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SIMULATION OF HUMAN ISCHEMIC STROKE IN REALISTIC

3D GEOMETRY: A NUMERICAL STRATEGY

THIERRY DUMONT, MAX DUARTE, STÉPHANE DESCOMBES,

MARIE-AIMÉE DRONNE, MARC MASSOT, AND VIOLAINE LOUVET

Abstract. In silico research in medicine is thought to reduce the need for ex-
pensive clinical trials under the condition of reliable mathematical models and

accurate and efficient numerical methods. In the present work, we tackle the
numerical simulation of reaction-diffusion equations modeling human ischemic

stroke. This problem induces peculiar difficulties like potentially large stiff-

ness which stems from the broad spectrum of temporal scales in the nonlinear
chemical source term as well as from the presence of steep spatial gradients

in the reaction fronts, spatially very localized. Furthermore, simulations on

realistic 3D geometries are mandatory in order to describe correctly this type
of phenomenon. The main goal of this article is to obtain, for the first time,

3D simulations on realistic geometries and to show that the simulation results

are consistent with those obtain in experimental studies or observed on MRI
images in stroke patients.

For this purpose, we introduce a new resolution strategy based mainly on

time operator splitting that takes into account complex geometry coupled to a
well-conceived parallelization strategy. We consider then a high order implicit

time integration for the reaction and an explicit one for the diffusion term in

order to build a time operator splitting scheme that exploits efficiently the
special features of each problem. Thus, we aim at solving complete and real-

istic models including all time and space scales with conventional computing
resources, that is on a reasonably powerful workstation. Consequently and

as expected, 2D and also fully 3D numerical simulations of ischemic strokes

for a realistic brain geometry, are conducted for the first time and shown to
reproduce the dynamics observed on MRI images in stroke patients. Beyond

this major step, in order to improve accuracy and computational efficiency

of the simulations, we indicate how the present numerical strategy can be
coupled with spatial adaptive multiresolution schemes. Preliminary results in

the framework of simple geometries allow to assess the proposed strategy for

further developments.

1. Introduction

Stroke is a major public health problem since it represents the second leading
cause of death worldwide and the first cause of acquired disability in adults. In
the United States, this disease strikes once every 40 seconds and causes death ev-
ery 4 minutes, with an estimated 41.6% death rate in 2007 [46]. Most frequently
(80%) strokes result from the occlusion of one or several brain vessels and are thus
called ischemic strokes (in the other cases, strokes are hemorrhagic strokes). Is-
chemic stroke involves many pathophysiological mechanisms causing devastating
neurological damage (see for review [21, 50]). Understanding these mechanisms is

Key words and phrases. Ischemic stroke, reaction-diffusion equations, operator splitting, par-
allel computing.
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of the most importance to develop new therapeutic strategies since no treatments
are currently available for most stroke patients. Currently, the only FDA-approved
treatment for stroke patients is a thrombolytic agent (tPA) which can only be
given to less than 10% of patients because of its narrow time-window and its hem-
orrhagic risks [33]. Many neuroprotective agents (aimed at blocking the ischemic
cascade) have also been developed but, although they had given very promising
results in preclinical studies in rodent models, they appeared ineffective or even
noxious during the clinical trials in stroke patients (see for review [5, 14, 29, 71]).
This discrepancy between the results in rodents and in humans is partly due to the
anatomic and histological differences between rodent and human brains. In this
case, results in rodents are thus difficult to extrapolate to stroke patients. As a
consequence, a mathematical model and its numerical simulations can help both
to test some biological hypotheses concerning the involved mechanisms and to give
new insights concerning the effects of these neuroprotective agents.

Previous works have been conducted on stroke modeling. One of these models
[23] is focused on the main mechanisms leading to cell death during the first hour of
an ischemic stroke (such as ionic movements, glutamate excitotoxicity and cytotoxic
edema). This model is based on a system of ordinary differential equations (ODEs)
and is mainly an electrophysiological model. It describes the dynamics of membrane
potentials, cell volumes and ionic concentrations (K+, Na+, Cl−, Ca2+ and Glu−)
in brain cells and in the extracellular space during a stroke. This model was used
to study the role of various cell types during ischemia [26] and to explore the
effects of various neuroprotective agents in stroke patients [24]. Other models have
been developed to simulate and study spreading depressions during a stroke. This
phenomenon is characterized by a slowly propagating depolarization of brain cells
along with drastic disruption of ionic gradients [62]. These spreading depressions
have recently been observed in stroke patients [22] and are supposed to extent the
ischemic damage [61]. Some models reproduce and study the behavior of spreading
depressions in neuronal cells [42, 53]. Others describe these depolarization waves
though neuronal and glial cells [25]. Other models study the influence of the human
brain cortex geometry on the propagation of these spreading depressions [25, 34].
All these models are based on reaction-diffusion systems and in this paper we choose
to use the mathematical model [23].

The final goal of our work is to utterly describe and reproduce precocious mech-
anisms of stroke (i.e. ionic movements, glutamate excitotoxicity and cytotoxic
edema) including the spreading depressions, for a realistic brain geometry. A first
description of the algorithms used for the numerical solution of this stroke model
on 1D and 2D geometries was presented in a previous article [15]. However, since
we need to take into account the anatomic and histological specificities of human
brain, this model must be simulated on a 3D realistic geometry, which implies to
develop powerful numerical methods able to deal with a broad spectrum of spa-
tial and temporal scales. This paper focuses on the methods developed for the
numerical solution of this model, with much more insights on the mathematical
and numerical methods than in [15]. The numerical method is based on operator
splitting and explicit/implicit Runge-Kutta methods. We then show, for the first
time, numerical simulations in 3D obtained thanks to a particular implementation
of parallelism in the framework of shared memory machines. Moreover, these 3D
simulations are computed on realistic geometries, obtained from MRI of the human
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brain, on conventional computational resources, that is on nowadays reasonably
powerful workstations; and they are shown to match the observed dynamics from
MRI images in stroke patient. Since accuracy in 3D simulations is not yet optimal,
the ability of extending the proposed numerical strategy to adaptive multiresolution
is presented in the framework of preliminary computations in simple geometries,
based on a strategy introduced in [27]. The idea is to increase the level of accu-
racy in order to match all the spatial scales, with a better computational efficiency;
thanks to the fact that phenomenons in strokes are spatially localized, a local mesh
adaptation (like multiresolution techniques) is the most suitable.

The paper is organized as follows: in a first part, we present the reaction-diffusion
model of the precocious mechanisms. We then focus on numerical methods: we first
mention the different approaches which can be used to discretize the system in time
and explain why in the context of such a stiff and large system only very few are
relevant. We then present our numerical methods based on splitting methods ; a
grid adaptation technique is also proposed as a possible improvement of the nu-
merical strategy, considering particular features of the phenomena. We present
the parallel implementation on shared memory machines of the numerical strategy,
and discuss the numerical validation of the results. In the next section, 2D and 3D
numerical results of simulations with complex geometry are presented. Biological
results obtained are compared with real observations and discussed in the penul-
timate section. Biomarkers are used in order to validate these computations. A
brief and prospective study based on coupling the proposed strategy with adap-
tive multiresolution in space is conducted, whereas conclusion and future works are
presented in the last section. Finally, in appendices, we first present the modeling
equations describing the dynamic of the phenomena and we then describe in details
the building blocks which are used in our numerical methods: implicit Runge-Kutta
methods and explicit Runge-Kutta methods with extended stability domains.

