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Shape optimization with Stokes constraints over the set of

axisymmetric domains∗

Maitine Bergounioux† Yannick Privat‡

Abstract

In this paper, we are interested in the study of shape optimizations problems
with Stokes constraints within the class of axisymmetric domains represented by the
graph of a function. Existence results with weak assumptions on the regularity of
the graph are provided. We strongly use these assumptions to get some topological
properties. We formulate the (shape) optimization problem using different constraints
formulations: uniform bound constraints on the function and its derivative and/or
volume (global) constraint. Writing the first order optimality conditions allows to
provide quasi-explicit solutions in some particular cases and to give some hints for the
treatment of the generic problem. Furthermore, we extend the (negative) result of
[16] dealing with the non optimality of the cylinder.

Keywords: Shape Optimization, Dissipated Energy, Stokes Problem, First order opti-
mality conditions.

AMS subject classifications: 49Q10, 49J20, 49K20, 35Q30, 76D05, 76D55.

1 Introduction

The applications of shape optimization to fluid mechanics are uncountable. Some well-
known and studied situations may be encountered in Industry for instance airplane opti-
mization, where the drag is often minimized under a lift constraint (see e.g. [6, 2, 22, 26]
for examples of such applied studies). More generally, the study of shape optimization
problems in the context of fluid mechanics constitutes a challenge. Most of time, works on
this topic are numerical point of view studies, because of the intrinsic difficulty of Stokes
or Navier-Stokes equations. Among the well known and studied problems of shape opti-
mization for fluids, one can mention, for instance, the reduction of the drag of an airplane
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wing in order to ensure hydrodynamic stability or the minimization of the noise of vortex
shedding for designing the shape of an airfoil trailing edge.

The partial differential equation describing the behavior of the fluid appears then as
an additional constraint for the optimization problem. For first references on this topic,
we refer to [12, 14, 26, 29, 30].

In [15, 16], a theoretical study on the shape minimization of the dissipated energy in a
pipe has been led. In particular, the first order optimality conditions for the optimization
problem were written and exploited to prove that, under some given particular boundary
conditions chosen to model trachea in human beings, the cylinder is not an optimal so-
lution. Nevertheless, some numerical computations done in the same papers let us think
that the optimum is very close to a cylinder.

This paper is motivated by a simple question coming from the conclusions of [15]:
indeed, it was proven that the cylinder does not optimize the dissipated energy through
a pipe, when the fluid inside is driven by Stokes or Navier-Stokes laws. Moreover, the
problem of knowing if the optimal solution has or does not have a cylindrical symmetry
is pointed out and still open. Another point of view consists in imposing the cylindrical
symmetry in the class of admissible shapes for this optimization problem. Such a choice
can be justified by the fact that, in some situations, it is natural to make this assumption.
For instance, if we assume that the shape of the (human being) trachea minimizes the
energy dissipated by the air through the geometry (thanks to a natural selection process),
it is reasonable to consider only simply connected domains with cylindrical symmetry.
With such a restriction on admissible shapes, we may hope simplifications of the system
driving the behavior of the fluid to obtain existence of optimal shape results more easily
and a simple expression of the first order optimality conditions. In this paper, we decided
to make the (strong) hypothesis that a transversal slice of an admissible domain is the
graph of a function z 7→ a(z). Our goal is to investigate the question of the existence of
optimal shapes over the class of such cylindrical domains, with Stokes partial differential
equations constraints and write the first order optimality conditions. This study may be
seen as a preliminary study specially in view of a refined study of the qualitative properties
of the optimum (for instance, the very difficult question of the free boundary regularity)
and numerical computations.

As it will be emphasized in the following sections, it is quite easy to prove the existence
of an optimal shape for three dimensional domains and to ensure a strong convergence
of the terms of the minimizing sequence of domains to the optimum. Nevertheless, the
applications, theoretical and numerical, previously mentioned need a precise frame adapted
to the domains having a cylindrical symmetry. One of the difficult parts of our work lies in
the determination of a variational formulation taking into account the cylindrical character
of the domain and the symmetry properties of the solution of Stokes partial differential
equations.

The paper is organized as follows: next section is devoted to optimal shape existence.
We use the cylindrical symmetry assumption to give a 2D formulation of Stokes equation,
using cylindrical coordinates. We use a fictitious domain technique to get result without
strong regularity assumptions on the shape boundary. Proofs are given in Section 3.
Optimality conditions are investigated in the last section. We first give a generic abstract
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result, and then a specific result in the “axisymmetric graph” case. If no volume constraint
is added, we prove a generic monotonicity result of the cost functional for the inclusion of
domains. As a result, the problem becomes purely geometrical which allows to provide a
precise characterization of the optimum. The same shape optimization problem with an
additional volume constraint appears rather difficult. We are nevertheless in position to
establish the non optimality of the cylinder in that case (extending by the same the results
of [16]). Moreover, we propose some hints to write the first order optimality conditions
and prepare a future numerical work on that topic.

2 Some shape existence results

2.1 Preliminaries

Let L, a0 and a1, be three strictly positive real numbers such that a0 < a1. Let us
introduce the set of admissible parametrizations

A∞ =
{
a ∈W 1,∞(0, L) | a0 6 a(z) 6 a1 a.e. z ∈ (0, L)

}
. (1)

We consider a generic domain Ωa, assumed for the moment simply connected, bounded,
with Lipschitz boundary and axisymmetric with respect to the (Oz)-axis. More precisely,
the domain expressed in standard cylindrical coordinates is

Ωa = {(r, θ, z) ∈ R+ × T × R+ | 0 < r < a(z), 0 < z < L}, (2)

where T denotes the torus R/2π and a ∈ A∞. We denote by Da, the bounded open set,
whose closure is

Da = {(z, r) ∈ R+ × R+ | 0 6 z 6 L, 0 6 r 6 a(z)}, (3)

so that Ωa is obtained by a rotation of Da around the axis {r = θ = 0} denoted from now
(Oz). We write

∂Ωa = Ea ∪ Σa ∪ Sa,
where Ea = ΩA∪{z = 0} is the inlet surface, Sa = ΩA∩{z = L} is the outflow surface and
Σa = ∂Ωa\(Ea∪Sa) is the lateral surface. Similarly, we write ∂Da = Γ0∪ΓL∪Γb∪Γa, where
Γ0 = {(0, r) | 0 6 r 6 a(0)}, ΓL = {(L, r) | 0 6 r 6 a(L)}, Γb = {(z, 0) | 0 6 z 6 L},
Γa = {(z, a(z)) | 0 6 z 6 L}. The notations used are summarized on Figure 1.

The same model of fluid as in [15, 16] is studied, for instance to model the flow of the
air inside the trachea represented by Da. More precisely, denoting by u the velocity of the
fluid, p its pressure, the Stokes system writes





−µ∆u + ∇p = 0 in Ωa

∇ · u = 0 in Ωa

u = 0 on Σa

u = u0 on Ea
σ(u, p) · n = h on Sa

(4)
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Figure 1: A cylindrical admissible domain and its slice in two dimensions

where µ > 0 stands for the viscosity of the fluid, u0 is a Dirichlet datum, h a Neumann
like datum which will be made precise later, and where the standard tensorial notations
of Fluid Mechanics are used, i.e.

σ(u, p) = −pI3 + 2µε(u)

is the strain tensor of (u, p) and

ε(u) =
1

2

(
∇u + (∇u)⊤

)
=

(
1

2

(
∂ui
∂xj

+
∂uj
∂xi

))

16i,j63

,

is the stretching tensor of u (symmetric part of the gradient tensor). We also define the
doubly contracted product of two vector fields A and B of R

d, d = 2, 3 by

A : B =

d∑

i,j=1

AijBij = tr(A ⊗ B⊤).

In the whole paper, the bold letters stand for vector fields of R
2 or R

3.
The existence of solutions for System (4) is well known (see for instance [3, 13]).

Theorem 1. Let a ∈ A∞. Assume that u0 ∈ (H3/2(Ea))
3, h ∈ (H1/2(Sa))

3, then Problem
(4) has a unique solution (u, p) ∈ (H1(Ωa))

3 × L2(Ωa).

Since we are dealing with stokes equations, we have to assume that a (roughly speaking
the boundary of the domain) is smooth enough (say for instance a ∈ A∞) to get regular
solutions. The existence and regularity of solutions to Stokes equations in non smooth
domains has not been investigated so much. Let us nevertheless mention the works [7, 8,
24, 25, 32].

The assumption that a ∈ A∞ will be relaxed in the sequel using a weak variational
formulation to define solutions of (4).

For the inlet boundary condition, we will choose u0 = (0, 0, u0(r))
⊤, where u0 is a

positive function of the polar variable r =
√
x2

1 + x2
2.
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For the outlet boundary condition, we will choose in the sequel of the paper h = −p0n,
where n denotes the outward-pointing normal vector, and p0 > 0 is a real number. In
particular, this boundary condition can model the human bronchial tree (see e.g. [23]).
With such a choice, introducing p̄ = p − p0, that is easy to see that the pair (u, p̄) is
solution of System (4), where h has been replaced by 0 in the boundary condition on Sa.
For this reason, we will actually choose h = 0 in the sequel.

Then, it is relevant to wonder whether we are able to rewrite the Stokes problem (4)
using only cylindrical coordinates (r, z), as we can easily have this intuition, since the
geometry is cylindrically symmetric. Moreover, the criterion we want to minimize is the
energy dissipated by the fluid (or viscosity energy) defined by

J0(Ω) = 2µ

∫

Ω
|ε(u)|2dx, (5)

where u is the solution of System (4), in a certain class of admissible shapes parametrized
for instance by the elements of A∞.

We end this subsection with a standard, but essential ingredient for the coming exis-
tence study. The solution of the Stokes problem (4) can be seen as the unique minimizer
of an energy functional j. We recall this fact and its proof for the sake of completeness.

