliza-
tion of the construction in the case of the square lattice. iflbas presented here go
back to Duffin [Duf68], and have been developed later by Mdidar01], Kenyon
[Ken02b], Chelkak and Smirnov [CSa], Cimasoni [Cim] andesth There are other
possible discretizations of complex analysis on isoragiaphs with remarkable
properties. An example using the notion of cross-ratiosviergin [BMSO05].

2.1 Discrete holomorphic and discrete harmonic functions

Let us start with the notion of discrete holomorphy. In thatawuous setting, the
Cauchy-Riemann equations satisfied by a holomorphic fanatiply that its partial
derivatives along two orthogonal unit vectors differ by atfai. In the setting of
isoradial graphs, one takes advantage of the fact that fsc@8$ are rhombi, and
thus have perpendicular diagonals, to write down finiteedéhce equations which
are discretizations of Cauchy-Riemann equations.

Let f be aC-valued function on vertices @°, let e be an edge o6, andRe be
the corresponding rhombus with the labeling of its vertiegss,, vs, v4, given in
Figure 2. We say that the functidnis discrete holomorphiat the rhombug, if:
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f(va) — F(v0) _ Fva)— F(v2)

V3 — V1 V4 —V2

More generally we define a discrete operagorCY (") — CE(G), py:

31(0) = (u—va) ve—vp) | (S0 TV 55 g,

where _

Oey; = i(Vj-1—Vj31), 1)
with indices written mod 4. A functioffi is then said to beiscrete holomorphic on
G, if f = 0. Similarly, we define an operatdrby replacing the coefficien@sy,
by their complex conjugate.

The operatorg andd can be extended to 1-forms (frofF(®) to CV(C"): let g
be aC-valued function on edges @, then for allv € V(G°),

The extension of the operatdris again obtained by replacing coefficients by their
complex conjugate. -~

Note that the normalization of the operatorandd we adopt here differs from
that chosen by Mercat, or by Chelkak and Smirnov. One carvegtbeir normal-
ization by multiplying our operators by diagonal operatrtng on edges. So these
variations do correspond to the same notion of discretenhotphy.

An notion intimately connected to holomorphy is that of hanicity. The
Laplace operatoA on G can be written as the restriction 89 to functions sup-
ported onG 1. Its action on a functiori defined on vertices d& is given by

WeG, Af(v)=20(f)(v)= Z tanByy(f(u) — f(v)).

U~V

A function f is said to bealiscrete harmonid A f = 0. This corresponds to choosing
for every edgee, a conductance equal to tén

From the factorisatiodd = dd, one sees that, like in the continuous case, the re-
striction of a discrete holomorphic function®(resp.G*) is harmonic. Conversely,
if H is a harmonic function of®, there exists a harmonic functidi* on G* such
thatH + iH* is discrete holomorphic.

From this choice of Laplacian, one can define the discretitvgunas of classical
quantities in continuous potential theory (Green functloisson kernel, harmonic
measure,...). A surprising amount of estimates have aalesgersion, and can be
found in [CSa].

Discrete complex analysis can serve as an approximatidmecédntinuous the-
ory. Mercat [Mer01] proved that the pointwise limit of a segae of discrete holo-

1 One can define in a similar way a Laplacian®hby restricting the same operat@§ to G*
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morphic functions on isoradial graphs in a domain with a mgsimg to zero is
holomorphic. See [Cim] for a generalisation of this resalisoradial discretization
of compact manifolds. These local convergence results bega supplemented by
global convergence theorems [CSb], implying in partictharuniform convergence
for the discrete potential theory objects to their contimsioounterparts.

2.2 Discrete exponential functions

There is a class of functions playing a special rdle in theoty. These functions,
calleddiscrete exponential functionare defined recursively 0&°. For any given

vertexvg of G* and anyA € C, the function Exp,(-;A) is defined as follows: its
value atvg is 1, and ifv; andv, are neighbors it6°, leté? = v, — vy, then:

14+A€°
Exp, (V2;A) = Exg,o(vl;}\)m.

