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SIMULATION OF HUMAN ISCHEMIC STROKE IN REALISTIC 3D

GEOMETRY: A NUMERICAL STRATEGY

THIERRY DUMONT, MAX DUARTE, STÉPHANE DESCOMBES, MARIE-AIMÉE DRONNE,
MARC MASSOT, AND VIOLAINE LOUVET

Abstract. In silico research in medicine is thought to reduce the need for expensive clinical
trials under the condition of reliable mathematical models and accurate and efficient numer-
ical methods. In the present work, we tackle the numerical simulation of reaction-diffusion
equations modeling human ischemic stroke. This problem induces peculiar difficulties like
potentially large stiffness which stem from the broad spectrum of temporal scales in the
nonlinear chemical source term as well as from the presence of steep spatial gradients in the
reaction fronts, spatially very localized. Furthermore, simulations on realistic 3D geome-
tries are mandatory in order to describe correctly this type of phenomenon. We introduce
a new resolution strategy based mainly on time operator splitting and a well conceived par-
allelization strategy, that takes into account complex geometries. We consider then a high
order implicit time integration of the reaction and an explicit one for the diffusion term in
order to build a time operator splitting scheme that exploits efficiently the special features
of each problem. Thus, we aim at solving complete and realistic models including all time
and space scales with conventional computing resources, that is on a reasonably powerful
workstation. Consequently, 2D and also fully 3D numerical simulations of ischemic strokes
for a realistic brain geometry, are conducted for the first time and shown to reproduce the
dynamics observed on MR images in stroke patients. Beyond this major step, in order to im-
prove accuracy and computational efficiency of the simulations, we indicate how the present
numerical strategy can be coupled to spatial adaptive multiresolution schemes. Preliminary
results in the framework of simple geometries allow to assess the proposed strategy for further
developments.

1. Introduction

Stroke is a major public health problem since it represents the second leading cause of death
worldwide and the first cause of acquired disability in adults. In the United States, this disease
strikes once every 40 seconds and causes death every 4 minutes, with an estimated 41.6% death
rate in 2007 [43]. Most frequently (80%) strokes result from the occlusion of one or several
brain vessels and are thus called ischemic strokes (in the other cases, strokes are hemorrhagic
strokes). Ischemic stroke involves many pathophysiological mechanisms causing devastating
neurological damage (see for review [19, 47]). Understanding these mechanisms is of the most
importance to develop new therapeutic strategies since no treatments are currently available
for most stroke patients. Currently, the only FDA-approved treatment for stroke patients is
a thrombolytic agent (tPA) which can only be given to less than 10% of patients because of
its narrow time-window and its hemorrhagic risks [31]. Many neuroprotective agents (aimed
at blocking the ischemic cascade) have also been developed but, although they had given
very promising results in preclinical studies in rodent models, they appeared ineffective or
even noxious during the clinical trials in stroke patients (see for review [5, 14, 27, 66]). This
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discrepancy between the results in rodents and in humans is partly due to the anatomic and
histological differences between rodent and human brains. In this case, results in rodents are
thus difficult to extrapolate to stroke patients. As a consequence, a mathematical model and
its numerical simulations can help both to test some biological hypotheses concerning the
involved mechanisms and to give new insights concerning the effects of these neuroprotective
agents.

Previous works have been conducted on stroke modeling. One of these models is focused on
the main mechanisms leading to cell death during the first hour of an ischemic stroke (such as
ionic movements, glutamate excitotoxicity and cytotoxic edema)[21]. This model is based on a
system of ordinary differential equations (ODE) and is mainly an electrophysiological model.
It describes the dynamics of membrane potentials, cell volumes and ionic concentrations
(K+, Na+, Cl−, Ca2+ and Glu−) in brain cells and in the extracellular space during a
stroke. This model was used to study the role of various cell types during ischemia [24]
and to explore the effects of various neuroprotective agents in stroke patients [22]. Other
models have been developed to simulate and study spreading depressions during a stroke.
This phenomenon is characterized by a slowly propagating depolarization of brain cells along
with drastic disruption of ionic gradients [57]. These spreading depressions have recently been
observed in stroke patients [20] and are supposed to extent the ischemic damage [56]. Some
models reproduce and study the behavior of spreading depressions in neuronal cells [40, 50].
Others describe these depolarization waves though neuronal and glial cells [23]. Other models
study the influence of the human brain cortex geometry on the propagation of these spreading
depressions [23] [32]. These later models are all based on scalar reaction-diffusion systems.
Our aim is to model the precocious mechanisms of stroke (i.e. ionic movements, glutamate
excitotoxicity and cytotoxic edema) including the spreading depressions, on a realistic brain
geometry. A first description of the algorithms used for the numerical solution of this stroke
model on 1D and 2D geometries was presented in a previous article [15]. However, since we
need to take into account the anatomic and histological specificities of human brain, this model
must be simulated on a 3D realistic geometry, which implies to develop powerful numerical
methods able to deal with a broad spectrum of spatial and temporal scales. This paper
focuses on the methods developed for the numerical solution of this model, with much more
insights on the mathematical and numerical methods than in [15]. The numerical method is
based on operator splitting and explicit/implicit Runge-Kutta methods. We then show, for
the first time, numerical simulations in 3D obtained thanks to a particular implementation of
parallelism in the framework of shared memory machines. Moreover, these 3D simulations are
computed on realistic geometries, obtained from MRI of the human brain, on conventional
computational resources, that is on nowadays reasonably powerful workstations; and they are
shown to match the observed dynamics from MR images in stroke patient. Since accuracy in
3D simulations is not yet optimal, the ability of extending the proposed numerical strategy
to adaptive multi-resolution is presented in the framework of preliminary computations in
simple geometries. The idea is to increase the level of accuracy in order to match all the
spatial scales, with a better computational efficiency.

The paper is organized as follows: in a first part, we present the reaction-diffusion model of
the precocious mechanisms of stroke with a stress on the properties of the system coefficients.
In a second part, we focus on numerical methods: we first mention the different approaches
which can be used to discretize the system in time and explain why in the context of such a stiff
and large system only very few are relevant. We then present the various building blocks which
will be used in the numerical methods: splitting methods, implicit Runge-Kutta methods and



HUMAN STROKE SIMULATION 3

explicit Runge-Kutta methods with extended stability domains; a grid adaptation technique is
proposed as a possible improvement of the numerical strategy, considering particular features
of the phenomena. In a third part, we present the parallel implementation on shared memory
machines of the numerical strategy, and discuss the numerical validation of the results. 2D
and 3D numerical results of simulations with complex geometry are presented, compared to
real observations and discussed in the next section. Biomarkers are used in order to validate
these computations. Finally, a brief and prospective study based on coupling the proposed
strategy to adaptive multi-resolution in space is conducted, whereas conclusion and future
works are presented in the last section.