Lemma 1. uΩa
is the (unique) solution of (4) if, and only if uΩa

is a solution of




min j(u) = 2µ

∫

Ωa

|ε(u)|2dx
u ∈ Hdiv(Ωa) = {v ∈ [H1(Ωa)]

3 | ∇ · v = 0 in Ωa,v = 0 on Σ and v = (0, 0,u0) on E}.
(6)

Proof. Let (un)n∈N be a minimizing sequence of the optimization problem (6). Notice
that, by virtue of Korn’s inequality combined together with a Poincarés inequality (see
[3]), the standard [H1(Ωa)]

3-norm is equivalent with the norm ‖ · ‖ε induced by the inner
product

〈f ,g〉ε =

∫

Ω
ε(f) : ε(g)dx.

where f and g denote two regular vector fields having the same dimension as Ω.
The sequence (j(un))n∈N is bounded, and thus, there exists u⋆ ∈ [H1(Ωa)]

3 such that

un

L2(Ω)→ u⋆ and un

H1(Ω)
⇀ u⋆, as n→ +∞.

Moreover,
‖u⋆‖ε 6 lim inf

n→+∞
‖un‖ε,

which proves the existence of a minimizer. To characterize it, we will use the standard
De Rham’s lemma (see e.g. [33]), stipulating that to take into account the divergence
pointwise constraints, it is enough to work with test functions chosen in the space

V(Ω) = {w ∈ D(Ωa);∇ ·w = 0 in Ωa},
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where D(Ωa) stands for the set of C∞(Ω)-functions having compact support in Ωa. Let
w ∈ V(Ωa). One has, by virtue of a well-known intergration by part formula (see later
Formula (31))

lim
t→0

j(u⋆ + tw) − j(u⋆)

t
=

∫

Ω
ε(u⋆) : ε(w)dx

= −µ
∫

Ω
(∆u⋆ + ∇(∇ · u⋆)) ·wdx

The use of De Rham’s lemma proves the existence of p⋆ ∈ L2(Ωa) such that u⋆ verifies
in the sense of distributions −µ∆u⋆ + ∇p⋆ = 0. The boundary conditions are derived as
usually, using the variational formulation obtained thanks to De Rham’s lemma.

2.2 An abstract shape existence result in dimension 3

To prove an existence result, we need to make the class of admissible domains precise. We
denote by D the cylindrical box defined by D = {(x1, x2, x3) ∈ R

3 | x2
1 + x2

2 6 R2
0, 0 6

x3 6 L}, with R0 > 0. Imposing some kind of regularity condition is a very classical
feature in shape optimization, since these problems are often ill-posed, see [1, 14]. We
will consider quasi-open sets included in the string B = {(x1, x2, x3) ∈ R

3 | 0 6 x3 6 L}.
Let us recall that a subset Ω ⊂ D is said to be quasi-open if there exists a nonincreasing
sequence of open sets (ωn)n∈N such that

lim
n→+∞

cap(ωn) = 0 and ∀n ∈ N, Ω ∪ ωn is an open set,

where cap denotes the standard capacity defined for compact or open sets (see e.g. [4, 14]).
We fix E ⊂ {x3 = 0}, a disk whose center is crossed by the axis {x1 = x2 = 0} and define

O = {Ω quasi-open included in D;

∃w ∈ [H1(D)]3 with Ω = {w 6= 0},w|E = (0, 0, u0) and cap
(
Ω ∩ {x3 = L}

)
6= 0
}
.

Theorem 2. The problem





minJ0(Ω) = 2µ

∫

Ω
|ε(uΩ)|2dx

Ω ∈ O
|Ω| 6 V0

uΩ solution of (4)

(7)

has (at least) one solution, whose volume may be chosen equal to V0.
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Proof. Let (Ωn)n∈N, be a minimizing sequence. Let us denote bym the infimum. By virtue
of Korn’s inequality combined with a Poincaré like inequality (see [3]), and since all the
admissible domains are contained in a compact set D, we know that un = uΩn

is bounded
in [H1(D)]3 (indeed ε(uΩn

) is L2-bounded). Consequently, there exists u⋆ ∈ [H1(D)]3 such
that (un) converges to u⋆ up to an extraction, weakly in [H1(D)]3 and strongly in [L2(D)]3.
Using a compactness property of the trace in [L2(E)]3, the condition u = (0, 0, u0) is
preserved on E. Then, the quasi-open Ωu⋆ = {u⋆ 6= 0} belongs to O. Furthermore, since
u⋆ = 0 quasi-everywhere on D\Ωu⋆ , by weak H1-convergence, one has, by Lemma 6,

∫

Ωu⋆

|ε(u⋆)|2dx 6 lim inf
n→+∞

∫

Ωn

|ε(un)|2dx = m 6

∫

Ωu⋆

|ε(u⋆Ωu⋆
)|2dx 6

∫

Ωu⋆

|ε(u⋆)|2dx,

whence the equality of these quantities.
Let us now prove that cap

(
Ω ∩ {x3 = L}

)
6= 0. For that purpose, let us use the fact

that uΩ is solution of (4). Integrating the “divergence-free” condition on Ωun
yields

−
∫

Supp (u0)
u0ds =

∫

D∩{x3=L}
u3,nds.

Using the convergence results established previously and a compactness property of the
trace, one get immediately that the above inequality remains valid for u∗ and hence,
ensures that Ωu∗ belongs to O.

Finally, thanks to the almost everywhere convergence of the domains, one has also

|Ωu⋆ | 6 lim inf
n→+∞

|Ωn| 6 V0.

Now, if |Ωu⋆ | = V0, then Ω̂ := Ωu⋆ is solution of (7). If |Ωu⋆ | < V0, we can construct a
quasi-open Ω̂ such that

Ωu⋆ ⊂ Ω̂, |Ω̂| = V0.

Thanks to Lemma 1, rewriting the criterion J0 under energetic form

J0(Ω) = 2µmin{j(u),u ∈ Hdiv(Ωa)}

shows immediately that J0 is a decreasing function with respect to the inclusion of sets.
By monotonicity of this functional, one has

∫
bΩ |ε(ubΩ

)|2 6
∫
Ωu⋆

|ε(u⋆
Ωu⋆

)|2, which ends the
proof. This means that the volume constraint is active.

Remark 1. The solution is a priori not unique and we have to set additional “physical”
constraints on the domain to get an acceptable solution from the physical point of view.
That is why we embedded the problem in the class of cylindrical domains so that we may
expect (in particular) uniqueness of the optimal graph. Moreover, the choice of admissible
shapes we will make in next section will simplify the study of the related optimization
problem and to characterize quite precisely the solution.
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2.3 Symmetry of solutions for Stokes problems in cylindrical domains

Before regarding the question of the existence for the shape optimization problem with
Stokes constraint, over the set of axisymmetric domains, we need to point out some sym-
metry properties of the solutions of the Stokes system (4). We associate to the classical
cartesian coordinates (x1, x2, x3), the cylindrical coordinates, denoted (r, θ, z), defined by

r =
√
x2

1 + x2
2, θ =





2 arctan

(
x2

x1 +
√
x2

1 + x2
2

)
if (x1, x2) /∈ R− × {0}

π else

and z = x3.

Proposition 1. Let a ∈ A∞. Let us assume that u0 only depends on the variable r. Then,
the solution (u, p) of (4) posed on Ωa verifies

1. u3 and p are functions of the variables r and z.

2. There exists α ∈ H1(Da) such that

u1 = α(z, r) cos θ and u2 = α(z, r) sin θ. (8)

Proof. See Section 3.1.

Let us write u3 = ũ3(r, z), p = p̃(r, z) and introduce w = (ũ3, α) = (w1, w2). As a
direct consequence of the above proposition, System (4) rewrites in cylindrical coordinates

−µ
(

∆w +
1

r

∂w

∂r
− 1

r2

(
0
w2

))
+ ∇p̃ = 0 in Da (9a)

∇ · w +
w2

r
= 0 in Da (9b)

w(0, r) = (u0(r), 0) a.e r ∈ (0, a(0)) (9c)(
∂w2

∂z
+
∂w1

∂r

)
(L, r) = 0,

(
−p̃+ 2µ

∂w1

∂z

)
(L, r) = h(r) a.e r ∈ (0, a(L)) (9d)

∂w1

∂r
(z, 0) = 0, w2(z, 0) = 0, w(z, a(z)) = 0 a.e z ∈ (0, L). (9e)

The details of this computation are given in the proof of Proposition 1, in Section 3.1.
Furthermore, the existence of a solution for such a system is guaranteed by the following
proposition.

Proposition 2. The two dimensional problem (9) has a unique solution (wa, pa) in
[H1(Da)]

2 × L2(Da), if a ∈ A∞.
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Proof. By Theorem 1, Problem (4) has a unique solution (u, p) in [H1(Ωa)]
3 × L2(Ωa).

Using the result stated in Proposition 1, we know that the solution (u, p) of (4) writes
u = (w2 cos θ,w2 sin θ,w1) and p = p̃ where (w, p̃) is solution of (9), which ensures the
existence of a solution to (9). The uniqueness for Problem (9) follows immediately from
the uniqueness of solutions for Problem (4).

Using these results, it will be useful to rewrite criterion J0 replacing u by (w2 cos θ,w2 sin θ,w1),
where w is solution of (9). If Ω = Ωa, with a ∈ A∞ (in a first time), we denote by J(a,w)
the new expression of J0(Ωa). A simple but tedious computation (similar to the one of
Lemma 2) yields

J(a,w) = 4πµ

∫ L

0

∫ a(z)

0

[(
∂w2

∂r

)2

+
w2

2

r2
+

(
∂w1

∂z

)2

+
1

2

(
∂w2

∂z
+
∂w1

∂r

)2
]
rdrdz. (10)

In view of the use of shape optimization technics, we need to avoid, as much as possible
to take into account the regularity constraint on the free boundary. That is why we will
state in the next section, an existence result using the variational formulation of (9) after
extending the solution to a fixed compact set.

Remark 2. It may be noticed that solving such a Stokes system is equivalent to inverse
a fourth order elliptic operator, close to the bilaplacian.

Indeed, since Da is a two-dimensional domain, one can introduce the so-called stream
function ψ (see for instance [33]). Since the divergence-free condition may be rewritten

∂

∂z
(rw1) +

∂

∂r
(rw2) = 0 in Da,

we are led to define ψ by the relations




rw1 = −∂ψ
∂r in Da

rw2 = ∂ψ
∂z in Da

ψ = 0 on Da.