The name comes from the fact that these functions satisfiptlosving identity:
for any pair of neighbouring verticag andv, of G°,

Expy, (V2;A) +Expy, (Vi;A)

Exp,, (V2;A) — EXp (Vi;A) = A 5

(VZ - Vl)a
which is a discrete version of the differential equation
dexpgAx) = A exp(Ax)dx.

satisfied by the usual exponential function. It is straigiwfard to check from the
definition that Exp,(-;A) is discrete holomorphic. In fact, Bobenko, Mercat and
Suris [BMS05] show that any discrete holomorphic functi@m de written as a
(generalized) linear combination of discrete exponetitiattions, at least under
the quasicrystallic assumption (a finite number of slope®:, ... +&% for the
rhombi chains): iff is a discrete holomorphic function @&, then there exists a
functiong(A ) defined on a neighborhood@of {+€%,... +€%} such that

WeG®, f(v)= 7/{' Exp,,(V;A)g(A)dA,

wherel™ is a collection of disjoint small positively oriented conts around the
possible pbdles-€? of the integrand.
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2.3 Geometric integrability of discrete Cauchy-Riemannuadgions

An important feature of the discrete Cauchy-Riemann is topgrty of3D consis-
tency[BMSO05]. Let f be a discrete holomorphic function @i. Given its value on
three vertices of a rhombus, the other can be computed uséndiscrete Cauchy-
Riemann equation.

If a star-startransformation is realised on the gra@h (see Figure 4), can we
determine the value of the functidnat the new vertex in the center, so tHats
again discrete holomorphi@® priori, there are three different ways to compute a
possible value: one for each rhombus. It turns out that theetiialues obtained are
equal.

Under the quasicrystallic assumptidsf, can be seen as a monotone surface in
74, projected back to a properly chose plane. The star-staensavlocal displace-
ment of this surface along the faces of a cube. If given two atmmic surfaces
and %, in Z9 that can be deduced one from the other by a sequence of atar-st
moves, then there is a canonical way to extend a discretertoofhic functionf
defined on2; to 2, by “pushing” its values along the deformation making use of
the Cauchy-Riemann equations. In this sense, this 3D densig can be consid-
ered as a notion dhtegrability [BSO8]. This property is very much related to the
Z-invariancein statistical mechanics.

2.4 Generalization of the operatcr;

The double graplGP of G is a planar bipartite graph constructed as follows, see
also Figure 6 below. Vertices @° are decomposed into two classes: black vertices,
which are vertices o6 and ofG*, and white vertices, which are the centers of the
rhombi of G°, seen either as edges Gfor as those oG*. A black vertexb and

a white vertexw are connected by an edge@? if the vertex corresponding to

is incident to the edge correspondingwdn eitherG or G*. That is, edges ofP
correspond to half diagonals of rhombi@f. It turns out thaGP has an isoradial
embedding (with rhombi of side—lengﬁ) obtained by splitting each rhombus®f

into four identical smaller rhombi.

The operatod : CV(¢") — CE(®) of Section 2.1 can be interpreted now as an
operatord : CB(C”) — CW(E”) whereB(GP) (respW(GP)) denotes the set of black
(resp. white) vertices dBP. Let f be aC-valued function defined on black vertices
of GP, then for every white vertex @&P:

It (W)=Y dupf(b).

b~w

Let w,x,b,y be the vertices of a rhombus enumerated in cclw order, sovikat
W(GP) andb € B(GP). Then by Formula (1),
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Fig. 6 The double grapi&P of the graph on the right of Figure 1: in thick full lines is theginal
graphG, in full lines is the dual grapke*, in dotted lines is the underlyinG® graph.

Oup =1(X—Y). (2)

This definition can be extended to any bipartite isoradiapr see Section 3.1.

