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In this paper, we present the integration of controller synthesis techniques in the Signal environment through the description of a tool dedicated to the incremental construction of reactive controllers. The plant is speci ed in Signal and the control synthesis is performed on a logical abstraction of this program, named polynomial dynamical system (PDS) over Z Z= 3Z Z = f 1; 0; +1g. The control of the plant is performed by restricting the controllable input values with respect to the control objectives. These restrictions are obtained by incorporating new algebraic equations into the initial system. This theory sets the basis for the veri cation and the controller synthesis tool, Sigali. Moreover, we present a tool developed around the Signal environment allowing the visualization of the synthesized controller by an interactive simulation of the controlled system. In a rst stage, the user speci es in Signal both the physical model and the control objectives to be ensured. A second stage is performed by the Signal compiler which translates the initial Signal program into a PDS, and the control objectives in terms of polynomial relations/operations. The controller is then synthesized using Sigali. The result is a controller coded by a polynomial and then by a Ternary Decision Diagram (TDD). Finally, in a third stage, the obtained controller and some simulation processes are automatically included in the initial Signal program. It is then su cient for the user to compile the resulting Signal program which generates executable code ready for simulation. Di erent academic examples are used to illustrate the application of the tool.

Introduction & Motivations

The Signal language 3, 16] is dedicated to reliable speci cations of real-time reactive systems 2]. In this area, many applications require high reliability and safety. Traditionally, these requirements are checked a posteriori using simulation techniques and/or property veri cation. Control theory of discrete event systems allows the use of constructive c 2000 Kluwer Academic Publishers. Printed in the Netherlands.

methods that ensure, a priori, required properties on the system behavior. In this approach, the validation phase is reduced to properties not guaranteed by the programming process. There exist di erent theories for control of Discrete Event Systems since the 80's [START_REF] Ramadge | The Control of Discrete Event Systems[END_REF][START_REF] Balemi | Supervisory Control of a Rapid Thermal Multiprocessor[END_REF][START_REF] Holloway | A survey of Petri Net Methods for controlled Discrete Event Systems[END_REF][START_REF] Maler | On the Synthesis of Discrete Controllers for timed Systems[END_REF]. Usually, the starting point of these theories is: given a model for the system and the control objectives, a controller must be derived by various means such that the resulting behavior of the closed-loop system meets the control objectives.

In our case, the speci cation of the physical model (or the plant) is realized using the synchronous data-ow language Signal. Control theory is then applied on an equational model of the logical part of Signal programs. For this purpose, the boolean part of the program is translated into a polynomial dynamical system over Z Z= 3Z Z (i.e., integers modulo 3: f0,1,-1g) 15]. Furthermore, using such algebraic methods and polynomial dynamical system as a formal model, we are able to synthesize controllers satisfying various kinds of control objectives (they can be expressed as invariance, reachability and attractivity as well as as order relations over the states of the plant). As Signal is a data-ow language, meaning that the system reacts to inputs sent by the environment and produces outputs resulting from internal transformation, it is natural for us to use an input/output approach (see 1] for another I/O approach); however systems de ned as nite state automata, as in Ramadge and Wonham, can also be considered within this framework. In our methodology, the physical model is then represented by a polynomial dynamical system while the control of the system is performed by restricting the controllable input values to values suitable for the control goal. This restriction is obtained by incorporating new algebraic equations into the initial system.

Overview of the tool: We now brie y present how the controller synthesis problem has been integrated in the Signal environment. There are two fundamental aspects: the rst one deals with the unication of the formalism and the second one deals with the visualization of the result. In order to simplify the use of the tool, the same language is now used to specify the physical model of the system and the control objectives (as well as the veri cation objectives). Both can now be written in a new extension of the Signal language, named Signal+. With Signal+, it is not necessary for the user to know (or to understand) the mathematical framework that is necessary to perform the computation of the controller. Irrespective of the model used to represent the system and the synthesized controller, some obstacles prevent the di usion of formal methods for logical controller synthesis. The most important deals with the intrinsic abstraction of the obtained controllers. For instance, in our framework, the controllers are coded by polynomials over Z Z= 3Z Z and consequently by Ternary Decision Diagrams (TDDs), a slight extension of the Binary Decision Diagrams (BDDs) 5]. In other research works, they are sometimes represented by automata [START_REF] Ramadge | Modular Feedback Logic for Discrete Event Systems[END_REF][START_REF] Ho Mann | Symbolic synthesis of supervisory controllers[END_REF]. In both cases, they are too complex to be satisfactorily understood. The number of nodes for the rst one and the number of states for the second one is too prohibitive.