A tedious computation shows that Equations (9a)-(9b) rewrites in terms of the function
ψ

∂

∂r

(
1

r

∂2ψ

∂r2

)
+

∂3ψ

∂z2∂r
− 1

r3
∂ψ

∂r
+

1

µ

∂

∂z
(rp̃) = 0 in Da (11)

∂3ψ

∂z3
+

∂

∂r

(
1

r

∂2ψ

∂r∂z

)
− 1

µ

∂p̃

∂r
= 0 in Da (12)

In order to make the pressure term vanish, let us form the equation ∂
∂r

(
1
r (11)

)
+ ∂

∂z (12).
One get

∂4ψ

∂z4
+

1

r

∂4ψ

∂r4
+

2

r

∂4ψ

∂z2∂r2
−
(

2

r2
+

1

r3

)
∂3ψ

∂r3
− 2

r2
∂ψ3

∂r2∂r
+

2

r3
∂2ψ

∂r2
+

4

r5
∂ψ

∂r
= 0. (13)
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Moreover, since w = 0 on Γa, ψ satisfies

ψ = 0 and
∂ψ

∂n
= 0 on Γa.

2.4 Main result: shape existence in the class of cylindrical domains

In Subsection 2.2, a general shape existence result for three dimensional domains has been
stated. Unfortunately, this result is hardly workable, since the boundary of the quasi open
set Ω may be very irregular (roughly speaking, when the boundary of the domain is locally
represented by the graph of a function which regularity is less than W 1,p, p > 2). In such
a case, there is sometimes possible to define a solution of the Stokes or Navier-Stokes
system, as it is emphasized in [7, 8, 24, 25, 32].

This section is devoted to the setting out of the main shape existence results for
domains enjoying a cylindrical symmetry property. We do not assume any longer that
the free boundary is W 1,∞. Let h0 : R → R and hL : R → R be two given continuous
functions.

Let us introduce the class of admissible domains Up, for p > 2 by

Up = {Da = {(z, a(z)) | 0 6 z 6 L} | a ∈ Up} (14)

where Up =
{
a ∈ Ap | ‖a′‖Lp ≤M,h0(a(0)) = hL(a(L)) = 0

}
, (15)

and Ap =
{
a ∈W 1,p(0, L) | a0 6 a(z) 6 a1 a.e. z ∈ (0, L)

}
, (16)

where h0 and hL are chosen to be compatible with the pointwise constraint satisfied by
each element of Ap.

It may be noticed that the compact embedding W 1,p(0, L) →֒ C0([0, L]) for the stan-
dard L∞-topology yields in particular the existence of aM > a0 such that ‖a‖∞ ≤ aM for
any a ∈ Up.
For a given p > 2, we consider the shape optimization problem

{
min J0(Ω)
Ω ∈ Op

cyl = {(r cos θ, r sin θ, z),∃a ∈ Up, 0 ≤ r < a(z), θ ∈ T, 0 < z < L}, (17)

where, the criterion J0(Ω) denotes the dissipated energy, defined, in the case of a regular
enough domain Ω, for instance with Lipschitz boundary, by Equation (5). Nevertheless,
in the case where the boundary is not regular enough, we can define J0(Ω) using Lemma
7 by

J0(Ω) = 2µ inf
u∈[H1(Ω)]3, ∇·u=0

u=u0 on E
u=0 on Σ

∫

Ω
|ε(u)|2dx.

An other way to define J0(Ω) consists in defining uΩ thanks to a weak formulation, well
adapted for the class of axisymmetric domains with respect to the (Oz)-axis. In particular,
since any domain Ω ∈ Op

cyl is contained in the fixed compact set

D = {(r cos θ, r sin θ, z), r ∈ [0, aM ], θ ∈ T, z ∈ [0, L]},

10



we have the temptation to write a weak formulation of the Stokes system on D which
lateral boundary is quite regular.

For that purpose, let us define, the Sobolev spaces

Hd(Da) =
{
ϕ = (ϕ1, ϕ2) ∈ [H1(Da)]

2 | ∇ · ϕ+
ϕ2

r
= 0 on Da

}
, (18)

Hd,0(Da) =
{
ϕ = (ϕ1, ϕ2) ∈ [H1(Da)]

2 | ∇ · ϕ+
ϕ2

r
= 0 on Da and ϕ = 0 on Γ0 ∪ Γa

}
.

The following result plays a crucial role in the proof of the existence of solutions for the
shape optimization problem (17).

Theorem 3. Let p > 2 and Ω ∈ Op
cyl, associated with a two-dimensional domain Da in

cylindrical coordinates.

1. Let a ∈ Ap. If wa ∈ Hd(Da) is solution of (9), then, the function w defined by

w =

{
wa in Da

0 in D\Da

verifies

∀z ∈ Hd(Da) ∩ C∞
c (Da\Γa), 2µ

∫

D

(
ε2(w) : ε2(z) +

w2z2
r2

)
rdrdz = 0. (19)

and w = 0 on Γa, w = (u0, 0) on Γ0.

2. Conversely, let w ∈ [H1(D)]2. If there exist a ∈ Ap and wa such that

w =

{
wa in Da

0 in D\Da,

and if w verifies (19) for any ϕ ∈ Hd(Da)∩C∞
c (Da\Γa), then wa is solution of (9).

Proof. See Section 3.2.

The result stated in Theorem 3 combined with the results of Section 2.3, (in particular
Proposition 1) drives us to consider a new shape optimization problem, over axisymmet-
ric domains, directly deduced from the initial general shape optimization problem (17).
Indeed, let us introduce the problem





min J(a,wa)
wa is solution of (19)
a ∈ Up,

(20)

11



Figure 2: Domains D and Da with boundary conditions

where J(a,w) is defined by (10).
In fact, keeping in mind that it seems better to write all the integrals on the fixed compact
set D, it is possible to extend wa by 0, so that the shape optimization problem becomes





min J(wa)
wa is solution of (19)
a ∈ Up

(21)

where

J(w) = 4πµ

∫

D

[(
∂w2

∂r

)2

+
w2

2

r2
+

(
∂w1

∂z

)2

+
1

2

(
∂w2

∂z
+
∂w1

∂r

)2
]
rdrdz. (22)

The following theorem constitutes the main result of this section.

Theorem 4. Let p > 2. Problem (21) has (at least) a solution.

Proof. See Section 3.3.

Note that, in general, we do not have uniqueness of the minimizer in shape optimization
(see e.g. [1, 14]).
Furthermore, for the needs of future numerical computations of the optimal shape, one
can easily forget the pointwise constraint a > a0 and replace it by a > 0 a.e. z ∈ (0, L).

12



Indeed, the result stated in Theorem 4 is a bit more general since it may be noticed that,
because of the “divergence-free” constraint, one has for z̄ ∈ (0, L) fixed,

∫

supp(u0)
u0(r)rdr =

∫ a(z̄)

0
w1(r, z̄)rdr,

where supp(u0) denotes the support of the data u0 that is supposed of strictly positive
measure. This identity comes directly from the integration of the “divergence-free” con-
dition on the restriction of the domain Ωa between the hyperplane z = 0 and z = z̄.
Thus, the optimal graph a cannot vanish because else, the above identity would not be
guaranteed.

3 Proofs

3.1 Proof of Proposition 1

It is assumed that u0 only depends on r. The pair (u, p) denotes the unique solution of
System (4). Let L be the operator

L = x2
∂

∂x1
− x1

∂

∂x2
,

the partial derivatives being understood in the sense of distributions. This operator stands
actually for the differentiation with respect to the polar angle θ, applied to a function
expressed in cylindrical coordinates. We easily check that

L
(
∂v

∂x1

)
=
∂L(v)

∂x1
+

∂v

∂x2
, L

(
∂v

∂x2

)
=
∂L(v)

∂x2
− ∂v

∂x1
et L

(
∂v

∂x3

)
=
∂L(v)

∂x3
.

Let us introduce û = L(u) = (û1, û2, û3) and p̂ = L(p). By applying L to System (4), we
get 




−µ∆û1 +
∂p̂

∂x1
+

∂p

∂x2
= 0 in Ωa

−µ∆û2 +
∂p̂

∂x2
− ∂p

∂x1
= 0 in Ωa

−µ∆û3 +
∂p̂

∂x3
= 0 in Ωa

∇ · û +
∂u1

∂x2
− ∂u2

∂x1
= 0 in Ωa

û = 0 on Σa ∪ Ea
σ(û, p̂) · n = (∇u3)

⊥ on Sa,

(23)

where (∇u3)
⊥ =

(
−∂u3

∂x2
, ∂u3

∂x1
, 0
)⊤

. Notice that the initial hypothesis that u0 is a function

of the variable r has been used to obtain the homogeneous Dirichlet boundary condition
for û on Σa ∪Ea.
Let us now introduce the following new functions:

v1 = û1 − u2, v2 = û2 + u1, and v3 = û3.

13



Then, System (23) rewrites in terms of v1, v2, v3 and p̂,





−µ∆v + ∇p̂ = 0 in Ωa

∇ · v = 0 in Ωa

v = 0 on Σa ∪ Ea
σ(v, p̂) · n = 0 on Sa

(24)

It is well known (see e.g. [3, 13, 33]) that this system has a unique solution, therefore,

v1 = v2 = v3 = p̂ ≡ 0.

The fact that L(u3) and L(p) vanish proves the first point of Proposition 1. We deduce
the existence of ũ3 and p̃ such that

p(x1, x2, x3) = p̃(z, r) and u3(x1, x2, x3) = ũ3(z, r) a.e. (x1, x2, x3) ∈ Ωa ,

where (z, r) has been defined by (8). Furthermore, it has been proved that L(u1) = u2

and L(u2) = −u1. Therefore, applying once more the operator L yields L◦L(u1)+u1 = 0
and then, there exist two functions α and β of the variables r and z, in the space H1(Da)
such that

u1 = α(z, r) cos θ + β(z, r) sin θ and u2 = α(z, r) sin θ − β(z, r) cos θ.