For a detailed study of this operator on isoradial graphsoonmpact surfaces and
its connections with discretization of geometric struetu(especially spin struc-
tures), see [Cim].

3 Dimer model

Thedimer modelepresents the adsorption of diatomic molecules on thaceigf
a crystal. The surface of the crystal is modeled by a plarepty® = (V,E), which
we assume to be finite for the moment.dimer configuratiorof G is a perfect
matchingof G, that is a subset of edg®4 such that every vertex @ is incident
to a unique edge dfl. Denote by.# (G) the set of dimer configurations &. An

example of dimer configuration is given in Figure 8. Assurrat thpositiveveight
functionv is assigned to edges & that is every edge of G has weighte. Then,
when the grapl® is finite, the probability of occurrence of a dimer configioatM

is given by thedimer Boltzmann measure

V
Pdimer(M) = %,
imer

whereZgimer = Y me.#(c) [eem Ve is the normalizing constant known as tparti-
tion function

The dimer model has the attractive feature of being exadilyable, meaning
that there is an explicit expression for the partition fumet This fundamental result
is due to Kasteleyn [Kas61] and independently to TempenhelyFisher [TF61]. It
relies on the Kasteleyn matrix, which we now defineKAsteleyn orientation of
the graph Gis an orientation of the edges such that every faceldskwise odd
meaning that, when traveling clockwise around edges of @, fan odd number
of them are co-oriented. The correspondifasteleyn matrix Kis the associated
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signed, weighted, adjacency matrix of the graph: lines ahehens ofK are indexed
by vertices ofG, and for any two vertices,y of G, the coefficienKyy is:

Vxy if X~y and the edgey s oriented fronx to y
Kxy =14 —Wy if Xx~yand the edggyis oriented frony to x
0 otherwise

Theorem 1 ([Kas61, TF61]).The dimer partition function is,

Zgimer = | P(K)| = 1/detK).

Remark 1 The Pfaffian, denoted by Pf, of a skew-symmetric matrix is lgmpamial
in the entries of the matrix, which is a square root of the icheiteant.

Proof (sketch) Refer to [Kas67] for details. When writing out the Pfaffiaham
adjacency matrix as a sum over permutations, there is gxawct term per dimer
configuration. The issue is that each term comes with a sigpathe purpose of
the Kasteleyn orientation is to compensate the signaturesigns of coefficients.

As a consequence of Theorem 1, Kenyon derives an expliciesgon for the
dimer Boltzmann measure.

Theorem 2 ([Ken97]).Let E= {e; = x1y1, -+ ,6& = XkYk} be a subset of edges of
the graph G. Then, the probability that these edges are inn@ediconfiguration
chosen with respect to the dimer Boltzmann measure is;

?

k
Paimer( {1, &}) = ‘ (_rlei,yi> Pf((K™ "))

where (K~1)g is the submatrix of K! whose lines and columns are indexed by
vertices of E.

Proof. Since the proof is very short, we repeat it here. The prolaluf dimer
configurations containing edgesBfs given by the weighted number of these con-
figurations divided by the weighted number of all configuras. By expanding the
Pfaffian along lines and columns, this yields:

k c
Poimer({e1, -+, &}) = ‘ <i|_lKXi’Yi> % '

Using Jacobi's formula for Pfaffians [IWOQPf(Kee )| = | Pf(K) Pf((K~1)g)| yields
the result.

In Section 3.1, we state Kenyon's results for §1eperator on infinite, bipartite,
isoradial graphs. Then, in Section 3.2, we relate them tatimseesponding dimer
model.
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3.1 Dirac operator and its inverse

As mentioned in Section 2.4, tlgeoperator, also referred to as tB@ac operator
in [Ken02b], can be extended to infinite bipartite isoradjaphs. LeG be such a
graph, the set of vertices can be divided into two subBet¥V, where vertices in
B (the black ones) are only incident to vertice$\i(the white ones). Thed maps
CBtoCY: let f be aC-valued function on black vertices, then

(0F)W) = T dupf (b),

b~w

where, ifw, X, b,y, are the vertices of the rhombRgy, in cclw order,dyp = i(X—Y)
is given by Formula (2).