2. Stroke modeling through stiff Reaction–Diffusion systems

In this section, we describe the model on which our study is based. This model includes ionic
movements, glutamate excitotoxicity, cytotoxic edema and spreading depressions [21, 24]. It
thus focuses on the first hour of a stroke, when the ionic exchanges are the main mechanisms
leading to cell death. This model is based on a reaction-diffusion system.

In this model, brain tissue is composed of two cell types, namely neurons and glial cells,
and of extracellular space. Two domains are considered: the white and the grey matter
which differ in their glial cell composition (astrocytes in grey matter and oligodendrocytes
in white matter) and in their “neuronal area” composition (neuronal somas in grey matter
and neuronal axons in white matter). Human brain cortex is exclusively composed of grey
matter whereas human brain medium is mainly composed of white matter (except the grey
kernels). For simplicity reasons, we consider in the model that brain cortex contains only
grey matter and brain medium contains only white matter. The ionic species considered in
this model are K+, Na+, Cl−, Ca2+ and the Glutamate (glu). They pass through neuronal
and glial membranes via ionic channels (such as voltage-gated channels, receptor-channels,
stretch-channels) and via ionic pumps and transporters (which are energy-dependent) (see
figure 1). The ionic exchanges through voltage-gated channels have been first modeled by
Hodgkin and Huxley [38].

The main precocious mechanisms of ischemic stroke can be described as follows (see for
review [19, 47]): after the stroke onset, the cells in the ischemic area do not receive enough
oxygen to maintain their production of energy. As a consequence, the activity of the ionic
pumps decreases, which results in variations in ionic concentrations in the cells and in the
extracellular space. These ionic variations have several consequences:

• the alteration of membrane potentials, resulting in membrane depolarization and in
the opening of the voltage-gated channels;
• the cell swelling due to water influx;
• the increase of the neuronal concentration of Ca2+, resulting in enzyme activation
and leading cells towards necrosis;
• the increase of glutamate in the extracellular space, reinforcing the excitotoxic process;
• the increase of the concentration of K+ propagating in the extracellular space and the
increase of calcium in the astrocytic synticium, creating waves of cortical spreading
depressions, opening further ionic channels and thus expanding the ischemic damage
far from the ischemic core.

From this, we can understand the importance of studying these propagation phenomena
and of exploring the potential effects of some neuroprotectors which modulate or block specific
voltage-gated channels. Consequently, the model considers the following variables:
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Figure 1. Ionic exchanges in gray matter between neurons, astrocytes and
the extracellular space through voltage-gated channels, ionic transporters,
receptor-channels and ionic pumps (from [21]).

• the volume fractions fn and fa (by brain volume unit) of neurons and glial cells. The
fraction of volume remaining for the extracellular medium is thus 1− fn− fa. fn and
fa are dependent from both coordinates and time;
• the membrane potentials Vn and Va of neurons and glial cells (taking zero as reference
potential in the extracellular medium);
• the concentrations ofK+, Na+, Cl−, Ca2+ and Glutamate in the 3 mediums (neurons,
glial cells and extracellular space).

Altogether, the mean field model has m = 19 unknowns and is of reaction-diffusion type,
except that there is no diffusion for 4 unknowns, namely fn, fa, Vn and Va. There is also a
difference in the number of reaction-diffusion equations in grey matter and in white matter.
Since grey matter contains astrocytes (which are linked into an astrocytic synticium thanks
to gap-junctions), ions are able to diffuse in the astrocytic space as well as in the extracel-
lular space in grey matter. On the other side, as the main glial cells in white matter are
oligodendrocytes (which do not have the same properties as astrocytes), ions are considered
to be only able to diffuse in extracellular space in white matter. As a consequence, the model
contains 10 reaction-diffusion equations in grey matter (for the concentrations of (K+, Na+,
Cl−, Ca2+ and Glu− in astrocytes and in the extracellular space) and 5 reaction-diffusion
equations in white matter (for the concentrations of (K+, Na+, Cl−, Ca2+ and Glu− in the
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extracellular space). The general equation set is as follows:

(1)





∂ui
∂t

(x, t)− div(εi(x)grad ui(x, t)) = fi(u1(x, t), . . . , um(x, t)), 1 ≤ i ≤ m, x ∈ Ω,

ui(x, 0) = u0i (x), 1 ≤ i ≤ m, x ∈ Ω.

The domain Ω corresponds to a human brain and is divided in grey and white matter.
These two matters differ in several coefficients in the reaction term (corresponding to the cell
composition) and in their diffusion coefficients. There are no fluxes of ions in and out of the
brain and thus, the boundary conditions are of Neumann homogeneous type. For the initial
conditions ui(x, 0) = u0i (x), 1 ≤ i ≤ m, a classical medical hypothesis is that the system is in
a stable equilibrium: thus we take, and must find, a stable constant solution of system (1).

Let us mention some characteristics of the system very important in the choice of numerical
schemes: the diffusion coefficients εi(x) are low: about 10−3 given by a non-dimensional
analysis. They take two constant values in grey and white matter. The reaction term F =
(f1, ...., fm)t is extremely stiff; that is to say that if we consider the system of differential
equations du/dt = F (u), it is a stiff system according to the definition given in [34]. To see
this, we have performed, by numerical differentiation, a computation of the Jacobian matrix
(∂fi/∂uj), 1 ≤ i, j ≤ m, near a stable stationary value F (u) = 0, and we found numerically
negative eigenvalues with negligible imaginary parts but with real parts in the range from
−108 to about −1. Moreover, it is impossible to separate fast and slow variables and even if
this was possible, the voltage dependent gates would make this separation very local in time
and space. We have to deal with the stiffness of the reactive term F , which is the heart of
the model and is a program of about 500 lines of C language, where ionic gates are modeled
by sigmoid functions.

3. Numerical strategy: operator splitting and time integrators

One dimensional simulation are very useful to fit parameters such as the diffusion coeffi-
cients which are known in the literature only with limited accuracy; two dimensional ones are
useful to validate numerical methods and programs, but only three dimensional simulations
can be relevant from the medical point of view. From medical considerations, and also by
some considerations on reaction-diffusion systems, we know that a precise description of the
brain geometry is mandatory for the simulations, otherwise the plausible waves would be
strongly perturbed, see for example [22]. We then have to think of a strategy dedicated to
three dimensional simulations with a very fine spatial discretization allowing to resolve the
broad spectrum of spatial and temporal scales of the system (1). The method developed has
to be fast, robust and must take into account the properties of the model.