2. Stroke modeling through stiff Reaction–Diffusion systems

In this section, we describe the model on which our study is based. This model
includes ionic movements, glutamate excitotoxicity, cytotoxic edema and spreading
depressions [23, 26]. It thus focuses on the first hour of a stroke, when the ionic
exchanges are the main mechanisms leading to cell death. This model is based on
a reaction-diffusion system (equations are given in appendix A).

In this model, brain tissue is composed of two cell types, namely neurons and
glial cells, and of extracellular space. Two domains are considered: the white and
the gray matter which differ in their glial cell composition (astrocytes in gray matter
and oligodendrocytes in white matter) and in their “neuronal area” composition
(neuronal somas in gray matter and neuronal axons in white matter). Human
brain cortex is exclusively composed of gray matter whereas human brain space is
mainly composed of white matter (except the gray kernels). For simplicity reasons,
we consider in the model that brain cortex contains only gray matter and brain
space contains only white matter. The ionic species considered in this model are
K+, Na+, Cl−, Ca2+ and the Glutamate (glu). They pass through neuronal
and glial membranes via ionic channels (such as voltage-gated channels, receptor-
channels, stretch-channels) and via ionic pumps and transporters (which are energy-
dependent) (see figure 1). The ionic exchanges through voltage-gated channels have
been first modeled by Hodgkin and Huxley [40].
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Figure 1. Ionic exchanges in gray matter between neurons, astro-
cytes and the extracellular space through voltage-gated channels,
ionic transporters, receptor-channels and ionic pumps (from [23]).

The main precocious mechanisms of ischemic stroke can be described as follows
(see for review [21, 50]): after the stroke onset, the cells in the ischemic area do not
receive enough oxygen to maintain their production of energy. As a consequence,
the activity of the ionic pumps decreases, which results in variations of ionic con-
centrations in the cells and in the extracellular space. These ionic variations have
several consequences:

• the alteration of membrane potentials, resulting in membrane depolariza-
tion and in the opening of the voltage-gated channels;
• the cell swelling due to water influx;
• the increase of the neuronal concentration of Ca2+, resulting in enzyme

activation and leading cells towards necrosis;
• the increase of glutamate in the extracellular space, reinforcing the excito-

toxic process;
• the increase of the concentration of K+ propagating in the extracellular

space and the increase of Ca2+ in the astrocytic synticium, creating waves
of cortical spreading depressions, opening further ionic channels and thus
expanding the ischemic damage far from the ischemic core.

From this, we can understand the importance of studying these propagation
phenomena and of exploring the potential effects of some neuroprotectors which
modulate or block specific voltage-gated channels. Consequently, the model con-
siders the following variables:
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• the volume fractions fn and fa (by brain volume unit) of neurons and glial
cells. The fraction of volume remaining for the extracellular space is thus
1− fn − fa. fn and fa;
• the membrane potentials Vn and Va of neurons and glial cells (taking zero

as reference potential in the extracellular space);
• the concentrations of K+, Na+, Cl−, Ca2+ and Glutamate in the 3 spaces

(neurons, glial cells and extracellular space).

All the variables depend both from time and coordinates.
Altogether, the mean field model has m = 19 unknowns written as a reaction-

diffusion system of equations. However, there is no diffusion for 4 unknowns, namely
fn, fa, Vn and Va and not all ion concentrations diffuse in gray matter and in white
matter. Since gray matter contains astrocytes (which are linked into an astrocytic
syncytium thanks to gap-junctions), ions are able to diffuse in the astrocytic space
as well as in the extracellular space in gray matter. On the other side, as the main
glial cells in white matter are oligodendrocytes (which do not have the same prop-
erties as astrocytes), ions are considered to be only able to diffuse in extracellular
space in white matter. As a consequence, the model contains 10 reaction-diffusion
equations in gray matter (for the concentrations of K+, Na+, Cl−, Ca2+ and Glu−

in astrocytes and in the extracellular space) and 5 reaction-diffusion equations in
white matter (for the concentrations of (K+, Na+, Cl−, Ca2+ and Glu− in the
extracellular space). All the equations are described in appendix A.

The general equation set is as follows:

(1)


∂ui
∂t

(x, t)− div(εi(x)grad ui(x, t)) = fi(u1(x, t), . . . , um(x, t)),

ui(x, 0) = u0
i (x),

1 ≤ i ≤ m, x ∈ Ω.

The domain Ω corresponds to a human brain and is divided in gray and white
matter. These two matters differ in several coefficients in the reaction term (cor-
responding to the cell composition) and in their diffusion coefficients, as previ-
ously described. There are no fluxes of ions in and out of the brain and thus, the
boundary conditions are of Neumann homogeneous type. For the initial conditions
ui(x, 0) = u0

i (x), 1 ≤ i ≤ m, a classical medical hypothesis is that the system is
in a stable equilibrium: thus we take, and must find, a stable constant solution of
system (1).

Let us mention some characteristics of the system which are very important in
the choice of numerical schemes:

• The reaction term F = (f1, ...., fm)t is extremely stiff; that is to say that
if we consider the system of differential equations du/dt = F (u), it is a
stiff system according to the definition given in [36]. To see this, we have
performed, by numerical differentiation, a computation of the Jacobian
matrix (∂fi/∂uj), 1 ≤ i, j ≤ m, near a stable stationary value F (u) = 0,
and we found numerically negative eigenvalues with negligible imaginary
parts but with real parts in the range from −108 to about −1. Moreover,
it is impossible to separate fast and slow variables and even if this was
possible, the voltage dependent gates would make this separation very local
in time and space. We have to deal with the stiffness of the reactive term
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F , which is the core of the model and is a program of about 500 lines of C
language.
• The diffusion coefficients εi(x) are low: about 10−3 given by a non-dimensional

analysis. The resulting splitting time step for a proper resolution of the
propagating phenomenon resulting from the coupling with the reaction
term will lead to the resolution of heat equation in a mildly stiff frame-
work. Exploiting this fact turns out to be very important: as we will
explain at paragraph 3.1.1 we can use stabilized explicit methods when
solving the heat equation associated with the diffusion, with the advantage
of good numerical performances, and an easy implementation of parallel
computations.

The diffusion coefficients εi(x) take two constant values in gray and white matter
(respectively εgi and εwi ). The interface conditions between gray and white matter
are classical:

(2) εgi grad ui(x, t) · n = εwi grad ui(x, t) · n,
where n is a normal unit vector to the boundary between gray and white matter.
These conditions become Neumann homogeneous boundary conditions whenever
one of the diffusion coefficients is zero.

3. Numerical strategy: operator splitting and time integrators

One dimensional simulations are very useful to fit parameters such as the dif-
fusion coefficients which are known in the literature only with limited accuracy;
two dimensional ones are useful to validate numerical methods and programs, but
only three dimensional simulations can be relevant from the medical point of view.
From medical considerations, and also by some considerations on reaction-diffusion
systems, we know that a precise description of the brain geometry is mandatory for
the simulations, otherwise the plausible waves would be strongly perturbed, see for
example [24]. We then have to think of a strategy dedicated to three dimensional
simulations with a very fine spatial discretization allowing to resolve the broad
spectrum of spatial and temporal scales of the system (1). The method developed
has to be fast, robust and must take into account the properties of the model.