To end the proof, it remains to prove that the function β vanishes identically. For that
purpose, let us write down the partial differential equations satisfied by α and β. Using
standard change of variable formula, we get for almost every θ ∈ (0, 2π) and (z, r) ∈
(0, a(z)) × (0, L),




−µ
(
∂2α

∂r2
+

1

r

∂α

∂r
− α

r2
+
∂2α

∂z2

)
cos θ +

∂p̃

∂r
cos θ − µ

(
∂2β

∂r2
+

1

r

∂β

∂r
− β

r2
+
∂2β

∂z2

)
sin θ = 0

−µ
(
∂2α

∂r2
+

1

r

∂α

∂r
− α

r2
+
∂2α

∂z2

)
sin θ +

∂p̃

∂r
sin θ + µ

(
∂2β

∂r2
+

1

r

∂β

∂r
− β

r2
+
∂2β

∂z2

)
sin θ = 0,

which formally yields

−µ
(
∂2α

∂r2
+

1

r

∂α

∂r
− α

r2
+
∂2α

∂z2

)
+
∂p̃

∂r
= 0 in Da (25)

∂2β

∂r2
+

1

r

∂β

∂r
− β

r2
+
∂2β

∂z2
= 0 in Da (26)

The divergence condition rewrites

α

r
+
∂α

∂r
+
∂ũ3

∂z
= 0 in Da (27)

Now, let us precise the boundary conditions on α and β.

• u = 0 on Σa provides

α(z, a(z)) = β(z, a(z)) = ũ3(z, a(z)) = 0, a.e. z ∈ (0, L).
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• u = (0, 0, u0) on Ea provides

α(0, r) = β(0, r) = 0, ũ3(0, r) = u0(r), a.e. r ∈ (0, a(0)).

• σ(u, p) · n = 0 on Sa provides

∂α

∂z
(L, r) +

∂ũ3

∂r
(L, r) =

∂β

∂z
(L, r) = 0, − p̃+ 2µ

∂ũ3

∂z
(L, r) = 0, a.e. r ∈ (0, a(L)).

• Furthermore, in order to obtain a well-posed system on α and β, we have to add
a transmission boundary condition, directly coming from the symmetry property
proved previously, without any additional regularity assumption on u, that is

∂ũ3

∂r
(z, 0) = 0, a.e. z ∈ (0, L),

obtained by writing that for almost every x3 ∈ (0, L), (x1, x2) such that x2
1 +x2

2 6 ǫ,
ǫ > 0, one has u3(x1, x2, x3) = u3(−x1, x2, x3), and making an Taylor expansion
with respect to x1 and x2 at the first order. Similarly,

∂α

∂r
(z, 0) =

∂β

∂r
(z, 0) = 0, a.e. z ∈ (0, L),

Moreover, using the divergence condition (27), we get, by making r tend to zero,

α(z, 0) = 0, a.e. z ∈ (0, L).

Now, let us prove that β ≡ 0. Let us recall that, according to the previous analysis, β is
solution of 




∆β +
1

r

∂β

∂r
− β

r2
= 0 in Da

β(z, a(z)) = 0, a.e. z ∈ (0, L), β(0, r) = 0 a.e. r ∈ (0, a(0)),
∂β

∂z
(L, r) = 0 a.e. r ∈ (0, a(L)),

∂β

∂r
(z, 0) = 0 a.e. z ∈ (0, L).

Let us multiply (26) by r2β, and then integrate by parts, we get

0 =

∫

Da

(∆β) (r2β)drdz +

∫

Da

rβ
∂β

∂r
drdz −

∫

Da

β2drdz

= −
∫

Da

r2|∇β|2 drdz −
∫

Da

rβ
∂β

∂r
drdz −

∫

Da

β2drdz

= −
∫

Da

r2|∇β|2 drdz − 1

2

∫

Da

β2drdz.

Hence,

β =
∂β

∂z
=
∂β

∂r
≡ 0.

Finally, the solution (u, p) of System (4) verifies

u1 = α(z, r) cos θ, u2 = α(z, r) sin θ, u3 = ũ3(z, r), p = p̃(z, r), (28)

and according to the previous analysis, by setting w = (ũ3, α) = (w1, w2), we prove
moreover that w is solution of the two dimensional system (9).
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3.2 Proof of Theorem 3

Let us begin with an integration by parts formula, adapted for the special case of the
Stokes operator defined on domains having a cylindrical symmetry.

Lemma 2. Let a ∈ W 1,p(0, L), with p > 2, and w be a H2 vector field defined on the
domain Da. Let us assume that w verifies the “divergence-free condition for cylindrical
domains”, that is

∂w2

∂z
+

1

r

∂

∂r
(rw1) = 0 a.e. (r, z) ∈ Da. (29)

Then for any z ∈ [H1(Da)]
2, one has

2

∫

Da

(
ε2(w) : ε2(z) +

w2z2
r2

)
rdrdz = −

∫

Da

Lw · zrdrdz + 2

∫

∂Da

ε2(w) · n · zdσ, (30)

where

• ε2(w) = 1
2

(
∇w + [∇w]⊤

)
, and ∇w denotes the jacobian matrix with respect to the

variables (z, r);

• L = ∆ + ∂
∂r − 1

r2

(
0 0
0 1

)
I;

• dσ is the surface measure associated with the measure rdrdz.

Proof. A direct way may be used to prove this identity. Nevertheless, we decided here to
use the well known identity (see e.g. [3])

∀(u,v) ∈ [H2(Ω)]2,

∫

Ω
ε(u) : ε(v)dx = −

∫

Ω
(∆u + ∇ (∇ · u)) · vdx+

∫

∂Ω
ε(u) · n · vds,

(31)
where Ω is a bounded regular (for instance Lipschitz) domain of R

3. We will rewrite
this formula in the particular case where Ω = Ωa and there exist (α, ũ3) and (γ, ṽ3) in
[H2(Da)]

2 such that

u = (α(r, z) cos θ, α(r, z) sin θ, ũ3)
⊤ and v = (γ(r, z) cos θ, γ(r, z) sin θ, ṽ3)

⊤.

Nevertheless, we have to pay a bit attention to the regularity of the boundary of Ωa,
and more precisely to Σa. Indeed, since a ∈ W 1,p(0, L) with p > 2, a is a priori not
Lipschitz. The only restriction on the function a for writing the above formula lies in the
fact that we must define the normal vector n almost everywhere on the boundary Σa and
the boundary integrals must exist. In fact, this formula remains true in our case. Indeed,
one easily check

n =
1√

1 + a′2(z)




cos θ
sin θ
−a′(z)


 on Σa.

16



Now, z 7→ 1√
1+a′2(z)

belongs to L∞(0, L) while z 7→ a′(z) belongs to L2(0, L), since

a ∈ W 1,p(0, L) with p > 2. Therefore, n is defined almost everywhere on Σa and belongs
to L2(Σa). Hence, the boundary integral in the previous integration by part formula is
well defined, as a product of three functions in L2(Σa), thanks to the usual trace theorems.

Now, one easily computes

• ∂u1

∂x

∂v1
∂x

=

(
cos2 θ

∂α

∂r
+

sin2 θ

r
α

)(
cos2 θ

∂γ

∂r
+

sin2 θ

r
γ

)
.

• ∂u2

∂y

∂v2
∂y

=

(
sin2 θ

∂α

∂r
+

cos2 θ

r
α

)(
sin2 θ

∂γ

∂r
+

cos2 θ

r
γ

)
.

• ∂u3

∂z

∂v3
∂z

=
∂ũ3

∂z

∂ṽ3
∂z

.

•
(
∂u1

∂y
+
∂u2

∂x

)(
∂v1
∂y

+
∂v2
∂x

)
= 4cos2 θ sin2 θ

(
∂α

∂r
− 1

r
α

)(
∂γ

∂r
− 1

r
γ

)
.

•
(
∂u1

∂z
+
∂u3

∂x

)(
∂v1
∂z

+
∂v3
∂x

)
= cos2 θ

(
∂α

∂z
+
∂ũ3

∂r

)(
∂γ

∂z
+
∂ṽ3
∂r

)
.

•
(
∂u2

∂z
+
∂u3

∂y

)(
∂v2
∂z

+
∂v3
∂y

)
= sin2 θ

(
∂α

∂z
+
∂ũ3

∂r

)(
∂γ

∂z
+
∂ṽ3
∂r

)
.

Now, since
∫ 2π

0
cos4 θdθ =

∫ 2π

0
sin4 θdθ =

3π

4
,

∫ 2π

0
cos2 θ sin2 θdθ =

π

4
,

∫ 2π

0
cos2 θdθ =

∫ 2π

0
sin2 θdθ = π,

it comes
∫

Ωa

ε(u) : ε(v)dx = π

∫

Da

[
2

(
∂α

∂r

∂γ

∂r
+

1

r2
αγ +

∂ũ3

∂z

∂ṽ3
∂z

)
+

(
∂α

∂z
+
∂ũ3

∂r

)(
∂γ

∂z
+
∂ṽ3
∂r

)]
rdrdz

= 2π

∫

Da

(
ε2(w) : ε2(z) +

1

r2
αγ

)
rdrdz,

where w = (ũ3, α)⊤ and z = (ṽ3, γ)
⊤. Using the new notation we get

∫

Ωa

ε(u) : ε(v)dx = 2π

∫

Da

(
ε2(w) : ε2(z) +

1

r2
w2z2

)
rdrdz. (32)

Similarly, using the well known expression of the Laplace operator in polar coordinates
permits to recover easily the right hand term in Equation (30).
Now, let us make the boundary integrals precise. Noticing that n = (nr cos θ, nr sin θ, nz),
we show that

ε(u) · n =




cos θ ∂α∂r nr + 1
2 cos θ

(
∂α
∂z + ∂eu3

∂r

)
nz

sin θ ∂α∂r nr + 1
2 sin θ

(
∂α
∂z + ∂eu3

∂r

)
nz(

∂α
∂z + ∂eu3

∂r

)
nr + ∂eu3

∂z nz


 ,

driving easily to the boundary expression in the right hand side of (30).
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The following proposition is the key point of the proof of Theorem 3.

Proposition 3. Let w ∈ Hd(Da) be solution of Problem (9). Then, one has

∀z ∈ Hd,0(Da), 2µ

∫

Da

(
ε2(w) : ε2(z) +

w2z2
r2

)
rdrdz = 0. (33)

Conversely, if w ∈ Hd(Da) verifies Relation (33) and if w = 0 on Γa and w = (u0, 0) on
Γ0, then w is the unique solution of Problem (9).