Concerning the spatial discretization, we have chosen a finite volume approach. Our ex-
perience is that, with uniform finite volumes, at least ℓ = 107 volumes are necessary for a
realistic three dimensional simulation. The continuous unknown u is then replaced by a vector
U belonging to R

m×ℓ corresponding to the m unknowns at each point xi, 1 ≤ i ≤ ℓ. We use
MRI pictures and we consider pixels as center of volumes of an uniform grid. When we apply
this spatial discretization to the system (1), this yields a large system of ordinary differential
equations. Let us write this system under the form

(2)
dU

dt
= AεU + F (U),
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Aε being a matrix corresponding to the discretization of the diffusion operator; this is a
classical 5 terms (resp. 7 terms) by line matrices in dimension 2 (resp. 3). We now present
the different approaches which can be used to discretize this system in time and we explain
why in the context of such a stiff and large system like (1), only few are efficient.

The first idea is to use directly a solver of systems of ODEs, the so called method of
lines, but due to the stiffness of the nonlinear term, at each time step, a large system of
algebraic equations should be solved which is too much time consuming. It is then better to
use different discretizations in time for the linear and the nonlinear terms. A first method is
to use an Implicit–Explicit method by treating the linear term implicitly and the nonlinear
term explicitly. If we denote by ∆t the time step and Uk the approximated solution at time
k∆t, the simplest method is the following:

Uk+1 − Uk

∆t
+AεUk+1 = F (Uk).

One must solve a linear system at each step since diffusion is taken implicitly but the
nonlinear term is taken explicitly. This method is of order 1 in time. More accurate, but not
really more expensive, methods of the same type and of order at most 6 are described and
analyzed in [4]. The main advantage of these methods is that only linear systems must be
solved but the drawback is that, due to the explicit computation of the reaction terms, these
methods are adapted only to systems with non stiff reaction terms. Let us recall that the
system (1) is very stiff, and these methods can only work with time steps of the same order
of the fastest time scale of the system which is about 10−8 seconds. This would result in an
prohibitive computing time, about 4×1011 steps for simulating the first hour of the evolution
of the stroke.

A better idea in the treatment of the linear and the nonlinear part in the context of a
stiff nonlinear term is to “reverse” the numerical treatments: to solve explicitly the linear
part and implicitly the nonlinear part. The discretization of the linear part is made using
an explicit Runge-Kutta method with extended stability domain along the negative real axis.
The papers [58] and [64] settled the foundation for these methods called IMEX methods and
particular methods devoted to stiff non linear problems are presented in [65] and [55]. The
main advantage of these methods is that they treat diffusion terms explicitly and the stiff
reaction terms implicitly. Furthermore, the stiff reaction term is decoupled over space grids
and yields to small sized systems. These methods are usually very efficient; nevertheless,
the computational requirements associated mainly to an implicit solver over the discretized
domain with the same time step become soon critical when treating large computational
domains.

Finally, the only possible methods which can solve system (1) seem to be the so called
splitting methods that we describe in details now.

3.1. Splitting methods. The idea is as old as numerical analysis and was used and analyzed
by the Soviet school in the 60’s (see for example [44]). In those times, the main interest was the
economy of computer memory. The idea, applied to spatially discretized reaction-diffusion
equations is to solve alternatively the reaction and the diffusion problems. For example,
starting from some initial condition, we solve for a time step of ∆t:

dV

dt
= Aε(V ),
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with an initial condition

V (0) = V0.

Let us call D∆t this procedure. Taking V (∆t) as initial condition, we solve for the same ∆t:

dW

dt
= F (W ),

with

W (0) = V (∆t),

and we call R∆t this second procedure. By taking the value W (∆t), we repeat this procedure
to obtain, for k > 0, W (k∆t). The previous approximation is an approximation of order 1
in time of the solution of (2). Let us recall that a method is of order 1 (or more generally
of order p) if the expansion in powers of ∆t of the numerical solution coincides with that of
the true solution up to and including the order 1 (more generally the order p). The previous
approximation is called a Lie method, but one can define different numerical methods: to
obtain an approximation at time ∆t, one can apply successively R∆t and D∆t, or more
generally apply successively R∆t/2, D∆t and R∆t/2, or D∆t/2, R∆t and D∆t/2. The last two
approximations are called Strang methods [60] and are of order 2.

Let us explain the main advantages of these methods: the reaction and diffusion are decou-
pled, the solution of the D∆t problem is reduced to the solution of m independent diffusion
equations, and thus the complexity is reduced. Concerning the R∆t problems, one immedi-
ately see that they are decoupled in ℓ systems of ODEs of size m, as many systems as nodes
in the finite volume mesh, and that all these systems are independent.

Assuming first that D∆t and R∆t can be solved exactly without time discretization, these
splitting methods can be used to solve stiff systems of reaction-diffusion. Better performances
are expected by ending the splitting scheme with the integration of the reaction part or more
generally with the part involving the fastest time scales of the phenomenon (see [17, 16] and
references therein).

Keeping in mind these theoretical studies and considering the various numerical alternatives
previously discussed, Strang’s splitting scheme ending with the reaction part remains as the
most appropriate resolution scheme for general multi-scale problems and so far, the best choice
for our numerical study. All the numerical simulations in this article are then performed with
this scheme. The concept of splitting is very natural; we still have to describe the numerical
methods used in each sub-step. These methods have to be chosen carefully in order to provide
an accurate approximation of system (2). It turns out that these two methods are not classical,
and thus must be explained in details. This is the purpose of the next two sections which are
self-contained.

3.2. Time integration of the reaction problem: the Radau5 method. In this section
we are considering the numerical approximation of the R∆t step. Let us recall that we denote
by ℓ the number of nodes in the finite volume mesh and the R∆t part corresponds to solve ℓ
independent ordinary differential equations of the form, for t > t0,

(3)
du

dt
= F (t, u), u(t0) = u0,

with F : [t0,+∞[×Rm → R
m. For a general s-stage Runge-Kutta method, after an inte-

gration time step ∆t, the solution u(t0 + ∆t) of problem (3) might be approximated by ũ1,
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which is given by the solution of

Ui = u0 +∆t
s∑

j=1

aijF (t0 + cj∆t, Uj) , i = 1, . . . , s,

ũ1 = y0 +∆t

s∑

j=1

bjF (t0 + cj∆t, Uj) ,

(4)

where b and c are two vectors of R
s, b = (b1, · · · , bs)t and c = (c1, · · · , cs)t, and A is a

s× s matrix, A = (aij)1≤i,j≤s. Usually, these coefficients are arranged in a mnemonic device,
known as a Butcher’s array

c1 a11 a12 · · · a1s−1 a1s

c2 a21 a22 · · · a2s−1 a2s

...
...