One of the main results of the paper [Ken02b] is an expligiregsion for the co-
efficients of the invers@, as a contour integral of an integrand which only depends
on a path joining the two vertices. In order to state the tegetl us introduce the
following functions defined on vertices & Fix a reference white vertex and let
A be a complex parameter. Lebe a vertex ofs, andwy = vp,Vv1,--- , vk = Vv be a
path inG® fromwg to v. Each edgejv; 1 has exactly one edge &f (the other is an
edge ofG*). Direct it away from this vertex if it is white, and towardsfiit is black,
and let% be the corresponding vector. The functifyris defined inductively along
the path, starting fronf,, = 1, and

fy,(A)(A —€C) ifthe edgevjvj,1 leads away from a black or towards
fu (A)= a white vertex
" fu;(A)

— otherwise
(A-€"1)

It is easy to see that the function is well defined, i.e. indeleat of the choice of
path fromwg to v. An important point is that, by using a branched cover of the
plane ovemy, the angles; are defined iR and not[0, 271. Then, Kenyon has the
following theorem.

Theorem 3. Coefficients of the inverse Dirac operator can explicitlydxpressed
as:
-1 :—_74f)\|o A)dA 3
( )b,Wo 4T A b( ) g( ) s ( )
where C is a closed contour oriented counterclockwise,aiairtg all poles of the
integrand and with the origin in its exterior.

Remark 2The remarkable features of this theorem are the followixgliEit com-
putations become tractable, since they only involve ressdaf rational functions.
Moreover, the Formula (3) has the surprising feature ofdpdimcal”’, meaning that
if the graph is changed away from the vertiegs b and a path joining them, the
value of the inverse Dirac operator stays the same.
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3.2 Dirac operator and dimer model

The Dirac operatod can be represented by an infinite matixwhose lines (resp.
columns) are indexed by white (resp. black) vertice&pand the coefficient,p
is given by: _ _

Kb = Oup = 1(X—Y) = 2sin(Byp) € Mo,

where8,;, is the half-angle of the rhombuR,,, ande s is the unit-vector in the
direction fromw to b. The matrixK resembles a Kasteleyn matrix of the graph
but differs in two instances.

1. Rows and columns are indexed by only “half” the vertices.oVercome this,
one can define a weighted adjacency maKixhose lines and columns are
indexed by all vertices of the grapl = ( ET K) Then, we would have

= +/defK) = +|detK)|.

2. The we|ghts of the edges have an extra complex factor otilnedne, instead of
a sign given by a Kasteleyn orientation. In [Ken02b], Kenghows that the ma-
trix is Kasteleyn flatmeaning that for each face Gfwhose vertices are labeled
by u1,v1,- -+, Um, Vm, the coefficients of the matrix satisfy:

arunl’Vl R Kum!vm] == arq(*l)milK\/LuZ R Kvm7ul].

Using a result of Kuperberg [Kup98], this implies that whee graph is finite
and planarK behaves as a usual Kasteleyn matrix, thus yielding an eixfare
mula for the partition function.

One of the main conjectures of the paper [Ken02b] is to sha ttie inversed
operator, which we writd 1 using the matrix notation, is related to the dimer
model on the infinite, bipartite, isoradial, gra@hlts relation to the Gibbs measure
is given in the following.

Theorem 4 ([dTO7c]). There is a unique Gibbs measurgR, on dimer config-
urations of G, such that the probability of occurrence of bset of edges f&; =
wiby, - & =wby} in a dimer configuration of G chosen with respect to the Gibbs
measure RBmeris:

Piimer({€1, - ,&}) = <|_lKW,,b,) det | )bi,Wj]a (4)

1<i J<k

where(K™ )y, w, = (0_71>bi,Wj is given by(3).