Concerning the spatial discretization, we have chosen a finite volume approach.
Our experience is that, with uniform finite volumes, at least ` = 107 volumes are
necessary for a realistic three dimensional simulation. The continuous unknown u
is then replaced by a vector U belonging to Rm×` corresponding to the m unknowns
at each point xi, 1 ≤ i ≤ `. We use MRI pictures and we consider pixels as center
of volumes of an uniform grid. When we apply this spatial discretization to the
system (1), this yields a large system of ordinary differential equations. Let us write
this system under the form

(3)
dU

dt
= AεU + F (U),

Aε being a matrix corresponding to the discretization of the diffusion operator; this
is a classical 5 terms (resp. 7 terms) by line matrices in dimension 2 (resp. 3). We
now present the different approaches which can be used to discretize this system
in time and we explain why in the context of such a stiff and large system such as
(1), only few are efficient.
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The first idea is to use directly a solver of systems of ODEs, the so called method
of lines, but due to the stiffness of the nonlinear term, a large system of algebraic
equations should be solved at each time step, which is too much time consuming. It
is then better to use different discretizations in time for the linear and the nonlinear
terms. A first method is to use an Implicit–Explicit method by treating the linear
term implicitly and the nonlinear term explicitly. If we denote by δt the time step
and Uk the approximated solution at time kδt, the simplest method is the following:

Uk+1 − Uk
δt

+AεUk+1 = F (Uk).

One must solve a linear system at each step since diffusion is taken implicitly
but the nonlinear term is taken explicitly. This method is of order 1 in time. More
accurate, but not really more expensive, methods of the same type and of order at
most 6 are described and analyzed in [4]. The main advantage of these methods is
that only linear systems must be solved but the drawback is that, due to the explicit
computation of the reaction terms, these methods are adapted only to systems with
non stiff reaction terms. Let us recall that the system (1) is very stiff, and these
methods can only work with time steps of the same order of the fastest time scale
of the system which is about 10−8 seconds. This would result in an prohibitive
computing time, about 4× 1011 steps for simulating the first hour of the evolution
of the stroke.

A better idea for the treatment of the linear and the nonlinear part in the
context of a stiff nonlinear term is to “reverse” the numerical treatments: to solve
explicitly the linear part and implicitly the nonlinear part. The discretization of the
linear part is made using an explicit Runge-Kutta method with extended stability
domain along the negative real axis. The papers [63] and [69] settled the foundation
for these methods called IMEX methods and particular methods devoted to stiff
non linear problems are presented in [70] and [59]. The main advantage of these
methods is that they treat diffusion terms explicitly and the stiff reaction terms
implicitly. Furthermore, the stiff reaction term is decoupled over space grids and
yields small sized systems. These methods are usually very efficient; nevertheless,
the computational requirements associated mainly with an implicit solver over the
discretized domain with the same time step become soon critical when treating
large computational domains.

Finally, the only possible methods which can solve system (1) seem to be the so
called splitting methods that we describe in details now.

3.1. Splitting methods. The idea is as old as numerical analysis and was used and
analyzed by the Soviet school in the 60’s (see for example [47]). At that time, the
main interest was the economy of computer memory. The idea, applied to spatially
discretized reaction-diffusion equations is to solve alternatively the reaction and the
diffusion problems. For example, starting from some initial condition, we solve for
a time step of δt:

dV

dt
= Aε(V ),

with an initial condition

V (0) = V0.
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Let us call Dδt this procedure. Taking V (δt) as initial condition, we solve for the
same δt:

dW

dt
= F (W ),

with

W (0) = V (δt),

and we call Rδt this second procedure. By taking the value W (δt), we repeat
this procedure to obtain, for k > 0, W (kδt). The previous approximation is an
approximation of order 1 in time of the solution of (3). Let us recall that a method
is of order 1 (or more generally of order p) if the expansion in powers of δt of
the numerical solution coincides with that of the true solution up to and including
the order 1 (more generally the order p). The previous approximation is called a
Lie method, but one can define different numerical splittings schemes: to obtain
an approximation at time δt, one can apply successively Rδt and Dδt, or more
generally apply successively Rδt/2, Dδt and Rδt/2, or Dδt/2, Rδt and Dδt/2. The
last two approximations are called Strang methods [65] and are of order 2.

Let us explain the main advantages of these methods: the reaction and diffusion
are decoupled, the solution of the Dδt problem is reduced to the solution of m
independent diffusion equations, and thus the complexity is reduced. Concerning
the Rδt problems, one immediately see that they are decoupled in ` systems of
ODEs of size m, as many systems as nodes in the finite volume mesh, and that all
these systems are independent.

Assuming first that Dδt and Rδt can be solved exactly without time discretiza-
tion, these splitting methods can be used to solve stiff systems of reaction-diffusion.
Better performances are expected by ending the splitting scheme with the integra-
tion of the reaction part or more generally with the part involving the fastest time
scales of the phenomenon (see [17, 16] and references therein).

Keeping in mind these theoretical studies and considering the various numerical
alternatives previously discussed, Strang’s splitting scheme ending with the reac-
tion part remains as the most appropriate resolution scheme for general multiscale
problems and so far, the best choice for our numerical study. All the numerical
simulations in this article are then performed with this scheme.

3.1.1. Efficient choice of numerical methods for the sub-steps. The concept of split-
ting is very simple; we still have to describe the numerical methods used in each
sub-step. We give in Appendix B a detailed and self-contained description of the
Radau5 method [36], used for the Rδt/2 sub-steps, and in Appendix C a description
of the Rock4 method [2] used for the Dδt sub-steps. These methods where chosen
so as to fulfill the following properties:

(1) The order of both methods must always be at least equal to 3, so that the
dominant part of the error come from Strang’s splitting.

(2) For the Rδt/2 sub-step, we have to solve a stiff but spatially decoupled
system of ODEs. A dedicated method adapted to stiff systems of ODEs
(and thus an implicit method) must be used.

(3) For the diffusion sub-step, a stable method must be chosen. However, the
value of the diffusion coefficient, the gradients of the solution as well as the
value of the splitting time step will not lead to a strong stability constraint,
which would require the use of an implicit method. In this context, we can
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use explicit methods with enlarged stability domains such as Rock4 (see
Appendix C).

(4) At each sub-step, we solve a Cauchy initial value problem: multistep meth-
ods like those based on backward differentiation formulae (see [36] for de-
tails) are not adapted to splitting methods since they need more than one
initial condition at each time step to perform the time integration. These
initial conditions are often approximated by a less accurate procedure. Thus
we chose Runge-Kutta methods.

Let us emphasize that:

• For the Rδt/2 sub-step, many other dedicated methods with both A- and
L-stability [36] can be used to handle the stiffness associated to the sys-
tems of ODEs: for instance, the Linearized Euler extrapolated method and
Rosenbrock methods (see [36]), but none of them is as fast and as robust
as Radau5.
• One of the main advantages of the Rock4 method is that only matrix-vector

products must be computed in opposition to implicit methods for which
linear systems must be solved. The number of matrix-vector products at
each step in Rock4 is at least 6 and grows with the stiffness of the systems
which is measured here by the products δtεiλmax (λmax is the dominant
eigenvalue of the Laplacian operator). Thus, for a given diffusion operator
(that is to say for given εiλmax) the efficiency of the Rock4 method is
related to the splitting time step δt: with the time step we have chosen (as
explained in section 6), we always perform the minimum number of matrix-
vector products. Should δt or εi be much larger, then the complexity of
Rock4 (that is to say the number of matrix-vector products) could make it
non competitive with a scheme involving the solution of linear systems. Let
us recall that λmax is proportional to h−2, h being the size of the smallest
finite volume used, and thus does not depend of the spatial dimension, so
that the 3 dimensional computations benefit largely from the use of the
Rock4 method.