. . .
...

cs as1 as2 · · · ass−1 ass

b1 b2 · · · bs−1 bs

When there are nonzero coefficients aij with i ≤ j, the method is implicit, and systems of non
linear equations must be solved to compute the Uis into (4). Let us recall that by definition a
Runge-Kutta method is of order p if the expansion in powers of ∆t of the numerical solution
coincides with that of the true solution up to and including a certain order p. An important
result obtained by Butcher [10] is that a Runge-Kutta method is of order p if it satisfies

(5)

s∑

i=1

bic
q−1
i =

1

q
, q = 1, . . . , p

and for η and ζ such that p ≤ η + ζ + 1 and p ≤ 2η + 2,

(6)

s∑

j=1

aijc
q−1
j =

cqi
q
, i = 1, . . . , s, q = 1, . . . , η,

s∑

i=1

bic
q−1
i aij =

bj
q
(1− cqj), j = 1, . . . , s, q = 1, . . . , ζ.

If we now consider the stability features, a classical analysis based on the Dahlquist test

equation [13]

(7) y′ = λy, y(0) = 1,

allows to define the stability function R : C → C of a method as the numerical solution of
(7) given by the method itself after one time step ∆t. In the case of a Runge-Kutta method,
solving (7) with y(0) = y0 with the scheme given by (4) leads to

y1 = R(z)y0, z = ∆tλ.

In general, R is a rational function and in the particular case of explicit Runge-Kutta method,
a polynomial function.

In the same context, the set

(8) S := {z ∈ C : |R(z)| ≤ 1}
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is called the stability domain of the method and a particular method will remain stable as long
as z belongs to S. Notice that in a general case, problem (3) can be linearized and supposing
a diagonalizable Jacobian matrix J = ∂F/∂u, an analogous problem to that of Dalquist can
be obtained with the complex eigenvalues λi, i = 1, · · · ,m of J . As a consequence, if (3) is a
stiff system of ODEs (see [34] for characterization of a stiff ODE), then it is very likely that
large λi with ℜλi ≤ 0 will take a leading role in the solution, and either a larger stability

domain S must be required for a fixed time step ∆t or smaller ∆t for a fixed S. In order to
overcome this difficulty, A-stable methods for which

(9) S ⊃ {z ∈ C : ℜz ≤ 0},

are usually preferred, so that prohibitive time steps ∆t are dismissed.
However, it is not possible to construct such A-stable methods from explicit Runge-Kutta

methods with aij = 0 for i ≤ j in the Butcher’s array, because in those cases, R will always be a
polynomial. Therefore, appropriate implicit Runge-Kutta schemes have been studied. Hence,
based on the works of Butcher on Radau quadrature formulae [49], Ehle has constructed
a family of formulae named ’Radau IIA’ in which Runge-Kutta schemes are generated by
collocation at the nodes of these quadrature formulae [28]. These RadauIIA methods have
been then conceived in order to be A-stables and of order p = 2s − 1 for a given number of
stages s given conditions (5) and (6). For instance, it yields the backward Euler method for
s = 1, but higher order methods are possible. Actually, the case s = 3 for which the Butcher
array is given by

4−
√
6

10

88− 7
√
6

360

296− 169
√
6

1800

−2 + 3
√
6

225

4 +
√
6

10

296 + 169
√
6

1800

88 + 7
√
6

360

−2− 3
√
6

225

1
16−

√
6

36

16 +
√
6

36

1

9

16−
√
6

36

16 +
√
6

36

1

9

is the Radau IIA method on which the routine Radau5 is based [34, 35]. Hence, Radau5 is
formally a fifth order implicit Runge-Kutta method and it has been proven that this order
might be reduced at worst to a third order, for example, in the case of singular perturbation
problems [33]. The corresponding stability function is given by

(10) R(z) =
1 +

2z

5
+

z2

20

1− 3z

5
+

3z2

20
− z3

60

.

Even though there are other implicit Runge-Kutta methods based this time on Gaussian
quadrature formulae that can normally yield higher order than p = 2s − 1, Radau based
formulae allow the construction of L-stable methods, that is

lim
|z|→∞

R(z) = 0,
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as it can be verified in (10). From a theoretical point of view, this implies that these methods
are more efficient in damping out fast transient phases, a very common situation when dealing
with very stiff problems as in our case (see [34] for further details). In [34], a Fortran program
of Radau5 is proposed, written with very careful optimizations. The most time consuming
part is the computation of the Jacobian of F . As F is a complicated procedure, the only
way to compute the Jacobian is by numerical differentiation, as it is proposed in the Fortran
routine; this result in computing 20 times F at each evaluation in our problem. To end this
paragraph, let us make further comments on the choice of this integration method:

• Concerning Runge-Kutta methods, we have tried not only the Radau5 method, but
also the Linearized Euler extrapolated method and Rosenbrock methods (see [34]):
none of them is as fast and as robust as Radau5.
• Multistep methods like those based on backward differentiation formulae (see [34] for
details) are not adapted to splitting methods since they need more than one initial
condition at each time step to perform the time integration of the reaction. These
initial conditions are often approximated by a less accurate procedure.
• Finally recalling that the order might be reduced at worst to a third order, the error
coming from the discretization of the reaction part will be small comparing to the
error coming from the splitting strategy and this property is realized only if s ≥ 3.

3.3. Time integration of the diffusion problem: The ROCK4 method. In many
cases, there are stiff problems for which A-stable methods are not necessarily required. Some
remarkable examples come from the discretization of parabolic PDEs which lead to problems
with a Jacobian matrix involving large eigenvalues close to the real negative axis. Therefore,
instead of A-stable but time consuming implicit procedures, stabilized explicit Runge-Kutta
methods should be preferred [63].