Proof (sketch)Fix the edge seE, and cut out a finite piece of the rhombus graph
G° containingE and paths joining vertices &. Use a result of [dT07c] by which
any finite piece of the grapB°® can be filled with rhombi in order to become part
of a periodic rhombus tiling of the plane. Define the prokigbdf the edge seE

as the weak limit of the Boltzmann measures on the naturaidal exhaustion of
the periodic graph. Use the uniqueness of the inverse Dpacator and its locality
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property to deduce that this expression coincides withgp Kolmogorov’s ex-
tension theorem to show existence of a unique measu@which specifies as (4)
on cylinder events.

3.3 Other results

Free energy Assume that the infinite bipartite isoradial graph is alsdgic, and
let G; = G/Z2. In [Ken02b], Kenyon proves an explicit expression for thaga-
rithm of the normalized log of the Dirac operator”, which tlas surprising feature
of only depending on rhombus angles®f:

1 1 6 .
log(detd) = meﬂ;&) (7—TL(9) + EIog(Zsmee)) .

Kenyon conjectures it to be related to tfiee energyof the corresponding dimer
model, result that we prove this conjecture in [dTO7b].

Gaussian free field There is a natural way of assigning a height function to dime
configurations ofs. In [dT07a], we show that when dimer configurations are chose
with respect to the Gibbs measure of Theorem 4, the fluctustibthe height func-
tion are described by a Gaussian Free Field. Note that tbisf piolds for all dimer
models defined on bipartite isoradial graphs, in partici@ieZ? and the honeycomb
lattice.

4 Ising Model

The Ising model, first considered by Lenz [Len20], has beerodluced in the
physics literature as a model for ferromagnetism. Thesestof a graple = (V,E)
represent atoms in a crystal with magnetic moment reducedeccomponent that
can take two values 1. A spin configurations thus a functioro onV, with values
in {+1,—1}. Magnets with opposite moments tend to repel each othechntas a
cost in terms of energy. From these considerationsetieegyof a configuratioro
on a finite graph is defined by:

E(0)=— z JeOy 0y,
e=uvekE

where the positive numbelse) are calledinteraction constantsThe probability
of a occurrence of a spin-configuration is then defined udiedsing Boltzmann

measure o(—&(0))
exp(—&(o
Ping(@) = Zsing
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The normalising factoZising= 3 5 €xp(—&'(0)) is thelsing partition functioronG.

If the graph is drawn on an orientable surface with no bowfd#nen the parti-
tion function can be written as a combinatorial sum over corg. There are in fact
two well-known such expansions: the so-callegh-temperature expansidiaon-
tours onG) and thelow-temperature expansidicontours onG*). The contours in
the low-temperature expansion have a nice interpretatiterins of the dual closed
curves separating zones of different spins.

The most studied case is the Ising model on (pieces of) retattices where the
interaction constants are taken to be constant equ@| the inverse temperature.
Kramers and Wannier [KW41a] discovered a duality for thedsimodel on the
square lattice: the measure on contours@ncoming from the low-temperature
expansion is equal to that obtained by considering the leigiperature expansion of
the Ising model oi5* at another temperatuf¥ satisfying sinli23) sinh(23*) = 1.
This showed that the self-dual temperature for wtck * = logv/1+ /2 is the
critical point if this one is unique. Later, Lebowitz and NlarLof [LML72] proved
that this is indeed the case.

Note that the case df? is singular since the graph is isomorphic to its dual.
This duality can be generalized to any graph and its dual.example the low-
temperature contour measure for the Ising model on the loomely lattice with
inverse temperaturf is the same as the high-temperature measure for the Ising
model on its dual which is the triangular lattice. But usitaygriangle transforma-
tions, one can go back to the Ising model on the honeyconitdaithis generalizes
the duality we had for the square lattice.