Proof. Let us multiply the first equation of (9) by z and then integrate by part, using the
identity stated in Lemma 2. Since

∫

Da

∇p̃ · zrdrdz = −
∫

Da

(
∇ · z̃ +

z2
r

)
p̃rdrdz +

∫ a(L)

0
p̃z1 |z=L rdr −

∫ a(0)

0
p̃z1 |z=L rdr,

we obtain

2µ

∫

Da

(
ε2(w) : ε2(z) +

w2z2
r2

)
rdrdz

+2µ

∫

∂Da

ε2(w) · n · z −
∫ a(L)

0
p̃z1 |z=L rdr +

∫ a(0)

0
p̃z1 |z=L rdr = 0,

which proves that (33) is verified. The converse sense is immediate.

We are now in position to end the proof of Theorem 3. It remains to extend the
variational formulation (33) to D and to prove the well-posed character of this problem.
For any function wa defined on Da, we denote by w̃a the extension of wa by 0 in D, that
is

w̃a =

{
wa on Da

0 on D\Da

Let A be the bilinear form defined on [Hd(D)]2 by

A(w, z) = 2µ

∫

D

(
ε2(w) : ε2(z) +

w2z2
r2

)
rdrdz (34)

and L the identically zero linear form defined on Hd(D), so that we are interested in the
solution of

A(w, z) = L(z),
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where w and z are chosen as in the statement of Theorem 3.
Existence and uniqueness of a solution for the variational formulation (19) come from

a direct application of Lax-Milgram’s Theorem, using Korn’s inequality on D to get the
ellipticity of A (see e.g. [15]).

To conclude, let us say one word on the fact that no boundary condition on Γb has been
specified in the space Hd,0(Da), where the tests functions z live. In fact, it is useless. To
be convinced, a possibility consists in considering, instead of the domain Da, the domain
Ω̂, which is the union of Da with its symmetric with respect to the axis {r = 0}. Hence,
all the previous reasoning hold and the same conclusions follow when Da is replaced by
this domain. In particular, on Ω̂, simple arguments on symmetry of solutions of partial
differential equations permit to prove that w is symmetric with respect to the axis {r = 0},
which yields in particular that

∂w|Da

∂n |Γb

= 0,

and this is the natural boundary condition to impose. Mathematically, the good way
consists in writing the variational formulation with functions living in Ω̂, but with a slight
abuse of notations, it seemed to us clearer to consider functions living in Da.

3.3 Proof of Theorem 4

Let (an)n∈N be a minimizing sequence. (an)n∈N is bounded in W 1,p(0, L) and then, con-
verges weakly in W 1,p(0, L), strongly in L∞(0, L) to a ∈ Up, because of the compactness
of the embedding W 1,p(0, L) →֒ L∞(0, L), for p > 1, and of the fact that h0 and hL
are continuous real functions. Let us denote by wn the weak solution of Problem (9) in
Dn = Dan . Now, let us recall that, because of Korn’s inequality applied on D, the norms
H1, H1

0 and ‖ · ‖ε are equivalent (see for instance [3, 15]). Therefore J is coercive. As
(J(wn))n∈N is bounded ((wn)n∈N is a minimizing sequence), then the sequence (wn)n∈N

is bounded in H1(D) and then converges weakly to some w̃ in H1(D). The whole problem
consists in showing that w̃ vanishes on D\Da and that its restriction on Da is solution of
(9) in Da.
Let us show that w̃ ≡ 0 on D\Da. Let ǫ > 0. As a consequence of the uniform convergence
of an to a, one can find nǫ > 0 such that

∀n ≥ nǫ,∀z ∈ [0, L], an(z) 6 a(z) + ǫ.

Let z ∈ [0, L] and r ∈ [a(z)+ǫ, aM ]. For any n > nǫ, (z, r) ∈ D\Dn and then, wn(z, r) = 0.
Since wn(z, r) converges to w̃(z, r) almost everywhere, it comes

∀ǫ > 0,∀z ∈ [0, L],∀r ∈ [a(z) + ǫ, aM ], w̃(z, r) = 0.

Making ǫ tend to 0 yields w̃ ≡ 0 on D\Da. Since the divergence condition is preserved, it
is easy to see that w = w̃|Da

belongs to Hd(Da). Moreover, the same reasoning holds too
for the Dirichlet condition and one has w = (u0, 0) on Γ0.
It remains now to prove that w satisfies the variational formulation (19). Let us consider
a test function z with compact support “below” Γa and arbitrarily close to Γa. Thanks
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to the L∞ convergence of an to a, one can find nε such that the support of z lies below
Γn := Γan for any n > nε (see figure below).

Figure 3: Choice of test functions

Let us write (19) for such a n > nε:

2µ

∫

D

(
ε2(wn) : ε2(z) +

w2nz2
r2

)
rdrdz = 0.

Using that the norms H1
0 and ‖ ·‖ε are equivalent, and the fact that wn converges weakly-

H1(D) and strongly-L2(D) to w̃, one deduces

∫

D

(
ε2(wn) : ε2(z) +

w2nz2
r2

)
rdrdz −−−−−→

n→+∞

∫

D

(
ε2(w̃) : ε2(z) +

w̃2z2
r2

)
rdrdz.

In other words,

∀z ∈ Hd(Da) ∩ C∞
c (Da\Γa), 2µ

∫

Da

(
ε2(w̃) : ε2(z) +

w̃2z2
r2

)
rdrdz = 0.

and w̃ = 0 on Γa, w̃ = (u0, 0) on Γ0. The conclusion follows, applying Theorem 3.

4 Qualitative and quantitative properties of the optimum

4.1 General optimization framework (Problem (7))

We are now in position to define the derivative of the functional J0 with respect to the
shape Ω. In this section, let us assume that Ω has a Lipschitz boundary, to ensure the
differentiability of J0 at Ω. Let us consider a regular vector field V : R

3 → R
3 with compact

support inside the strip {0 < x3 < L}. For t small enough, we define Ωt = (I + tV)Ω,
the image of Ω by a perturbation of identity and f(t) = J0(Ωt). We recall that the shape
derivative of J0 at Ω exists (already mentioned in [10, 17, 18, 15, 26, 29]) and is f ′(0).
We will denote it by dJ0(Ω;V). To compute it, we first need to compute the derivative of
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the state equation, using the classical results on shape derivatives (see [14, 27, 31]). The
material derivative of (u, p) denoted (u̇, ṗ) is the solution of the following linear system,





−µ∆u̇ + ∇ṗ = 0 in Ωa

∇ · u̇ = 0 in Ωa

u̇ = −∂u
∂n (V · n) on Σa

u̇ = 0 on Ea
σ(u̇, ṗ) · n = 0 on Sa.

(35)

The shape derivative with respect to the domain is classically given by the formula

dJ0(Ω;V) = 4µ

∫

Ω
ε(u̇) : ε(u)dx+

∫

∂Ω
|ε(u)|2(V · n)ds. (36)

In general , it is more convenient to work with another expression of the shape deriva-
tive and to write it as a distribution with support Σ = ∂Ω\(E ∪ S). For that purpose,
we need in general to introduce an adjoint state. Nevertheless, the Stokes operator is
self-adjoint and we will show that the adjoint problem of (4) is the same.

Proposition 4. Let Ω ∈ O, a domain with Lipschitz boundary. Then, the criterion J0 is
shape-differentiable at Ω and one has

dJ0(Ω;V) = −2µ

∫

∂Ω
|ε(u)|2(V · n)ds. (37)

As a consequence, the first order optimality conditions for Problem (7) write

Ω solution of Problem (7) with Lipschitz boundary ⇒ |ε(u)|2 = constant on Σ. (38)

Proof. The differentiability has been already studied, as mentioned above. Let us now
prove (37). Let us multiply Equation (4) by u̇ and then integrate by part. We get

2µ

∫

Ω
ε(u̇) : ε(u)dx =

∫

∂Ω
σ(u, p)n · u̇ds.

=

∫

Σ
pn · ∂u

∂n
(V · n)ds− 2µ

∫

Σ
ε(u)n · ∂u

∂n
(V · n)ds.

Since u is “divergence-free” and vanishes on Σ, we have on this boundary

• ∂u
∂n · n = 0;

• ε(u)n · ∂u∂n = |ε(u)|2.
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These remarks permit immediately to recover the expression of the shape derivative
of J0 given in (37) using in particular (36). Now let us write the first order optimality
conditions. Because of the volume constraint, there exists a Lagrange multiplier λ ∈ R+

such that

−2µ

∫

∂Ω
|ε(u)|2(V · n)ds = −2µλ

∫

Σ
(V · n)ds.

The first order optimality conditions (38) follow.

In the case where the two disks E and S have the same radius R > 0, the prescribed
volume is equal to the one of the finite cylinder between the two disks E and S, h is chosen
so that the standard Poiseuille flow1 solves (4) and if we assume that the flow at the inlet
E is parabolic, one could naturally think that the cylinder solves the shape optimization
problem (7). Indeed, in this case, one has for c < 0

u0 = c(x2
1 + x2

2 −R2), ε(u) =




0 0 cx1

0 0 cx2

cx1 cx2 0


 , |ε(u)|2 = 2c2R2 on Γ.

The first order optimality conditions (38) are then verified. Nevertheless, the cylinder is
not optimal for this particular choice of h as emphasizes [16, Theorem 2.5]. Furthermore,
let us notice that the optimal domain Ω is solution of an overdetermined system, that is





−µ∆u + ∇p = 0 in Ω
∇ · u = 0 in Ω

u = 0 on Σ
|ε(u)|2 = constant on Σ

u = u0 on E
σ(u, p) · n = h on S.

The question of the determination of Ω (or some qualitative properties of Ω) is very linked
to the question of the unique continuation property for the Stokes system. Indeed, the
optimal domain Ω satisfies a Cauchy system near the “free boundary” Σ. It may be noticed
that, in dimension two, a positive answer were given in [28], but for generic domains only.