The main idea of these methods is to construct methods of order p with a family of stability
polynomial of degree s, Rs, such that

(11)
Rs(z) = 1 + z + · · ·+ zp

p!
+

s∑

i=p+1

αi,sz
i,

|Rs(z)| ≤ 1 for z ∈ [−ℓs, 0],

with s ≥ p+1, αi,s ∈ C and ℓs as large as possible. If we consider Chebyshev polynomials, they
yield ℓs proportional to s2, i.e. ℓs = βss

2. For instance, for p = 1, the optimal polynomials
are

Rs(z) = Ts

(
1 +

z

s2

)
,

the shifted Chebyshev polynomials which yield optimal ℓs = 2s2.
Great efforts were then made in order to achieve second order stabilized explicit Runge-

Kutta methods based on Chebyshev-type polynomials (for further details, see [39] and refer-
ences therein). For example, RKC methods proposed by Sommeijer, Shampine and Verwer
in [58] have gained notorious reputation over the last years and are based on the use of a
three-term recurrence relation of Chebyshev polynomials proposed in [61] and [59].

Nevertheless, with this background and based on the study of optimal stability polynomials
satisfying (11) in [1], Medovikov and Abdulle proposed in [3] to approximate R(z) by

(12) R̃s(z) = w̃p(z)P̃s−p(z)
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in order to achieved p = 2, where w̃p is a polynomial with p complex roots and P̃s−p is an

orthogonal polynomial associated with the weight function w̃p(z)
2/
√
1− z2. Moreover, they

searched to satisfy (11) with an approximated ℓ̃s as close as possible to the optimal ℓs. Based
on the same ideas, the forth order case of (12) was proposed by Abdulle in [2] and gave birth
to the so called ROCK4 method which is a stabilized explicit Runge-Kutta with stability
domain limited by ℓ̃s ≃ 0.35 · s2 along the negative real axis.

From a theoretical point of view, ROCK4 uses the theory of composition of methods (the
“Butcher group”) in order to achieve a fourth order method denoted by WP . The first
method, P , is built upon the three-term recurrence relation of the orthogonal polynomials
(P̃j)

s−4
j=1 previously mentioned,

P̃j(z) = (µjz − υj)P̃j−1(z)− κjP̃j−2(z),

which is used to define an explicit Runge-Kutta scheme

(13)

U0 := u0,

U1 := u0 +∆t µ1 AεU0,

Ui := ∆t µi AεUi−1 − υi Ui−1 − κi Ui−2, i = 2, . . . , s− 4,

ũ1 := Us−4.

The corresponding coefficients in the Butcher’s array of P (see Table 1) are then defined
considering (13) and the general scheme (4) as showed in [2]. Notice that necessarily the
number of stages s satisfies s ≥ 5 and that scheme (13) applied to the Dahlquist test equation
(7) with y(0) = y0 yields

y1 = Ys−4 = P̃s−4 y0,

and thus defines P̃s−4 as the stability function of method P .
On the other hand, the coefficients in the Butcher’s array of the method W (see Table 1),

which possesses w̃4 as stability function, are then derived out of the forth order conditions
established for method WP and the previously calculated coefficients of P .

0

c̃2 ã21
...

...
. . .

c̃s−4 ãs−4,1 ãs−4,s−5

b̃1 · · · b̃s−5 b̃s−4

0

ĉ2 â21

ĉ3 â31 â32

ĉ4 â41 â42 â43

b̂1 b̂2 b̂3 b̂4

Table 1. Buthcher’s array of the method P (left) and W (right).

Finally, construction of the ROCK4 method is based on methodWP with stability function
given by (12) with p = 4. In [2] A. Abdulle has proposed an implementation of ROCK4.
Actually, when applied to linear problems, ROCK4 relies on three elementary operation,
namely 1) matrix vector products, 2) linear combination of vectors and 3) scalar products.
Thus the method is easy to implement in any computational framework, sequential or parallel.
Finally as mentioned for the Radau5 method, the error coming from the discretization of the
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diffusion part with the ROCK4 method will be small comparing to the error coming from the
splitting strategy.

3.4. An adaptive mesh strategy: the adaptive multiresolution approach. Most soft-
ware for the solution of partial differential equations use constant discretization in time and
even in space. But stroke is a phenomenon which is localized in a small part of the brain,
at least at the onset, and which exhibits propagating waves and large gradients. Thus, an
adaptive mesh is certainly well fitted for such simulations, resulting in a better resolution of
thin spatial structures and hopefully, in better numerical performances. The mesh adaptation
must be automatically managed by the software. A numerical strategy has been proposed
and evaluated in [25], where the combination of adaptive spatial multiresolution with the time
integration solvers previously detailed, is described.

Historically, adaptive methods like Multi-Level Adaptive Techniques (MLAT) [9] or Adap-
tive Mesh Refinement (AMR) [6, 8, 7] were among the first to achieve this goal, using a set
of locally refined grids where steep gradients are found. Furthermore, adaptive multiresolu-
tion methods, based on Harten’s pioneering work [37], have been developed for 1D and 2D
hyperbolic conservation laws [12, 30] and then extended to 3D parabolic problems [53]. Con-
sequently, high data compression might be achieved with all these methods. However, one
major advantage of the adaptive multiresolution techniques is that the numerical analysis of
the errors has already been conducted [37, 12] and thus, a solid theoretical background was
already settled.

Considering that we have a set of nested spatial grids, from the coarsest to the finest one, a
multiresolution transformation allows to represent a set of function data as values on a coarser
grid plus a series of differences (error estimators) at different levels of such nested grids. The
information at consecutive levels are then related by inter-level transformations: which are
the projection and prediction operators. The theoretical background of such configuration
(see [12]) states that wavelet coefficients can be then defined as prediction errors, and they
will retain the detail (local regularity estimator) information when going from a coarse to a
finer grid (see figure 2 for an example of nested grids). Finally, one of the main interests of

Figure 2. Example of nested grids for multiresolution adaptive technique.

carrying on such multiscale decomposition is that this new representation leads us to define
a whole set of regularity estimators all over the spatial domain. Hence, an effective data
compression might be performed in order to retain only a minimal quantity of nodes where it
is strictly necessary. The evolution problem is then simulated on a dynamical adapted grid.
For an overview on adaptive multiresolution techniques, we refer to the books of Cohen [11]
and Müller [48].
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4. Numerical software

We have developed two different softwares for the solution of the system (1). Both imple-
ment the time integration strategy defined above in 3.1, 3.2 and 3.3:

FM: (Fixed Mesh) a code using a fixed spatial discretization, with finite volumes of constant
size [26]. This code takes into account complex geometries in the following way:
starting from MRI images, we take each pixel as the center of a finite volume; it
aims to be a framework for testing and exploiting numerical methods for 1, 2 and
3D reaction-diffusion systems. It will be used in order to obtain the main results of
the present contribution, that is numerical simulations of the complex and stiff stroke
model in complex 3D geometries.