On isoradial graphs, instead of taking the same interactostants for all edges,
it is natural to takeJs to be a function of the anglée. In order to ensure some
integrability at the discrete level, we can impose that to#ZBnann weights satisfy
the star-triangle relations, yielding a one-parameteflfanfi Z-invariant interaction
constants. There is a generalized duality relation: the tégiperature expansion on
G correspondsto the low temperature expansio@ofor a dual value of parameter.
We qualify ascritical the interaction constants corresponding to the self-dalales
of the parameter, given by the following formula,

1 1+sin6,
‘](98) - 2|Og( Cosee ) )

and refer to the corresponding Ising modelcaical Z-invariant See [Bax89],
chapter 7.13 for the parametrization of the star-trianglation. They coincide with
the critical inverse temperatures of the homogeneousguian, square, and hon-
eycomb lattices foe identically equal tof, 7, § respectively. The Ising model
on two-dimensional graphs is in correspondence with othed-known models of
statistical mechanics: the dimer model and ghandom cluster model with = 2.
We differ the discussion of the correspondence with dine&ubsection 4.2.

2 The correspondence can be extended to surfaces with bquinglancluding in addition to the
closed contours a certain number of paths connected to bound
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There are essentially two ways of taking the large graph lirithe Ising model.
Either you let the mesh tend to zero at the same time as the enushlbertices of
the graph goes to infinity, in order to get continuous objettsbounded region of
the plane (macroscopic level); or you let the graph tendfioity, keeping the mesh
size fixed, to get a model of statistical mechanics on an tefigriaph.

The first approach has been adopted by Chelkak and Smirndy] [G$rove
conformal invariance of the Ising model on bounded domainthe plane with
Dobrushin boundary conditions. The second approach wask lmséhe authors in
[BAT10b, BdT10a] to construct a Gibbs measure for the @ilitising model on
infinite isoradial graphs.

Before explaining these two approaches, let us mention saries by physicists
on theZ-invariant model at and off criticality by Au-Yang and Pe&Y[P87, AP04,
APQ7] and by Martinez [Mar97, Mar98].

4.1 Conformal invariance

Let Q be a bounded domain &2, and fix two pointsa andb on the boundary. For
everye, let G2 be an approximation a® by a rhombus-graptwith rhombi of side
lengthe. Let alsoa, andbe be approximations o andb, located at the center of
half-rhombi on the boundary.

Consider the Ising model on the isoradial gr&phcorresponding to black ver-
tices ofGg, with Dobrushin boundary conditionise fixed spins+1 on one arc from
ag to bg, and—1 on the other. Introduce, following Chelkak and Smirnov ;&
twisted version of the partition function, considered asirzcfion on edges 0B,
or equivalently on inner rhombi d@&;. Let zdenote a generic rhombusG§,

. . 6\t e\ —iwind(y)
26, 0.2 =2s(2) = [ sin= ; rl tan— | e 2 v
2 closed contours\ e: piece of contour 2

+ curvey.ag~z

where windy) is the winding of the curvg from ato z If we remove the prefactor
and the contribution of the winding, this would be fot b, the low temperature ex-
pansion of the partition function of the Ising model@g with Dobrushin boundary
conditions between; andb;.

Now define for all inner rhombi of Gg,

Fee.aebe (2) =Fe(2) O ZZ;((bZS))’

up to a multiplicative factor, introduced for technical seas.

8 On the boundary, we put only half-rhombi such that only “klagertices are exposed on the
boundary.
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Chelkak and Smirnov prove that the functignand is discrete holomorphic by
comparing configurations differing by local arrangememarz, and that it solves
some discrete Riemann-Hilbert boundary value problemyThen deduce using
approximation results [CSa] that, as+ 0, the functiorF¢ converges to the function
solving the analogue continuous Riemann-Hilbert boundatye problem, which
is conformally covariant.