3.2. An adaptive mesh strategy: the adaptive multiresolution approach.
Most software for the solution of partial differential equations use constant dis-
cretization in time and even in space. But stroke is a phenomenon which is localized
in a small part of the brain, at least at the onset, and which exhibits propagating
waves and large gradients. Thus, an adaptive mesh is certainly well fitted for such
simulations, resulting in a better resolution of thin spatial structures and hopefully,
in better numerical performances. The mesh adaptation must be automatically
managed by the software. A numerical strategy has been proposed and evaluated
in [27], where the combination of adaptive spatial multiresolution with the time
integration solvers previously detailed, is described.

Historically, adaptive methods like Multi Level Adaptive Techniques (MLAT)
[9] or Adaptive Mesh Refinement (AMR) [6, 8, 7] were among the first to achieve
this goal, using a set of locally refined grids where steep gradients are found. Fur-
thermore, adaptive multiresolution methods, based on Harten’s pioneering work
[39], have been developed for 1D and 2D hyperbolic conservation laws [12, 32] and
then extended to 3D parabolic problems [57]. Consequently, high data compres-
sion might be achieved with all these methods. However, one major advantage of
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the adaptive multiresolution techniques is that the numerical analysis of the errors
has already been conducted [39, 12] and thus, a solid theoretical background has
already been settled.

Considering that we have a set of nested spatial grids, from the coarsest to the
finest one, a multiresolution transformation allows to represent a set of function
data as values on a coarser grid plus a series of differences (error estimators) at
different levels of such nested grids. The information at consecutive levels are
then related by inter-level transformations: which are the projection and prediction
operators. The theoretical background of such configuration (see [12]) states that
wavelet coefficients can be then defined as prediction errors, and they will retain the
detail (local regularity estimator) information when going from a coarse to a finer
grid (see figure 2 for an example of nested grids). Finally, one of the main interests

λ0
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j =
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j

j

=

=
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Figure 2. Example of nested grids for multiresolution adaptive technique.

of carrying out such multiscale decomposition is that this new representation leads
us to define a whole set of regularity estimators all over the spatial domain. Hence,
an effective data compression might be performed in order to retain only a minimal
quantity of nodes where it is strictly necessary. The evolution problem is then
simulated on a dynamical adapted grid. The coupling between splitting techniques
and multiresolution is very easy and yields an efficient algorithm even if the spatial
discretization is locally very refined.

For an overview on adaptive multiresolution techniques, we refer to the books of
Cohen [11] and Müller [51].

4. Numerical software

We have developed two different softwares for the solution of the system (1).
Both implement the time integration strategy defined above in 3.1 and in Appen-
dices B and C:

FM: (Fixed Mesh) a code using a fixed spatial discretization, with finite volumes
of constant size [28]. This code takes into account complex geometries in the
following way: starting from MRI images, we take each pixel as the center
of a finite volume; it aims to be a framework for testing and exploiting
numerical methods for 1, 2 and 3D reaction-diffusion systems. It will be
used in order to obtain the main results of the present contribution, that
is numerical simulations of the detailed and stiff stroke model in complex
3D geometries.

MR: (Multi Resolution) a code using an adaptive multiresolution method as
defined above in 3.2. In the framework of multiresolution, an important
amount of work is still required in order to optimally combine all the nu-
merical methods described here, the most difficult aspects are related to
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programming features such as data and code structures, as indicated in [27].
Nowadays, this program can only solve problems in simple domains like
squares and cubes; simulations with an adaptive multiresolution approach
on a complex geometry are not yet available, and we will only present here
2D and 3D simulations in simplified geometries for the sake of assessing our
results and perspectives in the field.

Let us remark that the (FM) code is a highly optimized and complete code for
the simulation of reaction-diffusion equations. In particular, stroke simulations in
complex geometry can be performed for the first time, with standard computing re-
sources, and constitutes the major advance of our contribution. On the other hand,
the second code (MR) allows to validate to some extents the previous numerical
results, and it is meant to be a potential extension to (FM) in future developments.

5. Implementation and performances of the numerical methods on
shared memory machines

We describe now the implementation of the 3D simulations which are performed
on a uniform grid and a complex geometry with the code (FM). Let us emphasize
the particular parallelism implementation that we have conceived in the framework
of shared memory machines. All the computations have been performed on a 8 core
(2x4) 64 bits machine (AMD Shanghai processors).

Since an implicit procedure is required to handle the associated stiffness, the
reaction steps are by far the most time consuming parts of the computation. This
step is naturally parallel, as we have to solve a large number ` of independent
systems of differential equations, each of them corresponding to a single cell. But
solvers like Radau5 use a time adaptive strategy, together with Newton method:
that is, the computing time is varying from one point to another, and a fixed domain
partition strategy, with an affectation of sub-domains to processors, is not optimal
for load balancing. Therefore, our implementation uses threads, implemented in
the C++ boost-thread library [73]. Let us describe it shortly in the next part.

5.1. Implementation with threads. We divide the set of finite volumes into
small subsets Si, i = 1, ..., k where k should be much larger than the number of
computing units. We build a stack of all the Si before each time step. By calling
the procedure GetSubset, each thread gets one Si, while the stack is not empty.
Threads join when the stack is empty.

Algorithm 5.1: Get a subset( )

procedure GetSubset( )
Lock l;
if stack not empty
finished← false;
s← stack.pop();

else
finished← true;
s← null;
return (finished, s)
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The “Lock” object (a boost thread library object) is created when a thread enters
the procedure, forbidding entry to other threads (this is a basic and mandatory
feature of all threading libraries). The stack is popped, giving the thread a set of
differential equations to be solved. When the thread exits the procedure, the lock
object is automatically destroyed and another thread can enter. To minimize lock
competition effects, the size of each Si is taken constant (about 100 nodes) plus a
random size between zero and 10% of the constant.

Each thread is actually a procedure:

Algorithm 5.2: Thread( )

procedure ThreadProcedure( )
repeat
(finished, s) = GetSubset();
if not finished
for each x ∈ s

do solve ODE system at x;
until finished;

And eventually, the solution of the reaction step with n threads is very simple,
using the Boost library:

Algorithm 5.3: Reaction( )

procedure Reaction(n)
thread group thrds(n);
for i← 1 to n

do thrds.create thread(ThreadProcedure);
thrds.join all()

thread group is a container, member of the boost-thread library, which manages
a set of threads (n threads here). The threads are spawned with the method
create thread and run in parallel, each thread launching the ThreadProcedure
routine. The join all method acts as a meeting point for all the threads, and the
execution waits until all threads have finished their computations.

6. Numerical results: implementation checkout and accuracy
evaluation of the code

In order to check out the implementation of the method in the codes (FM)
and (MR), which use two different spatial discretizations and data structures, we
have conducted a detailed comparison on a numerical test-case. Nevertheless, since
we use the same numerical methods for the sub-steps integration, this does not
result in a full validation. We have considered a 2D case in a regular geometry of
[0, 5] × [0, 5] (cm), using two resolutions, one on a fixed grid computed with the
code (FM) and the other on the adapted grid obtained by multiresolution with
the code (MR). Both methods, based on Strang’s splitting, use Radau5 and Rock4
as time integrators for the reaction and for the diffusion problem. For the model
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parameters, we have considered only one domain, the gray matter. The time of
integration was restricted to one hour, t ∈ [0, 3600] seconds.