4.2 Shape derivative for the axisymmetric problem (21) in the case p ∈
[2, +∞]

Let us define the derivative of the functional J with respect to the shape represented by
a. It is well known [1, 14] that assuming a ∈ Ap ensures the differentiability of J at wa.
Let us recall we have proved in Theorem 3 a (weak) existence result for a ∈ Ap, and

1The Poiseuille flow is such that u = (0, 0, u0(r)) a.e. (z, r) ∈ (0, L)× (0,R0) and p is an affine function
of the variable z.
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that the integration by part formula stated in Lemma 2 remains valid for such functions,
since we are able to define a normal vector almost everywhere on Γa. Let us consider
δa ∈W 1,p

c (0, L), a perturbation of a with compact support, support which does not meet
neither {z = 0} nor {z = L}. For t small enough, we define at = a + tδa, the image
of a by a perturbation of the identity and f(t) = J(wat

). We recall that the shape
derivative of J at wa exists and is f ′(0). In what follows, we will prefer the notation J(a)
to designate the criterion J(wa); similarly f ′(0) will be denoted (with a slight abuse of
notations) dJ(a; δa). Let us first define the derivative of the state equation, using the
classical calculus of variation results. The material derivative of (wa, p̃) denoted (ẇ, ˙̃p) is
the solution of the linear system, written under variational formulation

∀z ∈ Hd(Da) ∩ C∞
c (Da\Γa), 2µ

∫

Da

(
ε2(ẇ) : ε2(z) +

ẇ2z2
r2

)
rdrdz = 0, (39)

˙̃p being the Lagrange mutiplier associated with the pointwise “divergence-free” constraint
and

ẇ = − δa(z)√
1 + a′2(z)

∂wa

∂n
on Γa, ẇ = (0, 0) on Γ0.

Indeed, coming back to the three dimensional representation of our shape optimization
problem, following the notations summed up at the left hand side of Figure 1, that is easy
to see that on Σa,

n =
1√

1 + a′2(z)




cos θ
sin θ
−a′(z)


 ,

and the perturbation field applied at any point of the boundary Σa is

V =




δa cos θ
δa sin θ

0


 .

It is very common in Shape Optimization to differentiate a Dirichlet boundary condition
with respect to the domain, and one has

ẇ = −∂wa

∂n
(V · n) on Γa,

providing the expected result. Using relation (32), we claim that the shape derivative with
respect to the domain is given by the formula

dJ(a; δa) = 8πµ

∫

Da

[
ε2(ẇ) : ε2(wa) +

ẇ2wa,2
r2

]
rdrdz + 4πµ

∫

Γa

|ε2(wa)|2(V2 · n2)dσ

= 8πµ

∫

∂Da

ε2(wa)n2 · ẇdσ + 4πµ

∫

Γa

|ε2(wa)|2(V2 · n2)dσ,

where

n2 =
1√

1 + a′2

(
−a′(z)

1

)
, V2 =

(
0

δa(z)

)
,
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and dσ stands for the curvilinear measure on Γa, that is dσ =
√

1 + a′2(z)dz.
Now, since ẇ = −∂wa

∂n (V2 · n2) and ε2(wa)n2 · ∂wa

∂n = |ε2(wa)|2 (due to the fact that
wa vanishes on Γa), one gets

dJ(a; δa) = −4πµ

∫

Γa

|ε2(wa)|2(V2 · n2)dσ.

To rewrite this shape derivative as an integral with respect to the variable z, we use the
previous expressions of V2 and n2.This is done in the following proposition.

Proposition 5. Let a ∈ Ap. Then, the criterion J is shape-differentiable at wa and one
has

dJ(a; δa) = −4πµ

∫ L

0
|ε2(wa)|2δa(z)dz. (40)

We derive immediately the associated necessary first order optimality conditions.

Corollary 1. Let a∗ ∈ Ap be the optimal solution to problem (21). Then, for any a ∈ Up,
∫ L

0
|ε2(wa∗)|2(a(z) − a∗(z)) dz ≤ 0. (41)

4.3 Explicit solution of Problem (21)

This section is devoted to the proof of a useful property of the criterion J , that will
appear essential to explore the necessary first order optimality conditions for Problem
(21). In particular, we will give the explicit solution of this optimization problem in the
case h0 = hL = 0 where no condition is imposed on the inlet and outlet.

For that purpose, let us define the order relation 4 for two elements of the set Ap,
p ∈ [2,+∞], by

a 4 b⇐⇒ a(z) 6 b(z), a.e. z ∈ (0, L).

Proposition 6. The criterion a ∈ Ap 7→ J(a) is a strictly decreasing function with respect
to the order relation 4.

Proof. The fact that J is monotone decreasing is easy to see. It suffices to adapt the end
of the proof of Theorem 2, noticing that

J(a) = 2µ min
w∈H2,div(Da)

∫

Da

[
|ε2(w)|2 +

w2
2

r2

]
rdrdz,

where H2,div(Da) =
{
w ∈ [H1(Da)]

2 | w verifies (29),w|Γ0

= (u0, 0) and w|Γa
= 0
}

. The

monotonicity of J follows then from the inclusion of the Sobolev spaces: a 4 b =⇒
H2,div(Da) ⊂ H2,div(Db).
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It remains to prove the strict character of the decreasing property for J . Let us argue
by contradiction, considering a ∈ Ap and assuming that there exists b ∈ Ap such that
a 4 b and J(b) = J(a). Let us denote by wa the unique (see Theorem 2) minimizer that
realizes J(a) and by wb the unique minimizer that realizes J(b). We will again designate
by wa the extension by 0 of this function to the whole domain Db. In particular, it is
easy to see that this extension by continuity belongs to H1(Db) and verifies again (29).
Hence, because of the uniqueness of the minimizer (underlined in Theorem 2), necessarily
wa = wb. It implies that at the same time, the minimizer wb is solution of a Stokes
system and vanishes in an open ball included in Db\Da. By virtue of the analyticity of the
Stokes operator (see for instance [20]), this is absurd, and one deduces that the inequality
between J(a) and J(b) is strict.

A direct consequence of Proposition 6 is the fact that our shape optimization problem with
Stokes constraints rewrites as a purely geometrical problem. As a result, we immediately
deduce from this result the following corollary.

Corollary 2. In the case h0 = hL = 0, the optimal solution of Problem (21) is

a∗ = a1.

Proof. Proposition 6 yields that the unique solution to
{

maxJ(a)
a ∈ Ap

is a∗ = a1. Since a∗ is feasible for Problem (21), the conclusion follows.

Let us now investigate the case where p ∈ [2,+∞] and the inlet and outlet are pre-
scribed as follows

h0(x) = x− a0 and hL(x) = x− aL, (42)

with (a0, a1) ∈ (a0, a1)
2. So far, the cylinder is not the optimal shape any longer [16]. It

may be noticed that taking into account some inequalities constraint of the kind h0(a(0)) 6

0 and hL(a(L)) 6 0 would be very easy since, because of Proposition 6, these constraints
would be reached, so that we would be led to study the case we investigate now. Notice
that, since a is a non negative function, find the maximal element in a given class for
the order relation 4 is equivalent for instance to the maximization of the L1 norm of a.
Therefore, a∗ solving Problem (21) is in fact solution of





max

∫ L

0
a(z)dz

a ∈W 1,p(0, L)
‖a′‖p 6 M and a0 6 a(z) 6 a1 a.e. z ∈ (0, L)
a(0) = a0 and a(L) = aL.

(43)
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Because of the simplicity of this new geometrical problem, we are in position to give a
quasi-explicit expression of its solution a∗ in the case p < +∞ and the explicit expression
of a∗ in the case p = +∞.

Theorem 5. Let h0 and hL given by (42).

1. Case p < +∞. Problem (21) has a unique solution a∗ that is the solution of Problem
(43). Moreover,

• There exists (z1, z2) ∈ [0, L]2, z1 6 z2 such that a∗ is strictly monotone in-
creasing and concave on (0, z1), constant equal to a1 on (z1, z2) and strictly
monotone decreasing and convex on (z2, L).

• One has ‖a∗′‖p = M .

• There exists (m, c1, c2) ∈ R
3
+ such that

a∗(z) =





a0 +m

(
(z + c1)

p

p−1 − c
p

p−1

1

)
if z ∈ (0, z1)

a1 if z ∈ (z1, z2)

aL +m

(
c

p

p−1

2 − (z − L+ c2)
p

p−1

)
if z ∈ (z2, L) .

2. Case p = +∞. Problem (21) has a unique solution a∗ that is the solution of Problem
(43). More precisely:

(a) Case min(a0, a1) > a1 − LM . The solution a∗ is defined by

a∗(z) =





Mz + a0 if z ∈
(
0, a1−a0M

)

a1 if z ∈
(
a1−a0
M , L− a1−aL

M

)

−M(z − L) + aL if z ∈
(
L− a1−aL

M , L
)
.

(b) Case min(a0, a1) 6 a1 − LM . The solution a∗ is defined by

a∗(z) =

{
Mz + a0 if z ∈

(
0, a1−a0+ML

2M

)

−M(z − L) + aL if z ∈
(
a1−a0+ML

2M , L
)
.

Proof. 1. Case p < +∞. This proof will be detailed into several steps. Let us recall
that the admissible set is convex and is denoted Up.

• Step 1: existence of a solution a∗.

Let (an)n∈N be a maximizing sequence for Problem (43). (an)n∈N is uniformly
bounded in W 1,p(0, L) because of the L∞-constraint on a and the Lp-constraint
on a′. Therefore, there exists a∗ such that, up to an extraction,

an
L∞(0,L)→ a∗ and an

W 1,p(0,L)
⇀ a∗ as n→ +∞.
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0 z_1 z_2 L
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a(0)

a(L)

a_1

Figure 4: Possible profiles of the optimum a∗: for p = 2 (continuous line) and for p = +∞
(dashed line)

Furthermore, the weak-W 1,p convergence of (an)n∈N to a∗ implies

‖a∗′‖p 6 lim inf
n→+∞

‖a′n‖p 6 M.

This yields that (J(an))n∈N converges to J(a∗) as n→ +∞ and that a∗ belongs
to Up. The existence follows.

• Step 2: the constraint “‖a∗′‖p 6 M” is reached.

Let η > 0, small enough. Since a∗ is continuous, and since a∗(0) = a0 < a1,
there exists an open subset ω on which a0 + η 6 a∗(z) 6 a1 − η a.e. z ∈ ω. Let
us argue by contradiction, assuming that the constraint “‖a∗′‖p 6 M” is not
active. For any admissible perturbation δa with compact support included in ω
(the existence of such perturbations δa is obvious), one can write the first order
optimality condition. One has for κ > 0 small enough, F (a∗ + κδa) > F (a∗),

where F (a∗) =
∫ L
0 a∗(z)dz. Dividing the previous inequality by κ and making

κ go to zero yields
dF (a∗; δa) > 0.