MR: (Multi Resolution) a code using an adaptive multiresolution method as defined above
in 3.4. In the framework of multiresolution, an important amount of work is still
required in order to optimally combine all the numerical methods described here,
the most difficult aspects are related to programming features such as data and code
structures, as indicated in [25]. Nowadays, this program can only solve problems in
simple domains like squares and cubes; simulations with an adaptive multiresolution
approach on a complex geometry are not yet available, and we will only present here
2D and 3D simulations in simplified geometries for the sake of assessing our results
and perspectives in the field.

Let us remark that the (FM) code is a highly optimized and complete code for the simula-
tion of reaction-diffusion equations. In particular, stroke simulations in complex geometry can
be performed for the first time, with standard computing resources, and constitutes the major
advance of our contribution. On the other hand, the second code (MR) allows to validate to
some extents the previous numerical results, and it is meant to be a potential extension to
(FM) in future developments.

5. Implementation and performances of the numerical methods on shared
memory machines

We describe now the implementation of the 3D simulations which are performed on a
uniform grid and a complex geometry with the code (FM). Let us emphasize the particular
parallelism implementation that we have conceived in the framework of shared memory ma-
chines. All the computations have been performed on a 8 core (2x4) 64 bits machine (AMD
Shanghai processors).

Using an implicit procedure, the reaction steps are by far the most time consuming parts
of the computation. This step is naturally parallel, as we have to solve a large number ℓ
of independent systems of differential equations, each of them corresponding to a single cell.
But solvers like Radau5 use a time adaptive strategy, together with Newton method: that
is, the computing time is varying from one point to another, and a fixed domain partition
strategy, with an affectation of subdomains to processors, is not optimal for load balancing.
Therefore, our implementation uses threads, implemented in the C++ boost-thread library
[67]. Let us describe it shortly in the next part.

5.1. Implementation with threads. We divide the set of finite volumes into small subsets
Si, i = 1, ..., k where k should be much larger than the number of computing units. We build
a stack of all the Si before each time step. By calling the procedure GetSubset, each thread
gets one Si, while the stack is not empty. Threads join when the stack is empty.
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Algorithm 5.1: Get a subset( )

procedure GetSubset( )
Lock l;
if stack not empty
finished← false;
s← stack.pop();
else

finished← true;
s← null;
return (finished, s)

The “Lock” object (a boost thread library object), is created when a thread enters the
procedure, forbidding entry to other threads (this is a basic and mandatory feature of all
threading libraries). The stack is popped, giving the thread a set of differential equations to
be solved. When the thread exits the procedure, the lock object is automatically destroyed
and an other thread can enter. To minimize lock competition effects, the size of each Si is
taken constant (about 100 nodes) plus a random size between zero and 10% of the constant.

Each thread is actually a procedure:

Algorithm 5.2: Thread( )

procedure ThreadProcedure( )
repeat

(finished, s) = GetSubset();
if not finished
for each x ∈ s
do solve ODEsystem at x;

until finished;

And eventually, the solution of the reaction step with n threads is very simple, using the
Boost library:

Algorithm 5.3: Reaction( )

procedure Reaction(n)
thread group thrds(n);
for i← 1 to n
do thrds.create thread(ThreadProcedure);
thrds.join all()

thread group is a container, member of the boost-thread library, which manages a set of
threads (n threads here). The threads are spawned with the method create thread and run
in parallel, each thread launching the ThreadProcedure routine. The join all method acts
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as a meeting point for all the threads, and the execution waits until all threads have finished
their computations.

5.2. Implementation checkout and accuracy evaluation of the code. In order to check
out the implementation of the method in the codes (FM) and (MR), which use two different
spatial discretizations and data structures, we have conducted a detailed comparison on a
numerical test-case. Nevertheless, we do not pretend it as a full validation step since the
numerical methods used for the time integration are exactly the same. We have considered a
2D case in a regular geometry of [0, 5]× [0, 5] (cm), using two resolutions, one on a fixed grid
computed with the code (FM) and the other on the adapted grid obtained by multiresolution
with the code (MR). Both methods, based on Strang’s splitting, use Radau5 and ROCK4 as
time integrators for the reaction and for the diffusion problem.For the model parameters, we
have considered only one domain, the gray matter. The time of integration was restricted to
one hour, t ∈ [0, 3600] seconds.

We thus compare both solutions with a L2-norm at final time t = 3600, and define an error
estimator e given by ‖u(., t)−uMR(., t)‖L2 , where indexMR denotes the use of multiresolution
techniques. The spatial discretization consists of an uniform mesh of 2562 points. In the case
of the spatial adaptive method, there is a set of nested grids arranged in 8 different levels
from the coarsest to the finest discretization. The latter corresponds to the uniform mesh
previously considered of 2562 points. In order to compare these results, we must consider
the same spatial discretization for both solutions: this is easily achieved with the mentioned
projection/prediction operations on the adapted grid. Tables 2, 3 and 4 show the minimum
and maximum values of variables in the neurons, the astrocytes and in the extracellular space
respectively, as well as the normalized L2 difference of the numerical results e obtained by
the adaptive multiresolution strategy and our proposed numerical strategy.

Variable Min value Max value e
K+ 68.9338 141.6940 3.4059× 10−3

Na+ 7.0834 75.2787 6.0126× 10−3

Ca2+ 1.0558× 10−4 9.3376× 10−4 2.0559× 10−2

Cl− 11.5492 22.3907 3.1682× 10−3

glu 0.0808 9.3415 7.0681× 10−3

Vn −57.6666 −3.7338 7.0782× 10−3

fn 0.0799 0.0878 6.8508× 10−4

Table 2. Minimum and maximum values of variables in the neurons, com-
puted with the (MR) code, and normalized L2 difference e of numerical results
between uniform mesh and (MR). t= 3600 s.

Figure 3 shows the evolution of the propagating phenomenon on an adapted grid for variable
K+ in the neurons. The refined regions clearly correspond to the wavefront area where the
steep spatial gradients are present. Finally, figure 4 reveals in a qualitative way the different
representations of the numerical solution on an uniform mesh and on the adapted one.

We first notice a great accordance between the solutions of the two different codes: (MR)
and (FM), in the 2D simulations. Let us recall that both codes rely on two well tested, robust
and publicly available numerical routines: the Radau5 and ROCK4 methods; therefore, one
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Variable Min value Max value e
K+ 124.2309 132.6962 1.2265× 10−3

Na+ 15.0751 24.3063 6.3289× 10−3

Ca2+ 1.5921× 10−4 0.4149 3.1653× 10−2

Cl− 6.7503 10.8147 1.0143× 10−2

glu 2.5460 2.9870 1.0133× 10−3

Va −75.2476 −19.6358 1.0817× 10−2

fa 0.7128 0.8088 1.1877× 10−3

Table 3. Minimum and maximum values of variables in the astrocytes, com-
puted with the (MR) code, and normalized L2 difference e of numerical results
between uniform mesh and (MR). t= 3600 s.