The splitting time step δt was chosen experimentally in order to obtain a good
approximation of the velocity on a sufficiently 2D fine space discretization of 10242.

We thus compare both solutions with a L2-norm (the L2-norm ‖f‖L2 of f being
(
∫

Ω
f(x)2 dx)1/2) at final time t = 3600, and define an error estimator e given by

‖u(., t) − uMR(., t)‖L2 , where index MR denotes the use of multiresolution tech-
niques. The spatial discretization consists of an uniform mesh of 2562 points. In
the case of the spatial adaptive method, there is a set of nested grids arranged in 8
different levels from the coarsest to the finest discretization. The latter corresponds
to the uniform mesh previously considered of 2562 points. In order to compare these
results, we must consider the same spatial discretization for both solutions: this is
easily achieved with the mentioned projection/prediction operations on the adapted
grid. Tables 1, 2 and 3 show the minimum and maximum values of variables in
the neurons, the astrocytes and in the extracellular space respectively, as well as
the normalized L2 difference of the numerical results e obtained by the adaptive
multiresolution strategy and our proposed numerical strategy.

Variable Min value Max value e
K+ 68.9338 141.6940 3.4059× 10−3

Na+ 7.0834 75.2787 6.0126× 10−3

Ca2+ 1.0558× 10−4 9.3376× 10−4 2.0559× 10−2

Cl− 11.5492 22.3907 3.1682× 10−3

glu 0.0808 9.3415 7.0681× 10−3

Vn −57.6666 −3.7338 7.0782× 10−3

fn 0.0799 0.0878 6.8508× 10−4

Table 1. Minimum and maximum values of variables in the neu-
rons, computed with the (MR) code, and normalized L2 difference
e of numerical results between uniform mesh and (MR). t= 3600 s.

Variable Min value Max value e
K+ 124.2309 132.6962 1.2265× 10−3

Na+ 15.0751 24.3063 6.3289× 10−3

Ca2+ 1.5921× 10−4 0.4149 3.1653× 10−2

Cl− 6.7503 10.8147 1.0143× 10−2

glu 2.5460 2.9870 1.0133× 10−3

Va −75.2476 −19.6358 1.0817× 10−2

fa 0.7128 0.8088 1.1877× 10−3

Table 2. Minimum and maximum values of variables in the astro-
cytes, computed with the (MR) code, and normalized L2 difference
e of numerical results between uniform mesh and (MR). t= 3600 s.

Figure 3 shows the evolution of the propagating phenomenon on an adapted
grid for variable K+ in the neurons. The refined regions clearly correspond to
the wavefront area where the steep spatial gradients are present. Finally, figure 4
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Variable Min value Max value e
K+ 4.8682 59.4336 6.1640× 10−3

Na+ 82.7306 141.0174 2.3939× 10−3

Ca2+ 0.0740 2.0027 2.4298× 10−2

Cl− 142.3254 150.2269 4.7433× 10−4

glu 7.2590× 10−4 0.0791 2.3966× 10−3

Table 3. Minimum and maximum values of variables in the extra-
cellular space, computed with the (MR) code, and L2 normalized
difference e of numerical results between uniform mesh and (MR).
t= 3600 s.

reveals in a qualitative way the different representations of the numerical solution
on an uniform mesh and on the adapted one.

0
1

2
3

4
5

x 104

0
2

4
6

x 104

60

80

100

120

140

160

xy

K+

0
1

2
3

4
5

x 104

0
2

4
6

x 104

60

80

100

120

140

160

xy

K+

0
1

2
3

4
5

x 104

0
2

4
6

x 104

60

80

100

120

140

160

xy

K+

0
1

2
3

4
5

x 104

0
2

4
6

x 104

60

80

100

120

140

160

xy

K+

Figure 3. Evolution of K+ in the neurons at t = 100 (top left),
t = 1000 (top right), t = 2000 (bottom left) and t = 3000 (bottom
right).

All these numerical results show a great accordance between the solutions of the
two different codes: (MR) and (FM), in the 2D simulations. Let us recall that both
codes rely on two well tested, robust and publicly available numerical routines: the
Radau5 and Rock4 methods; therefore, one can consider that they only differ by
the different spatial discretizations and data structures they use: the comparison
can thus be considered as a (partial) cross validation.

Besides such a level of comparisons, (MR) will be shown to pave the way towards
higher levels of refinement for a better resolution of the details of the dynamics in
3D at a reasonable cost. In fact, considering this 2D numerical test-case, finer
spatial discretizations yield naturally better resolution of both the wave velocity
and the dynamics of the wavefront, as seen into figure 5. See the corresponding
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Figure 4. K+ in the neurons at t = 3600 on a 2562 uniform mesh
(left) and the corresponding adapted grid (right).

(MR) adapted grids into figure 6. Even if it is clear that the wave is better resolved
on the finest grid (10242), in particular it is somewhat faster, the qualitative value
of the wave velocity is correctly captured even on the coarsest grid (2562), which
corresponds roughly to the 3D simulations with (FM). However, we can not yet
simulate with (MR) all the complex geometries of the brain we are investigating in
this paper; and thus, all the results in complex geometries will be performed with
(FM).

Let us make now some comments on the performance of the numerical method
on shared memory machines for both diffusion and reaction equation solvers in
(FM) used in the next Results section.

6.1. Performances of the diffusion equation solver. Only a poor man’s par-
allelism is implemented for this step, each diffusion equation being solved by one
thread. But actually, as we will see later, the computing time of this step is less
than 10% of the total computing time (in dimension 2 or 3); each step, for one
diffusion equation, needs only 6 matrix vector products (5 being the minimum for
the Rock4 method, plus one for the error estimate).

6.2. Performances of the reaction solver. The main question concerns the
efficiency of the multithreaded parallelism. Figure 7 shows the computing time
with 1, 2, 4 and 8 threads, across 12 steps. The wall clock computing time is
multiplied by the number of threads (unit is in number of CPU clock ticks); in case
of perfect scalability, all the points with the same number of threads should be at
the same ordinate. This is roughly the case, considering that the comparison of
computations obtained with 1 and 8 threads reveals a loss of scalability of only 6%.
We conclude that this implementation is very efficient. This is a consequence of the
complexity of the right hand side (the reaction term): even one single numerical
evaluation of F is much more time consuming than the overhead introduced by the
thread mechanism.

As a conclusion of this part, we can notice that our computing strategy combining
splitting techniques with dedicated integration of each sub-step and multiresolution
is compatible with parallelisation.
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Figure 5. K+ in the neurons at 3600 s. for a 2D mesh of 2562

(top), 5122 (center) and 10242 (bottom).
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Figure 6. 2D adapted meshes equivalent to 2562 (left) and 10242

(right) spatial discretizations at the finest grid.

Figure 7. Performances of the multithreaded reaction solver.
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7. Biological results

We present and discuss here some simulation results obtained with the code FM
on the complex geometry of the human brain. We simulate an ischemic stroke
beginning in the cortex (in gray matter) and study the propagation of the ischemic
damage. The input of the model is the decrease of the ionic currents through
the ionic pumps. Two variables have been chosen for the model validation: the
potassium concentration in the extracellular space ([K+]e) and the ratio of apparent
diffusion coefficient of water (rADCw).