Furthermore, if κ is small enough, the perturbation a − κδa is also admissible
and the same reasoning as before proves that the derivative of F at a∗ in
direction δa vanishes so that

∫

ω
δa(z)dz = 0.

Any choice of admissible δa with nonzero mean provides a contradiction.
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• Step 3: the optimum a∗ is unique.

The reason of this uniqueness comes from the fact that the convex functional
F defined on Up is strictly locally convex around the optimum a∗. Indeed, let
us assume the existence of two elements a1 and a2 of Up such that

max
a∈Up

F (a) = F (a1) = F (a2).

Because of the linearity of F , for any t ∈ (0, 1) the function at = ta1+(1−t)a2 is
also a solution of Problem (43). As a consequence of Step 2, we necessarily have
‖a′t‖pp = Mp, i.e. ‖ta′1+(1−t)a′2‖

p
p = Mp. Moreover, t‖a′1‖

p
p+(1−t)‖a′2‖

p
p = Mp,

and since p > 2, x 7→ xp is strictly convex on R+. Hence, a1 = a2 providing the
expected result.

• Step 4: profile of the optimum a∗.

Let us notice that the number of connected components of the set {a = a1}
is, at most equal to 1. Indeed, assume that the set {a∗ = a1} has two disjoint
connected components ω1 and ω2, and that there exists a set of nonzero measure
between these two sets on which a 6 a1 − η for a given η > 0 small enough.
Let us denote by ω the convex hull of ω1 and ω2. That is easy to see that we
strictly improve the criterion F replacing a∗ by a such that

a(z) =

{
a1 if z ∈ ω
a∗(z) if z /∈ ω,

in other words, F (a) > F (a∗), which contradicts the optimality of a∗. As a
consequence, there exists (z1, z2) ∈ [0, L]2, z1 6 z2 such that a∗ constant equal
to a1 on (z1, z2) and a∗ < a1 on [0, L]\[z1, z2].
Let us now prove that a∗ is monotone increasing on (0, z1). We denote by
a∗(0,z1), the restriction of a∗ on (0, z1). For that purpose, let us introduce ai, the
monotone increasing rearrangement of a∗(0,z1), that is defined by

∀z ∈ (0, z1), a
i(z1 − z) = inf{t ∈ R, m(t) 6 z},

where m denotes the distribution function of a∗(0,z1), i.e. m : t ∈ R 7→ |{a∗(0,z1) >

t}| (see for instance [19, 14]). Notice that, since a∗(0,z1) belongs to W 1,p on the

connected set (0, z1), then this is also the case for ai. By virtue of Polyà’s
inequality, ‖ai′‖p 6 ‖a∗(0,z1)

′‖p 6 M and because of the equimeasurability prop-

erty of the monotone rearrangement,
∫ z1
0 ai(z)dz =

∫ z1
0 a∗(z)dz. Denoting again

by ai the extension of the function ai to (0, L) verifying ai = a∗ on (z1, L), it
follows from the previous remarks that ai and ai both realize the maximum of
F over the set Up. This is in contradiction with the uniqueness result of Step
3, whence the conclusion. An adaptation of the previous reasoning proves that
a∗ is monotone decreasing on (z2, L).
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• Step 5: first order optimality conditions.

Because of the previous conclusions, one can choose η > 0 and ω ⊂ (0, z1),
open, such that for any z ∈ ω, a0 + η 6 a∗(z) 6 a1 − η. Since the global
Lp-constraint is attained at the optimum, the first order optimality conditions
yield in particular the existence of a Lagrange multiplier λ > 02 such that

∀δa ∈W 1,p
c (ω),

∫

ω
δa(z)dz = −λp

∫

ω
(a∗′)p−1(z)(δa)′(z)dz,

whereW 1,p
c (ω) denotes the set of functions living in the Sobolev spaceW 1,p(0, L),

with compact support included in ω. Now, let x1 and x2 be two elements of
ω, ε > 0 small enough and let us consider particular perturbations δa with
support (x1, x2) such that

δa(z) =





x− x1 if z ∈ (x1, x1 + ε)
ε if z ∈ (x1 + ε, x2 − ε)
x2 − x if z ∈ (x2 − ε, x2).

Hence, we clearly have (δa)′(z) = χ[x1,x1+ε] − χ[x2,x2+ε]. The optimality condi-
tion rewrites then

ε(x2 − x1 − ε) = λp

(∫

[x1,x1+ε]
(a∗′)p−1(z)dz −

∫

[x2−ε,x2]
(a∗′)p−1(z)dz

)
.

Let us divide this identity by ε and then, make ε tend to 0. The Lebesgue’s
density theorem yields

(a∗′)p−1(x2) − (a∗′)p−1(x1) = λp(x2 − x1).

Since x1 and x2 are chosen arbitrarily, this identity implies obviously that λ 6= 0,
that a∗′ cannot vanish on (0, z1), that a∗′ is a monotone decreasing function,
so that a∗ is concave on (0, z1), that a∗′ is differentiable on (0, z1) and that

(p− 1)a∗′′(z)(a∗′(z))p−2 =
1

λp
, z ∈ (0, z1).

Notice that one can establish in the same way that

−(p− 1)a∗′′(z)(−a∗′(z))p−2 =
1

λp
, z ∈ (z2, L).

Now, the expressions given in the statement of the theorem follows directly
from the integration of these two differential equations. These computations
are a bit tedious but easy and are left to the reader.

2λ is associated with the global inequality constraint on a′ (that is in fact an equality constraint),
whence its sign
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2. Case p = +∞. The existence of a solution a∗ follows from a direct adaptation
of the previous case. The case “p = +∞” can been studied by a geometrical way.
Indeed, let us assume that there exists a nonzero measure subset of (0, L) on which
the constraints |a′| 6 M and a 6 a1 are not active. Hence, it is easy to see that one
can find a perturbation δa with compact support in ω such that |(a+δa)′| 6 M on ω

and
∫ L
0 (a(z) + δa(z))dz >

∫ L
0 a(z)dz. It proves that (0, L) = {a = a1}∪ {|a′| = M}.

The same argument as in the previous case proves that the number of connected
components of the set {a = a1} is at most 1. Therefore, there exists (z1, z2) ∈ [0, L]2,
z1 6 z2 such that a∗ is affine increasing on (0, z1), constant equal to a1 on (z1, z2)
and affine decreasing on (z2, L). The end of the proof is a direct calculus.

Remark 3. Unfortunately, we are not in position to give an explicit expression of the
constants that appear in the expression of a∗ given in the first case of Theorem 5, since
these constants are solutions of strongly nonlinear equations resulting from the fact that
a∗ belongs to Up and from the quasi-explicit expression of a∗ given in this theorem.

Remark 4. Role of the global or pointwise constraint on a′. If one forgets the constraint
on a′ in Problem (43), we claim that there does not exist a solution anymore. Neverthe-
less, there exists a maximizing sequence (an)n∈N such that (J(an))n∈N converges to La1,
although an(0) = a0 and an(L) = aL. Indeed, let us denote by c : [0, 1] → [0, 1], the Cantor
function, also referred to as the Devil’s staircase. Let us recall that c is continuous, but
not absolutely continuous and has zero derivative almost everywhere. Now, considering
as minimizing sequence

∀n ∈ N, an(z) =





a0 + (a1 − a0)c(nz) if z ∈ (0, 1/n)
a1 if z ∈ (1/n,L− 1/n)
a1 + (a1 − a1)c(n(L− z)) if z ∈ (L− 1/n,L),

that is easy to verify the convergence result mentioned above.

In [16] was investigated the question of the optimality of the cylinder, with a volume
equality constraint on set of admissible domains and a negative answer was given. Intu-
itively and from a physical point of view, an explanation of this non optimality comes from
the fact that the considered shape optimization problem was too constrained. Indeed, not
only the volume of the admissible domains was prescribed, but also some particular “out-
let pressure conditions”, that strongly influenced the optimal shape. In Problem (21), the
situation is quite different, since only global W 1,p-conditions on a and Lp-conditions on a′

are imposed, that only provides an upper bound on the volume of the admissible domains.
In the following section, we wonder, a bit as in [16], what become the optimal graph of the
function a∗ with an additional area constraint forbidding the situations described above,
M being a positive arbitrarily large constant.
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4.4 Problem (21) with an additional area constraint

Let us introduce the functional Vol3 defined by for any a ∈ Ap by

Vol(a) =

∫ L

0
a(z)dz.

The quantity Vol(a) stands for the total measure of the two dimensional domain Da.
Let V0 > La0. We consider the new optimization problem





minJ(a)
a ∈ Up
Vol(a) = V0.

(44)

If we had considered, instead of Problem (44), Problem (21) with an inequality constraint
on the volume, we would have obtained the same solutions since, by virtue of Proposition
6, the constraint is necessarily reached at the optimum.

Since the functional Vol is obviously continuous for the usual strong L∞(0, L)-topology,
we derive from Theorem 4 the following corollary.

Corollary 3. Let p ∈ [2,+∞]. Problem (44) has (at least) a solution a∗.

Finally, let us notice that the main result of [16] yields a non trivial information on the
solution of Problem (44) for a particular choice of boundary condition at the outlet that
does unfortunately not apply in our case. Indeed, a condition of the kind σ2(w, p̃)n = h

with h = (−p1, 2µr) is considered,in [16] so that the standard Poiseuille flow solves System
(9) whereas in our case, h = (0, 0) and the analytic expressions of the flow w and the pres-
sure p̃ are not known.We are all the same in position to prove a similar theorem in our case.

Theorem 6. Let p ∈ [2,+∞]. Assume that a(0) = a(L), V0 = La2(0) and u′0(a(0)) 6= 0
(this is in particular the case if u0 is a parabolic pair function of r). Then, the constant
function a = a(0) does not solve Problem (44).