Variable Min value Max value e
K+ 4.8682 59.4336 6.1640× 10−3

Na+ 82.7306 141.0174 2.3939× 10−3

Ca2+ 0.0740 2.0027 2.4298× 10−2

Cl− 142.3254 150.2269 4.7433× 10−4

glu 7.2590× 10−4 0.0791 2.3966× 10−3

Table 4. Minimum and maximum values of variables in the extracellular
space, computed with the (MR) code, and L2 normalized difference e of nu-
merical results between uniform mesh and (MR). t= 3600 s.

can consider that they only differ by the different spatial discretizations and data structures
they use: the comparison can thus be considered as a (partial) cross validation.

Besides such a level of comparisons, (MR) will be shown to pave the way towards higher
levels of refinement for a better resolution of the details of the dynamics in 3D at a reason-
able cost. In fact, considering this 2D numerical test-case, finer spatial discretizations yield
naturally better resolution of both the wave velocity and the dynamics of the wavefront, as
seen into figure 5. See the corresponding (MR) adapted grids into figure 6. Even if it is
clear that the wave is better resolved on the finest grid (10242), in particular it is somewhat
faster, the qualitative value of the wave velocity is correctly captured even on the coarsest
grid (2562), which corresponds roughly to the 3D simulations with (FM). However, we can
not yet simulate with (MR) all the complex geometries of the brain we are investigating in
this paper; and thus, all the results in complex geometries will be performed with (FM).

Let us make now some comments on the performance of the numerical method on shared
memory machines for both diffusion and reaction equation solvers in (FM) used in the next
Results section.

5.3. Performances of the diffusion equation solver. Only a poor man’s parallelism is
implemented for this step, each diffusion equation being solved by one thread. But actually,
as we will see later, the computing time of this step is less than 10% of the total computing
time (in dimension 2 or 3); each step, for one diffusion equation, needs only 6 matrix vector
products (5 being the minimum for the ROCK4 method, plus one for the error estimate).
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Figure 3. Evolution of K+ in the neurons at t = 100 (top left), t = 1000
(top right), t = 2000 (bottom left) and t = 3000 (bottom right).
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Figure 4. K+ in the neurons at t = 3600 on a 2562 uniform mesh (left) and
the corresponding adapted grid (right).

5.4. Performances of the reaction solver. The main question concerns the efficiency of
the multithreaded parallelism. Figure 7 shows the computing time with 1, 2, 4 and 8 threads,
across 12 steps. The wall clock computing time is multiplied by the number of threads (unit
is in number of CPU clock ticks); in case of perfect scalability, all the points with the same
number of threads should be at the same ordinate. This is not exactly the case, but the loss of
scalability, comparing computations with 1 thread and computation with 8 threads, is about
6%. We conclude that this implementation is very efficient. This is a consequence of the
complexity of the right hand side (the reaction term): even one single numerical evaluation
of F is much more time consuming than the overhead introduced by the thread mechanism.
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Figure 5. K+ in the neurons at 3600 s. for a 2D mesh of 2562 (top), 5122

(center) and 10242 (bottom).
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Figure 6. 2D adapted meshes equivalent to 2562 (left) and 10242 (right)
spatial discretizations at the finest grid.

Figure 7. Performances of the multithreaded reaction solver.
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6. 2D and 3D numerical results in complex geometry with fixed mesh
simulations and validation

We present here some results of 2D and 3D simulations obtained with the code (FM) in
complex geometries of the brain. Two variables have been chosen for the model validation:
the potassium concentration in the extracellular space ([K+]e) and the ratio of apparent
diffusion coefficient of water (rADCw).

• The potassium concentration cannot be measured in vivo in the brain of stroke patients
but it can be measured ex vivo or in vitro on brain tissues. These concentration values
give some indications on the severity of the damage. The physiological value of [K+]e
is about 5 mM. It was observed to be able to increase up to 35 mM in areas of
moderate ischemia where depolarization waves can spread [42] and up to 75-90 mM
in areas of severe ischemia where most cells are dead [36]. The first step of the model
validation is thus to compare the values of the [K+]e obtained in the simulations to
those values.
• The rADCw is a biomarker which can be estimated in the brain of stroke patients
thanks to diffusion-weighted (DW) magnetic resonance (MRI) imaging. It reflects
the severity of the cytotoxic edema and could thus be used to predict the ischemic
damage and its extension [62, 52]. The value of this ratio is supposed to be 1 in
physiological conditions and is known to decrease in ischemic areas. In several studies,
this value in stroke patients was shown to be between 0.75 and 0.9 in areas of moderate
ischemia and between 0.5 and 0.75 in areas of severe ischemia ([18, 29, 51, 54]). This
biomarker can be related to the proportions of the intracellular volumes. It was
shown to be proportional to the volume of the extracellular space [62] Moreover,
since the extracellular proportion was displayed to have a value of 0.2 in physiological
conditions (i.e. when rADCw=1) [46], rADCw can be expressed as follows: rADCw =
5 (1 − fn − fa). Since fn and fa are two variables of the model, this ratio can be
calculated for each time and for each coordinate. Another step of the model validation
is thus to compare the calculated values of rADCw obtained in the simulations to the
experimental values.

We present in figures 8, 9, 10, 11, 12 and 13 some results of 2D and 3D simulations, showing
the values of rADCw and K+ concentration in the extracellular space in different areas.

Let us make some biological comments about these results:

• First of all, we obtained depolarization waves after the simulation of a vessel occlusion
in brain cortex and this depolarization waves spread in grey matter (i.e. in brain
cortex) and not in white matter, which is consistent with MR images obtained in
human brain [20].
• Concerning the potassium concentration in the extracellular space, figures 4, 6 and
8 show that this concentration reaches values such as 77 mM in the areas where the
vessel was occluded, which is in accordance with the results obtained in the infarct
core in some experimental studies ([36]). These figures also show that [K+]e is about
20 mM in the areas where depolarization waves are spreading, which is consistent with
the values obtained in penumbra (i.e. areas of moderate ischemia, able to recover)
during spreading depressions in several studies [42]. We can also notice that, in the
sane areas, [K+]e remains at its physiological value (5 mM).
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Figure 8. Evolution of rADCw in the extra cellular medium over one hour,
2D simulation, from left to right, top to bottom, every 15 minutes.
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Figure 9. Evolution of K+ in the extra cellular medium over one hour, 2D
simulation (in millimolar (mM)), from left to right, top to bottom.