• The potassium concentration cannot be measured in vivo in the brain of
stroke patients but it can be measured ex vivo or in vitro on brain tissues.
These concentration values give some insights on the severity of the damage.
The physiological value of [K+]e is about 5 mM. It was observed to be able
to increase up to 35 mM in areas of moderate ischemia where depolarization
waves can spread [44] and up to 75-90 mM in areas of severe ischemia where
most cells are dead [38]. The first step of the model validation is thus to
compare the values of the [K+]e obtained in the simulations with those
values.
• The rADCw is a biomarker which can be estimated in the brain of stroke pa-

tients thanks to diffusion-weighted (DW) magnetic resonance (MRI) imag-
ing. It reflects the severity of the cytotoxic edema and could thus be used
to predict the ischemic damage and its extension [67, 56]. The value of
this ratio is supposed to be 1 in physiological conditions and is known to
decrease in ischemic areas. In several studies, this value in stroke patients
was shown to be between 0.75 and 0.9 in areas of moderate ischemia and
between 0.5 and 0.75 in areas of severe ischemia [18, 31, 54, 58]. This
biomarker can be related to the proportions of the intracellular volumes.
It was shown to be proportional to the volume of the extracellular space
[67]. Moreover, since the extracellular proportion was displayed to have a
value of 0.2 in physiological conditions (i.e. when rADCw=1) [49], rADCw
can be expressed as follows: rADCw = 5 (1 − fn − fa). Since fn and fa
are two variables of the model, this ratio can be calculated for each time
and for each coordinate. Another step of the model validation is thus to
compare the calculated values of rADCw obtained in the simulations to the
experimental values.

We present in figures 8, 9, 10, 11, 12, and 13 some results of 2D and 3D simula-
tions, showing the values of K+ and rADCw biomarker in the extracellular space
in different areas.

Let us make some biological comments about these results:

• First of all, we obtained depolarization waves after the simulation of a vessel
occlusion in brain cortex and the depolarization waves spread in gray matter
(i.e. in brain cortex) and not in white matter, which is consistent with MRI
images obtained in human brain [22].
• Concerning the potassium concentration in the extracellular space, figures

8, 9 and 10 show that this concentration reaches values such as 77 mM in
the areas where the vessel was occluded, which is in accordance with the
results obtained in the infarcted core in some experimental studies [38].
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Figure 8. Evolution of K+ in the extracellular space over one
hour, 2D simulation (in millimolar (mM)), from left to right, top
to bottom.
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Figure 9. 3D simulation; cut by 2 perpendicular planes of the
K+ in the extracellular space field at time T= 3600 seconds (in
millimolar)

These figures also show that [K+]e is about 20 mM in the areas where
depolarization waves are spreading, which is consistent with the values
obtained in penumbra (i.e. areas of moderate ischemia, able to recover)
during spreading depressions in several studies [44]. We can also notice
that, in the safe areas, [K+]e remains at its physiological value (5 mM).
• Concerning rADCw, figures 11, 12 and 13 show that this ratio reaches

values such as 0.6 in the areas where the vessel was occluded, which is
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Figure 10. Evolution of K+ in the extracellular space, 3D simu-
lation. View in the plane P of figure 9 (in mM)
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Figure 11. Evolution of rADCw over one hour, 2D simulation,
from left to right, top to bottom, every 15 minutes.

in accordance with the values observed on MRI images in the infarcted
core of the brain of the stroke patient [31, 54, 58]. These figures also
show that rADCw has values between 0.75 and 0.9 in the areas where
depolarization waves are spreading, which is consistent with the values
obtained in penumbra during spreading depressions in stroke patients [31,
58]. We can also notice that, in the safe areas, rADCw remains at its
physiological value of 1.
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Figure 12. 3D simulation; cut by 2 perpendicular planes of the
rADCw field at time T= 3600 seconds.
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Figure 13. Evolution of rADCw in the extracellular space over
one hour, 3D simulation. View in the plane P of figure 12.

To conclude, the simulation results concerning the localization of spreading depres-
sions and the values of [K+]e and rADCw are consistent with those obtained in
experimental studies or observed on MRI images in stroke patients. These results
give thus a first step of validation for the model and for the numerical methods
used in this study.
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8. Towards better computational efficiency and improved accuracy:
Adaptive Multiresolution

In the previous simulations, we notice that the simulated waves spread at a
slightly slower speed. In several studies, spreading depressions were shown to spread
at a rate of several millimeters per minute [48], which is not currently the case
in our simulations. In fact, it is shown in [43] that traveling waves solutions of
reaction–diffusion equations can disappear in the numerical solution if the spatial
discretization is too coarse; the velocity of the traveling waves is a function of the
mesh size, and coarse meshes might perturb the accuracy of the computed wave
velocity. In particular, in the previous 3D simulations, the mesh we can use is not
fine enough to obtain a correct level of accuracy for the wave velocities. In fact,
coming back to the 2D numerical test-case of section 6, we have seen in figure 5,
that a high number of volumes is needed to reproduce accurately the phenomenon,
approximately 1000 per dimension.

We can also measure the computing time of the reaction at a typical step (see
figure 14 (one clock tick is about 0.35 10−9 second)). Clearly the most expensive
nodes are about 37 times more expensive than the less ones! But on the other hand,
the overwhelming part of the nodes are not expensive ones. Actually, 79% of the

Figure 14. Local measure of the computational cost of the reac-
tion (in cpu. clock tics).

nodes (the less expensive ones, which cost less than 4.5 106 tics) takes 60% of the
computing time.

Therefore, one way to improve both the performances and the accuracy of the
resolution is to use an adaptive mesh: use a fine mesh in the ischemized zone, where
the solution exhibits large gradients and wave propagation, and a coarser mesh far
from this part of the domain: the multiresolution strategy, as implemented in the
code (MR) is a step towards this goal.

In order to make this more concrete than just a statement, we eventually present
here a first 3D multiresolution simulation in a cube, where the finest grid available
has size 2563, since complex geometry is not yet at hand. Therefore, considering
the same computing resources, the computing time is reduced by a factor of about
five with respect to the fixed mesh simulation with (FM) on the finest grid, even
though trying to compare two so heterogeneous codes is a very delicate task. In
fact, the code (MR) considers a very low percentage (≤ 10%) of 2563, which cou-
pled with what has been presented before, allows to explain the gain in CPU time.
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Nevertheless, at the current state of development of the code (MR), a lot of work
remains to be done like taking into account complex geometry, improving perfor-
mances of multiresolution methods by using adapted data structures and optimized
routines, and finally, a high performance distributed parallelism implementation.
Once this is achieved, an adaptive mesh approach shall overcome the natural limi-
tations of accuracy and performance of even very performing strategies such as the
implemented in (FM), and will allow one to solve entirely the multiscale dynamics
of this kind of phenomena.

Figure 15. 3D simulations with (MR). K+ in the neurons (left)
and corresponding adapted grid (right) at 1000 (top) and 3600
(bottom) seconds.

Finally, increasing the accuracy of the discretization, of the numerical methods
and even of the implementation, is not sufficient to generate more precise and
predictive simulations. This should be carefully coupled with the development of
a more precise modeling of coefficients and boundary conditions, and it is beyond
the scope of the present paper.