Moreover, they prove that this observable satisfies a ngakinproperty with
respect to the growth of the curve fraap to b,: given the firstin steps of the curve
(Yo = @, ¥1,---, Yn), the expected value of the observabig, (2) is
equal toFg,\ [y, n.be (2)-

This martingale property together with the convergencedordormally covari-
ant object is sufficient to imply the convergence of the ifateg betweeia andb to
a chordal SLE, with parameter= 3.

In the same paper, Chelkak and Smirnov construct anothenetissholomorphic
observable using not the loops separating clusters of dpinishose separating the
clusters in the corresponding random cluster mbdéth q = 2. This observable is
a direct generalization of the one introduced by Smirnov&m{10] for the square
lattice. Again, this observable is discrete holomorphid aatisfies a martingale
property. In this case, the scaling limit of the interfaca shordal SLE(16/3).

Yo, Yt 1)sVhi1,0e

4.2 The two-dimensional Ising model as a dimer model

It turns out that a general Ising model on a graph drawn onfaseiwithout bound-
ary can be reformulated, through its contour expansion,dasar model on a dec-
orated graph. This correspondence is due to Fisher [FisE6te a lot of exact
computations can be carried out on the dimer model, thiespaondence has been
proven to be a useful tool to study the Ising model [MW73] §&E], . ..)

The idea is to construct decorated versioty of the graphG with a measure
preserving mapping between polygonal contour&and dimer configurations of
¢. This is an example dfiolographic reductiorfVal08]. We now present the ver-
sion used by the authors in [BdT10b, BdT10a], which has thaatége of using
decoration with cyclic symmetry. For other versions of Eishicorrespondence, see
[Fis66], [Cim10].

The decorated graph, on which the dimer configurationsikweonstructed from
G as follows. Every vertex of degrdeof G is replaced by @ecorationconsisting
of 3k vertices: a triangle is attached to every edge incidentitovirtex, and these
triangles are linked by edges in a circular way, see Figurel@ This new graph,
denoted by¥, is also embedded on the surface without boundary and htseser
of degree 3. It is referred to as tRkesher graphof G.

Here comes the correspondence: to any contour configur@ticoming from
the high-temperature expansion of the Ising modeBowe associate?©) dimer

4 also known as the Fortuin-Kasteleyn percolation.
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G G

Fig. 7 Left: a vertex ofG with its incoming edges. Right: corresponding decoratiof i

configurations or¢: edges present (resp. absentLiare absent (resp. present) in
the corresponding dimer configuration@f Once the state of these edges is fixed,
there is, for every decorated vertex, exactly two ways toeta the configuration
into a dimer configuration. Figure 8 below gives an examplh@case wher€ is

the square latticg?.

1 2 @
AN AN

1
~

Fig. 8 Polygonal contour oZ?, and corresponding dimer configurations of the Fisher graph

In order to have a measure preserving mapping with dimeesdifmer weight
functionv is given for the special case of tleinvariant critical Ising model by,

Ve = cotg if ecomes from a rhombus @ with half-anglef,
Ve=1 if ebelongs to a decoration.

A Kasteleyn matrixK is constructed o. One of the main result of [BdT10a]
is that its inverse has a ‘local’ expression in the spiritrafttobtained by Kenyon in
[Ken02b] for the inverse Dirac operator, see also Theorem 3.

Theorem 5 ([BAT10a]). If x (resp. y) is a vertex o and belongs to the decora-
tion corresponding to the vertex(resp.y) of G, then(K*l)X‘,y has the following
expression:

(K ey = gyp . N1 Exp(yiA) logla ),

where g (resp. g) is a simple rational fraction o that depends only on the ge-
ometry of the decorated graph in an immediate neighborhdod(mesp. of y), and
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the contour of integration & is a simple closed curve containing all poles of the
integrand, and avoiding the half-line starting from x in ttieection of y.

Then, as for the dimer model, we obtain an explicit expres&ioa Gibbs mea-
sure, and recover the explicit formula for the partitiondtion, obtained by Baxter
[Bax86], at the critical point, see [BdT10a] for precisestaents.