• Concerning rADCw, figures 3, 5 and 7 show that this ratio reaches values such as 0.6
in the areas where the vessel was occluded, which is in accordance with the values
observed in MR images in the infarct ed core of the brain of stroke patient [29, 51, 54].
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Figure 10. 3D simulation; cut by 2 perpendicular planes of the rADCw field
at time T= 3600 seconds.
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Figure 11. 3D simulation; cut by 2 perpendicular planes of the K+ in the
extra cellular medium field at time T= 3600 seconds (in millimolar)

These figures also show that rADCw has values between 0.75 and 0.9 in the areas where
depolarization waves are spreading, which is consistent with the values obtained in
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Figure 12. Evolution of rADCw over one hour, 3D simulation. View in the
plane P in figure 10.

penumbra during spreading depressions in stroke patients [29, 54]. We can also notice
that, in the sane areas, rADCw remains at its physiological value (1).

To conclude, the simulation results concerning the localization of spreading depressions and
the values of [K+]e and rADCw are consistent with those obtained in experimental studies
or observed on MR images in stroke patients. These results give thus a first step of validation
for the model and for the numerical methods used in this study.
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Figure 13. Evolution of K+ in the extra cellular medium. View in the plane
P in figure 10 (in mM)

7. Towards better computational efficiency and improved accuracy:
Adaptive Multiresolution

In the previous simulations, we notice that the simulated waves spread at a slightly slower
speed. In several studies, spreading depressions were shown to spread at a rate of several
millimeters per minute [45], which is not currently the case in our simulations. In fact, it is
shown in [41] that traveling waves solutions of reaction–diffusion equations can disappear in
the numerical solution if the spatial discretization is too coarse; the velocity of the traveling
waves is a function of the mesh size, and coarse meshes might perturb the accuracy of the
computed wave velocity. In particular, in the previous 3D simulations, the mesh we can
use is not fine enough to obtain a correct level of accuracy for the wave velocities. In fact,
coming back to the 2D numerical test-case of section 5.2, we have seen in figure 5, that a high
number of volumes is needed to reproduce accurately the phenomenon, approximately 1000
per dimension.

We can also measure the computing time of the reaction at a typical step (see figure 141).
Clearly the most expensive nodes are about 37 times more expensive than the less ones! But
on the other hand, the overwhelming part of the nodes are not expensive ones. Actually,
79% of the nodes (the less expensive ones, which cost less than 4.5 106 tics) takes 60% of the
computing time.

Therefore, one way to improve both the performances and the accuracy of the resolution is
to use an adaptive mesh: use a fine mesh in the ischemized zone, where the solution exhibits

1one clock tick is about 0.35 10−9 second.
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Figure 14. Local measure of the computational cost of the reaction (in cpu.
clock tics).

large gradients and wave propagation, and a coarser mesh far from this part of the domain:
the multiresolution strategy, as implemented in the code (MR) is a step towards this goal.

In order to make this more concrete than just a statement, we eventually present here a first
3D multiresolution simulation in a cube, where the finest grid available has size 2563, since
complex geometry is not yet at hand. Therefore, considering the same computing resources,
the computing time is reduced by a factor of about five with respect to the fixed mesh
simulation with (FM) on the finest grid, even though trying to compare two so heterogeneous
codes is a very delicate task. In fact, the code (MR) considers a very low percentage (≤ 10%)
of 2563, which coupled with what has been presented before, allows to explain the gain in
CPU time. Nevertheless, at the current state of development of the code (MR), a lot of
work remains to be done like taking into account complex geometry, improving performances
of multiresolution methods by using adapted data structures and optimized routines, and
finally, a high performance distributed parallelism implementation. Once this is achieved, an
adaptive mesh approach shall overcome the natural limitations of accuracy and performance
of even very performing strategies such as the implemented in (FM), and will allow one to
solve entirely the multi-scale dynamics of this kind of phenomena.

Finally, increasing the accuracy of the discretization, of the numerical methods and even of
the implementation, is not sufficient to generate more precise and predictive simulations. This
should be carefully coupled with the development of a more precise modeling of coefficients
and boundary conditions, and it is beyond the scope of the present paper.
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Figure 15. 3D simulations with (MR). K+ in the neurons (left) and corre-
sponding adapted grid (right) at 1000 (top) and 3600 (bottom) seconds.

8. Conclusions and future works

We have presented for the first time numerical 3D simulations of an ischemic stroke based
on the model Dronne et al. [21]. Results are encouraging from numerical and medical
points of view. This is a first major step towards an usable tool for predicting the evolution
of a stroke. The next steps are to improve both numerical performances and modeling.
For this, a lot of work remains to be done from the model to practical implementations.
Concerning the numerical methods, many parameters in the model are known only with
a coarse approximation. Thus, numerical simulations must be conducted to explore the
sensitivity of the model to these parameters. The ultimate way to improve the performances
is to switch from multithreaded parallelism to distributed parallelism, on massive parallel
computers.

From a medical point of view, this model is of the most importance since it could be used to
simulate on a realistic human brain geometry several neuroprotective agents aimed at blocking
the ischemic cascade and at reducing the ischemic damage. Since the model contains many
pharmacological targets (such as ionic transporters, voltage-gated channels, channel-receptors
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and stretch channels), it could be used to assess and study the effects of various therapeutic
agents or associations of therapeutic agents. Moreover, since the model includes both ionic
movements through the cells and their diffusion, we will be able to study the effects of these
neuroprotective agents both on the severity and on the extension of the damage in each brain
area. Developing powerful numerical methods are thus of the most importance to be able
to simulate the time and spatial evolutions of these phenomena on a realistic human brain
geometry.
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versité Lyon 1, INSA de Lyon 69621, Ecole Centrale de Lyon, 43 Boulevard du 11 novembre
1918, 69622 Villeurbanne Cedex, France and Project-team NUMED, INRIA, Ecole Normale
supérieure de Lyon, 46 allée d’Italie, 69007 Lyon Cedex 07, France ({tdumont,louvet}@math.univ-lyon1.fr).

(M. Duarte, M. Massot) Laboratoire EM2C - UPR CNRS 288, Ecole Centrale Paris, Grande Voie
des Vignes, 92295 Chatenay-Malabry Cedex, France ({max.duarte,marc.massot}@em2c.ecp.fr).
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