9. Conclusions and future works

We have presented for the first time numerical 3D simulations of an ischemic
stroke in a realistic brain geometry, based on the model of Dronne et al. [23].
Results are encouraging from numerical and medical points of view. This is a first
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major step towards an usable tool for predicting the evolution of a stroke. The next
steps are to improve both numerical performances and modeling. For this, a lot of
work remains to be done from the model to practical implementations. Concerning
the numerical methods, many parameters in the model are known only with a
coarse approximation. Thus, numerical simulations must be conducted to explore
the sensitivity of the model to these parameters. The ultimate way to improve the
performances is to switch from multithreaded parallelism to distributed parallelism,
on massive parallel computers.

From a medical point of view, this model is of the most importance since it could
be used to simulate on a realistic human brain geometry several neuroprotective
agents aimed at blocking the ischemic cascade and at reducing the ischemic damage.
Since the model contains many pharmacological targets (such as ionic transporters,
voltage-gated channels, channel-receptors and stretch channels), it could be used
to assess and study the effects of various therapeutic agents or associations of ther-
apeutic agents. Moreover, since the model includes both ionic movements through
the cells and their diffusion, we will be able to study the effects of these neuro-
protective agents both on the severity and on the extension of the damage in each
brain area. Developing powerful numerical methods are thus of the most impor-
tance to be able to simulate the time and spatial evolutions of these phenomena on
a realistic human brain geometry.
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Appendix A. Model equations

Table 4 summarizes the modeling equations of a human ischemic stroke developed
by Dronne et al. in [23].

Variables Equations

Ionic concentrations

Sn
∂Sn

∂t = −nn σn Its,n
fn zs F v −

Sn

fn

∂fn
∂t

Sa
∂Sa

∂t = div(εs,a grad Sa)− na σa Its,a
fa zs F v −

Sa

fa

∂fa
∂t

Se
∂Se

∂t = div(εs,e grad Se) +
nn σn Its,n+na σa Its,a

(1−fn−fa) zs F v − Se

1−fn−fa
∂(1−fn−fa)

∂t

Proportions of intra-
cellular volumes

fn
∂fn
∂t = αn (

∑
Sn −

∑
Se +

Nimp,n

v.fn
)

fa
∂fa
∂t = αa (

∑
Sa −

∑
Se +

Nimp,a

v.fa
)

Membrane potentials
Vn

∂Vn

∂t = −σn

cn

∑
s Its,n

Va
∂Va

∂t = −σa

ca

∑
s Its,a

Table 4. Model equations describing the dynamics of the ionic
concentrations, cell volumes and membrane potentials with diffu-
sion in neurons, in glial cells and in the extracellular space.

S stands for the ionic species (Ca2+, Na+,K+, Cl− and Glu− respectively).
The subscript e stands for extracellular, n for neuronal and a for glial medium

(astrocytes in grey matter and oligodendrocytes in white matter).
εs,a and εs,e are the diffusion coefficients for each ion “S” in glial cells and in

the extracellular space respectively. In white matter εs,a = 0.
Its,n and Its,a are the global ionic currents for each ion S through neuronal

membrane and through glial membrane respectively. For example in grey matter,
Its,n is the sum of all the currents concerning the transport of ion S through neu-
ronal membrane via the voltage-gated channels, transporters and receptor-channels
represented in figure 1. These current equations mainly rely on Hodgkin-Huxley
equations and come from other electrophysiological models (neuronal and glial mod-
els: [72, 19, 74, 55, 60] and cardiac models [20, 45] for some currents.

Other parameters:

Nimp,a : number of moles of impermeant anions in the glial cells (constant)
Nimp,n : number of moles of impermeant anions in the neuron (constant)
nn : number of neurons in each volume unit
na : number of glial cells in each volume unit
σn : neuron surface
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σa : glial cells surface
zs : valence of ion S
v : volume of each unit
cn : neuron capacity
ca : glial capacity
F : Faraday’s constant

For αn and αa we follow [75]:
αn = αa = LiRT

v , with Li = 1.21 1012 cm3.Pa−1 min−1, R = 8.3145 J.mol−1.K−1

and T = 310.15 K.

The unknowns of the system (1) are: S (3x5 unknowns), fn, fa, Vn and Va.
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Appendix B. Time integration of the reaction problem: the Radau5
method

We consider here the numerical approximation of the Rδt/2 sub-step. Let us
recall that we denote by ` the number of nodes in the finite volume mesh and that
the Rδt part corresponds to solve ` independent ordinary differential equations of
the form, for t > t0,

(4)
du

dt
= F (t, u), u(t0) = u0,

with F : [t0,+∞[×Rm → Rm. For a general s-stage Runge-Kutta method,
after an integration time step δt, the solution u(t0 + δt) of problem (4) might be
approximated by ũ1, which is given by the solution of

Ui = u0 + δt

s∑
j=1

aijF (t0 + cjδt, Uj) , i = 1, . . . , s,

ũ1 = y0 + δt

s∑
j=1

bjF (t0 + cjδt, Uj) ,

(5)

where b and c are two vectors of Rs, b = (b1, · · · , bs)t and c = (c1, · · · , cs)t, and
A is a s × s matrix, A = (aij)1≤i,j≤s. Usually, these coefficients are arranged in a
mnemonic device, known as a Butcher’s array

c1 a11 a12 · · · a1s−1 a1s

c2 a21 a22 · · · a2s−1 a2s

...
...

. . .
...

cs as1 as2 · · · ass−1 ass

b1 b2 · · · bs−1 bs

When there are nonzero coefficients aij with i ≤ j, the method is implicit, and
systems of non linear equations must be solved to compute the Uis into (5). Let
us recall that by definition a Runge-Kutta method is of order p if the expansion in
powers of δt of the numerical solution coincides with that of the true solution up
to and including a certain order p. An important result obtained by Butcher [10]
is that a Runge-Kutta method is of order p if it satisfies

(6)

s∑
i=1

bic
q−1
i =

1

q
, q = 1, . . . , p

and for η and ζ such that p ≤ η + ζ + 1 and p ≤ 2η + 2,

(7)

s∑
j=1

aijc
q−1
j =

cqi
q
, i = 1, . . . , s, q = 1, . . . , η,

s∑
i=1

bic
q−1
i aij =

bj
q

(1− cqj), j = 1, . . . , s, q = 1, . . . , ζ.

If we now consider the stability features, a classical analysis based on the Dahlquist
test equation [13]

(8) y′ = λy, y(0) = 1,
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allows to define the stability function R : C → C of a method as the numerical
solution of (8) given by the method itself after one time step δt. In the case of
a Runge-Kutta method, solving (8) with y(0) = y0 with the scheme given by (5)
leads to

y1 = R(z)y0, z = δtλ.

In general, R is a rational function and in the particular case of explicit Runge-
Kutta method, a polynomial function.