5 Other models

We briefly discuss now some aspects of other models of statishechanics: first
some models related to the Laplacian, thentiotts model and its random cluster
representation, and finally the 6-vertex and 8-vertex nsodel

5.1 Random walk and the Green function

We already mentioned the Laplace operator on functionsmices, corresponding
to conductances on edges givendjg) = c(6:) = tanfe. For this particular choice
of conductances, the associated random walk is a martiregalethe covariance
matrix associated to a step is scalar. Up to a time reparaatdn, its scaling limit
is a standard two-dimensional Brownian motion [CSa, Bef@&nyon [Ken02b]
proves docal formulafor the inverse of the Laplacian, the Green functibnt, on
an infinite isoradial graph:

_ 1 logA
VXy€eV(G), Ay = —WﬁExpk(y;/\)%d)\.

whereC is a positively oriented contour containing in its interadlrthe poles of the
discrete exponential function, and the cut of the detertiinaf the logarithm. He
also proves precise asymptotics of G, improved i§B This Green function gives
information on the random walk d& with conductances tefy but can also be used
to gather properties of other models from statistical meiisawvith an interpretation
in terms of electric network, such as random spanning trees.

A spanning treeof G is an acyclic connected subgraph®fwhose vertex set
contains all vertices d&. On a finite graph, if the weight of a spanning tree equals
the product of the conductances of its edges, the partitimetion is given, via
Kirchhoff’s matrix-tree theorem [Kir47], by the determimaof any principal minor
of the Laplacian. One can construct a measure on spannieg of& as limit of
measures on finite graphs where a spanning tree would hawbalplity propor-
tional to its weight. The statistics of edges present in #relom spanning tree are
given by a determinantal process on edges: the probaliiiyedgede; = viw;,

.., & = VW } are present is given by
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k
Rree({e1, - &}) = <_|'|tan9.) 15‘?,?§k(H(a’ej))’

whereH is the impedance transfer matrix [BP93] defined by

H(e,e) =A (v, vj) — A1 (vi,wj) — A (w,vp) + A (i, wy).

5.2 g-Potts models and the random cluster model

A natural generalization of the Ising model is the Potts nhadéh q states (or
colors). Spins at neighboring vertices interact only ifytheve different colors.
The energy of a spin configuratianis &' (0) = — ¥ e_yvee Jelo,20,- FOrg=2, we
recover the Ising model. This model can be mapped to thefioigeneous) random
cluster model [Gri06] as follows:

e spins of different colors are in different percolation ¢&rs,
e neighboring spins sharing an edgef the same color are connected with proba-
bility, pe=1— e 2%,

Once again, we want the interaction constants to be furetdthe half-angle of
the corresponding rhombus. It is possible to take them isfgahe Yang-Baxter
equation. Moreover, if we impose a generalized self-dyatliten there is a unique
choice for the functiomp [Ken02a]:

- V/asin(Ze) L
p(6) = sin(Z(X—0)) + /gsin(28) with r = cos 1 (,/G/2)

Although a formula for the free energy of that model is knoax89], little is
known except for the casg= 2 corresponding to the Ising model.

5.3 6-vertex and 8-vertex models

To conclude, let us briefly mention that the 6- and 8-vertedel® introduced orig-
inally on the square lattice, have natural generalizatioisoradial graphs, or more
precisely on the dual of its rhombic gra@i*, which is a 4-regular graph. A con-
figuration of the 6-vertex model (resp. of the 8-vertex mpisehn orientation of the
edges ofG** such that the number of ingoing edge (and thus of outgoing®dat
each vertex is equal to 2 (resp. is even). These models cariumzlghrough Bethe
Ansatz on the square lattice (in the sense that their fregggrean be computed
[Lie67, Bax71]), and possess a very rich algebraic strecflinere are some studies
on theirZ-invariant generalizations [Bax87, Bax86], but many gioest still need
to solved.
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