Proof. Let us set R0 = a(0) = a(L) and a the constant solution equal everywhere to R0.
We will argue by contradiction, assuming that the constant function a = R0 solves the
shape optimization problem (44). First notice that the first order optimality condition
writes |ε2(w)|2 = constant on Γa. Because of the divergence condition, ∂w2

∂n |Γa
= ∂w2

∂r |Γa
=

3The so-called volume constraint is in fact an area constraint since we reduced the 3D problem to a
2D-one thanks to the symmetry. However, we use the same terminology to keep in mind that the problem
is generically 3D.
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−∂w1

∂z |Γa
= 0. Therefore, the first order optimality condition leads to the existence of a

constant ξ ∈ R such that
∂w1

∂n
= ξ on Γa.

Let us consider the three dimensional Stokes system (4), before taking into account the
symmetry of the solutions and rewriting this system into (9) (this point of view appears
simpler for the following manipulation). Then, applying the divergence operator to the
main equation proves that the pressure p is a harmonic function. Integrating the laplacian
of p on the domain Ωa leads to the relation

∫

Γa

∂p

∂n
= 0. (45)

Using the symmetry of the function p underlined in Proposition 1, this implies
∫

Γ0

∂p̃

∂z
=

∫

ΓL

∂p̃

∂z
.

Indeed, from the cylindrical symmetry underlined in Proposition 1 and from (45),
∫
Γ0

∂ep
∂z +∫

Γa

∂ep
∂r =

∫
ΓL

∂ep
∂z . Let r go to R0 in the partial differential equation of (9) which w1 is

solution yields
1

µ

∂p̃

∂r |Γa

=
∂2w2

∂r2 |Γa

,

since w2 vanishes on Γa so that all the derivatives of w2 with respect to z vanish on Γa and
we have already seen that ∂w2

∂r |Γa
= 0. Now, differentiating the “divergence-free” condition

with respect to r and making r → R0 yields

∂2w2

∂r2 |Γa

= 0,

since the function ∂w1

∂r remains constant on Γa (optimality condition).

The end of the proof consists in computing each integral
∫
Γ0

∂ep
∂z ,
∫
ΓL

∂ep
∂z , which will lead

to a contradiction since we will obtain two different values.

• Computation of the integral
∫
Γ0

∂ep
∂z .

Let us differentiate the “divergence-free” relation with respect to z. We get

∂2w1

∂z2
+

1

r

∂

∂r

(
r
∂w2

∂z

)
= 0.

Let us now consider the partial differential equation in w1 and integrate it on Γ0.
Using the last above identity, we obtain

1

µ

∫

Γ0

∂p̃

∂z
=

∫

Γ0

[
1

r

∂

∂r

(
r
∂w1

∂r

)
+
∂2w1

∂z2

]
rdr

=

[
r

(
∂w1

∂r
− ∂w2

∂z

)]R0

0

= R0u
′(R0) −R0

∂w2

∂z
(0, R0).
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Using the fact that the partial differential equation in w1 is set on a very regular
domain (a rectangle), one has

∂w2

∂z
(0, R0) =

∂w2

∂z Γ0∩Γa

= 0.

Finally,
1

µ

∫

Γ0

∂p̃

∂z
= R0u

′(R0). (46)

• Computation of the integral
∫
ΓL

∂ep
∂z .

Let us differentiate the boundary condition on ΓL with respect to the variable r. We
obtain

∂2w1

∂r2 |ΓL

= −∂
2w2

∂z∂r |ΓL

. (47)

Let us differentiate the “divergence-free” condition with respect to z. It yields

−∂
2w2

∂z∂r
=
∂2w1

∂z2
+

1

r

∂w2

∂z
. (48)

The combination of Equations (47), (48) and of the partial differential equation in
w1 (Equation (9)) provides

1

µ

∂p̃

∂z |ΓL

= 2
∂2w1

∂r2 |ΓL

+
2

r

∂w1

∂r |ΓL

.

Let us integrate this relation with respect to r, we obtain

1

µ

∫

Γ0

∂p̃

∂z
= 2

∫ R0

0

1

r

∂

∂r

(
r
∂w1

∂r

)
dr = 2R0u

′(R0). (49)

The combination of (46), (49) and the fact that u′0(R0) 6= 0 provide a contradiction, which
concludes the proof.

4.5 Some hints for optimality conditions (Problem (21) with an addi-
tional volume constraint)

In this subsection we try to make the first order optimality conditions for Problem (44)
more precise. For that purpose, we detail the constraint “a ∈ Up”. In the sequel, we
denote by M+(0, L) the space of nonnegative Radon measures on (0, L).

• The constraint a ≥ a0 a.e. on (0, L) cannot be relaxed any longer because of the
volume constraint: no monotonicity principle as in Proposition 6 may be applied.
The constraints a0 − a 6 0 and a − a1 ≤ 0 a.e. on (0, L) are pointwise constraints
whose associated Lagrange multipliers are nonnegative Radon measures denoted
respectively ν0 and ν1.
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• The remainder constraint is

fp(u) = ‖u′‖p −M ≤ 0

for p ∈ [2,+∞]. Note that fp is differentiable only if p is even. However, fp is convex
and subdifferentiable at u ∈W 1,p and we denote ∂fp(u) its subdifferential at u.

Let us define the Lagrangian of Problem (44) :

∀(a, λ, ν0, ν1, λM ) ∈W 1,∞(0, L) × R × [M+(0, L)]2 × R
+

L(a, λ, ν0, ν1, λM ) = J(a) + λ(Vol(a) − V0) + λMfp(a) (50)

+ 〈ν0, a0 − a〉M,L∞ + 〈ν1, a− a1〉M,L∞

where 〈·, ·〉M,L∞ denotes the duality product between M and L∞. Let us remark that the
derivative of the functional Vol is clearly

dVol(a; δa) =

∫ L

0
δa(z)dz.

One can formally write that the optimum (a∗, λ∗, ν∗0 , ν
∗
1 , λ

∗
M ) satisfies the following opti-

mality condition

(|ε2(wa∗)|2 + λ∗) − ν∗0 + ν∗1 ∈ −λ∗M∂fp(a∗) (51)

〈ν∗0 , a0 − a∗〉M,L∞ = 〈ν∗1 , a1 − a∗〉M,L∞ = λ∗M (‖(a∗)′‖p −M) = 0 . (52)

Let us now detail this optimality condition and give some hints:

• On the question of knowing if the Lp-constraint “‖(a∗)′‖p < M” is reached.

If the optimal solution a∗ satisfies: ‖(a∗)′‖p < M , then, by complementarity λ∗M = 0
so that

(|ε2(wa∗)|2 + λ∗) − ν∗0 + ν∗1 = 0 . (53)

Since the supports of the two Radon measures ν0, ν1 are disjoint, then

ν∗0 =

{
a0(|ε2(wa∗)|2 + λ∗) on {a∗ = a0}
0 else,

and

ν∗1 =

{
−a1(|ε2(wa∗)|2 + λ∗) on {a∗ = a1}
0 else,

Let us define the “strong inactive” set ω ⊂ (0, L) where both of the pointwise
constraints are inactive:

ω = { z ∈ (0, L) | a0 < a∗(z) < a1 }.

and make the behaviour of the optimal solution on ω precise. The condition (53)
gives

|ε2(wa∗)|2 = −λ∗ on ω. (54)
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By definition, setting wa∗ = (w1, w2), one has

|ε2(wa∗)|2 =

(
∂w2

∂r

)2

+

(
∂w1

∂z

)2

+
1

2

(
∂w1

∂r
+
∂w2

∂z

)2

.

Moreover, the “divergence-free” condition provides

∂w1

∂z |Γa∗

+
∂w2

∂r |Γa∗

= 0

and, since Γa∗ is a level set of wa∗, for any i ∈ {1, 2}, ∂wi

∂z |Γa∗
= −a′(z)∂wi

∂r |Γa∗
.

Combining the previous identities yields

∀i ∈ {1, 2}, ∂wi
∂z |Γa∗

= − a′(z)√
1 + a′2(z)

∂wi
∂n |Γa∗

and
∂wi
∂r |Γa∗

=
1√

1 + a′2(z)

∂wi
∂n |Γa∗

.

Hence, the first order optimality condition (54) rewrites

(
∂w1

∂n |Γa∗

)2

= −2λ∗
1

1 + a′2
on ω. (55)

At this step, one possibility to study this situation would be the following: using the
stream function ψ introduced in Remark 2, we rewrite the Stokes system as

{
Fψ = 0 in Da,

ψ = ∂ψ
∂n = 0 on Γa,

where F is a fourth order operator, whose explicit expression appears in Remark 2.
Then, we could hope that Condition (55) yields two additional boundary conditions,
apply a Cauchy-Kowalewski like theorem in order for instance to obtain a contra-
diction. Nevertheless, we did not manage to perform this technic since it did not
appear possible to us to derive from (55) a third order boundary condition. That is
why we think that such a situation may arise for the optimum a∗.

Furthermore, it may be noticed that the authors of [28] studied a very similar situ-
ation, that is a principle of unique continuation for a Stokes system. They obtained
a positive answer, but only generic results with respect to the domain. More pre-
cisely, they proved that the set of domains enjoying an unique continuation property
is residual in a certain class of regular domains, i.e. is a countable intersection of
open and dense subsets. Their situation is close to ours, in the case where a′ = 0
and a does not reach the constraints (the Lagrange multiplier are null). To our
knowledge, the complete answer to the problem of unique continuation for a Stokes
system with homogeneous Dirichlet and Neumann boundary conditions on a subset
of the boundary is open. As a consequence, the question of knowing if the constraint
“‖(a∗)′‖p < M” is also open.
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To conclude, in this paper, we were in position to make a refined study of the shape
optimization problem (21) and in particular to exploit the first order optimality condition.
Nevertheless, our approach fails when an additional volume constraint is considered, as
in Problem (44). In both cases, a general existence theorem has been stated, but a
theoretical determination of the optimum appeared highly difficult to lead in presence
of a volume constraint. Section 4.4 brought some useful remarks (general expression of
the Lagrangian functional and writing of the first order optimality conditions) in view
of numerical simulations. Indeed, we have in mind a Lagrangian algorithm approach to
compute optimal shapes numerically. As a consequence of Section 4.4, we will have to deal
with nonsmooth constraints, treated with the introduction of subdifferentials, and with
standard pointwise constraints. This will need a consequent analysis and will be done in
a forthcoming work.

Let us mention that a first numerical study, where the same shape functional were
minimized over three dimensional domains with a global volume constraint, has been led
in [11].
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