In the same context, the set

(9) S := {z ∈ C : |R(z)| ≤ 1}

is called the stability domain of the method and a particular method will remain
stable as long as z belongs to S. Notice that in a general case, problem (4) can
be linearized and supposing a diagonalizable Jacobian matrix J = ∂F/∂u, an anal-
ogous problem to that of Dalquist can be obtained with the complex eigenvalues
λi, i = 1, · · · ,m of J . As a consequence, if (4) is a stiff system of ODEs (see [36] for
characterization of a stiff ODE), then it is very likely that large λi with <λi ≤ 0
will take a leading role in the solution, and either a larger stability domain S must
be required for a fixed time step δt or smaller δt for a fixed S. In order to overcome
this difficulty, A-stable methods for which

(10) S ⊃ {z ∈ C : <z ≤ 0},

are usually preferred, so that prohibitive time steps δt are dismissed.
However, it is not possible to construct such A-stable methods from explicit

Runge-Kutta methods with aij = 0 for i ≤ j in the Butcher’s array, because in
those cases, R will always be a polynomial. Therefore, appropriate implicit Runge-
Kutta schemes have been studied. Hence, based on the works of Butcher on Radau
quadrature formulas [52], Ehle has constructed a family of formulas named ’Radau
IIA’ in which Runge-Kutta schemes are generated by collocation at the nodes of
these quadrature formulas [30]. These RadauIIA methods have been then conceived
in order to be A-stables and of order p = 2s − 1 for a given number of stages s
given conditions (6) and (7). For instance, it yields the backward Euler method for
s = 1, but higher order methods are possible. Actually, the case s = 3 for which
the Butcher array is given by

4−
√

6

10

88− 7
√

6

360

296− 169
√

6

1800

−2 + 3
√

6

225

4 +
√

6

10

296 + 169
√

6

1800

88 + 7
√

6

360

−2− 3
√

6

225

1
16−

√
6

36

16 +
√

6

36

1

9

16−
√

6

36

16 +
√

6

36

1

9
is the Radau IIA method on which the routine Radau5 is based [36, 37]. Hence,
Radau5 is formally a fifth order implicit Runge-Kutta method and it has been
proven that this order might be reduced at worst to a third order, for example,
in the case of singular perturbation problems [35]. The corresponding stability
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function is given by

(11) R(z) =
1 +

2z

5
+
z2

20

1− 3z

5
+

3z2

20
− z3

60

.

Even though there are other implicit Runge-Kutta methods based this time on
Gaussian quadrature formulas that can normally yield higher order than p = 2s−1,
Radau based formulas allow the construction of L-stable methods, that is

lim
|z|→∞

R(z) = 0,

as it can be verified in (11). From a theoretical point of view, this implies that these
methods are more efficient in damping out fast transient phases, a very common
situation when dealing with very stiff problems as in our case (see [36] for further
details). In [36], a Fortran program of Radau5 is proposed, written with very careful
optimizations. The most time consuming part is the computation of the Jacobian
of F . For the stroke model F is a complicated procedure, the only way to compute
the Jacobian is by numerical differentiation, as it is proposed in the Fortran routine;
this result in computing 20 times F at each evaluation in our problem.

Finally recalling that the order might be reduced at worst to a third order [36],
the error coming from the discretization of the reaction part will be small comparing
with the error coming from the splitting strategy and this property is realized only
if s ≥ 3.
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Appendix C. Time integration of the diffusion problem: The Rock4
method

We consider here the numerical approximation of the Dδt sub-step. This problem
can be seen as a linear system of ODEs resulting from the discretization of a linear
parabolic PDE, with eigenvalues on the negative real axis. This is a linear midly
stiff problem, as explained in section 3.1.1. Therefore, instead of A-stable but time
consuming implicit procedures, stabilized explicit Runge-Kutta methods should be
preferred [68]. These methods will be performant if the product of the time step
by the dominant eigenvalue is not too large.

The main idea of these methods is to construct methods of order p with a family
of stability polynomial of degree s, Rs, such that

(12)
Rs(z) = 1 + z + · · ·+ zp

p!
+

s∑
i=p+1

αi,sz
i,

|Rs(z)| ≤ 1 for z ∈ [−`s, 0],

with s ≥ p + 1, αi,s ∈ C and `s as large as possible. If we consider Chebyshev
polynomials, they yield `s proportional to s2, i.e. `s = βss

2. For instance, for
p = 1, the optimal polynomials are

Rs(z) = Ts

(
1 +

z

s2

)
,

the shifted Chebyshev polynomials which yield optimal `s = 2s2.
Great efforts were then made in order to achieve second order stabilized explicit

Runge-Kutta methods based on Chebyshev-type polynomials (for further details,
see [41] and references therein). For example, RKC methods proposed by Sommei-
jer, Shampine and Verwer in [63] have gained notorious reputation over the last
years and are based on the use of a three-term recurrence relation of Chebyshev
polynomials proposed in [66] and [64].

Nevertheless, with this background and based on the study of optimal stabil-
ity polynomials satisfying (12) in [1], Medovikov and Abdulle proposed in [3] to
approximate R(z) by

(13) R̃s(z) = w̃p(z)P̃s−p(z)

in order to achieved p = 2, where w̃p is a polynomial with p complex roots and P̃s−p
is an orthogonal polynomial associated with the weight function w̃p(z)

2/
√

1− z2.

Moreover, they searched to satisfy (12) with an approximated ˜̀
s as close as possible

to the optimal `s. Based on the same ideas, the forth order case of (13) was
proposed by Abdulle in [2] and gave birth to the so called Rock4 method which is

a stabilized explicit Runge-Kutta with stability domain limited by ˜̀
s ' 0.35 · s2

along the negative real axis.
From a theoretical point of view, Rock4 uses the theory of composition of meth-

ods (the “Butcher group”) in order to achieve a fourth order method denoted by
WP . The first method, P , is built upon the three-term recurrence relation of the
orthogonal polynomials (P̃j)

s−4
j=1 previously mentioned,

P̃j(z) = (µjz − υj)P̃j−1(z)− κjP̃j−2(z),
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which is used to define an explicit Runge-Kutta scheme

(14)

U0 := u0,

U1 := u0 + δt µ1 AεU0,

Ui := δt µi AεUi−1 − υi Ui−1 − κi Ui−2, i = 2, . . . , s− 4,

ũ1 := Us−4.

The corresponding coefficients in the Butcher’s array of P (see Table 5) are then
defined considering (14) and the general scheme (5) as showed in [2]. Notice that
necessarily the number of stages s satisfies s ≥ 5 and that scheme (14) applied to
the Dahlquist test equation (8) with y(0) = y0 yields

y1 = Ys−4 = P̃s−4 y0,

and thus defines P̃s−4 as the stability function of method P .
On the other hand, the coefficients in the Butcher’s array of the method W

(see Table 5), which possesses w̃4 as stability function, are then derived out of the
forth order conditions established for method WP and the previously calculated
coefficients of P .

0

c̃2 ã21

...
...

. . .

c̃s−4 ãs−4,1 ãs−4,s−5

b̃1 · · · b̃s−5 b̃s−4

0

ĉ2 â21

ĉ3 â31 â32

ĉ4 â41 â42 â43

b̂1 b̂2 b̂3 b̂4

Table 5. Buthcher’s array of the method P (left) and W (right).

Finally, construction of the Rock4 method is based on method WP with stability
function given by (13) with p = 4. In [2] A. Abdulle has proposed an implemen-
tation of Rock4. Actually, when applied to linear problems, Rock4 relies on three
elementary operation, namely 1) matrix vector products, 2) linear combination of
vectors and 3) scalar products. Thus the method is easy to implement in any com-
putational framework, sequential or parallel. It is important to recall that this kind
of method will remain efficient as long as the number of stages, that is the number
of matrix-vector products will remains rather low. Finally as mentioned for the
Radau5 method, the error coming from the discretization of the diffusion part with
the Rock4 method will be small comparing to the error coming from the splitting
strategy.
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