Thus, in order to e ciently visualize the result (i.e., the behavior of the controlled system (plant and controller)), a new simulation environment of controlled Signal programs, built around the primitive Signal environment, has been developed. This tool allows the visualization of the controller synthesis result by interactive simulation of the controlled system. Figure 1 sums up the di erent stages necessary to perform such simulations. In the rst stage, the user speci es the physical model and the control objectives in Signal+. The second stage is performed by the Signal compiler which translates the initial Signal program into a polynomial dynamical system and the control objectives as well as the veri cation objectives in terms of polynomial relations and polynomial operations. The controller is then synthesized using the formal calculus tool Sigali. Finally, in the third stage, the obtained controller is automatically integrated in a new Signal program through an algebraic equation resolver written both in Signal and in C ++ (some generic processes for simulation can be added at this stage). This new global Signal program can then be compiled. The result is an executable code ready for simulation.

The validation of this prototype has been performed through di erent academic examples, like the control of a manufacturing production cell 13] and the well-known cat and mouse example 25], which we now present. This example will be used intensively in the following sections to illustrate the various stages of our controller synthesis techniques and highlight the features of the tool.

The model: a cat and a mouse are placed in a maze shown in Figure 2. The animals can move through doors represented by arrows in this gure. The requirements: the problem is to control the doors in order to guarantee the two following requirements:

1. The cat and the mouse never occupy the same room simultaneously. 2. It is always possible for the animals to return to their initial positions. In order to control the system, we assume that the controllable events are door opening and closing requests, whereas the movements of the animals are assumed to be uncontrollable.

The occupation of the rooms and the status of the door, as well as the movements of the animals have been speci ed in Signal. In order to take into account the requirements (1), [START_REF] Benveniste | Real-time systems designs and programming[END_REF], with the purpose of obtaining an optimal controller 1 , we rely on automatic controller synthesis that is performed on the logical abstraction of the global system.

The Signal equational data ow real-time language

In order to specify our model, we use a synchronous approach to reactive real-time systems, and particularly the data ow language Signal [START_REF] Guernic | Programming Real-Time Applications with Signal[END_REF][START_REF] Gautier | Code generation in the SACRES project[END_REF]. Synchronous languages 8] are derived from theoretical and applied studies on discrete event systems with real time aspects, and on speci cation methodologies and programming environments for their development 2, 8].

The Signal language.

The Signal language 16, 7] manipulates signals X, which denote unbounded series of typed values, indexed by time. An associated clock determines the set of instants at which values are present. The constructs of the language can be used in an equational style to specify the relations between signals, i.e., between their values and between their clocks. Data ow applications are activities executed over a set of instants in time. At each instant, input data are acquired from the execution environment; output values are produced according to the system of equations considered as a network of operations.

The Signal language is de ned by a small kernel of operators. Each operator has formally de ned semantics and is used to obtain a clock equation and the data dependencies of the participating signals.

Functions are instantaneous transformations on the data. The denition of a signal Y t by the function f: 8t; Y t = f(X 1t ; X 2t ; : : : ; X nt ) is written in Signal: Y := f(X1, X2,..., Xn). Y, X1,. . . , Xn are required to have the same clock.

Selection of a signal X according to a boolean condition C is: Y := X when C. If C is present and true, then Y has the presence and value of X. The clock of Y is the intersection of that of X and that of C at the value true.

Deterministic merge noted: Z := X default Y has the value of X when it is present, or otherwise that of Y if it is present and X is not. Its clock is the union of that of X and that of Y.

Delay gives access to past values of a signal. E.g., the equation ZX t = X t 1 , with initial value V 0 de nes a dynamic process. It is encoded by: ZX := X$1 with initialization ZX init V0. X and ZX have equal clocks.

Composition of processes is noted \|" (for processes P 1 and P 2 , with parenthesizing: (| P 1 | P 2 |)). It consists of the composition of the systems of equations; it is associative and commutative. It can be interpreted as parallelism between processes.

Derived processes have been de ned on the base of the primitive operators, providing programming comfort. E.g., the instruction X ^= Y speci es that signals X and Y are synchronous (i.e., have equal clocks); when B gives the clock of true-valued occurrences of B. For a more detailed description of the language and its semantics, the reader is referred to 16]. The complete programming environment also features a block-diagram oriented graphical user interface 4]) and a proof system for dynamic properties of Signal programs, called Sigali (see Section 3).

To illustrate the preceding notions, let us consider the speci cation in Signal of the cat and mouse example.

Modeling of the cat and mouse system

The complete behavior of the cat and mouse system has been speci ed in Signal using the graphical interface of the Signal environment. Four processes compose the global system (see Figure 3). The process State of Rooms describes the occupation of the rooms (i.e., in which room the cat and the mouse are). The process State of Doors describes the status of the doors (open or closed). The two last processes describe the assumptions that are made on the physical model.

The inputs of the main process system are booleans that encode the possible movements of the animals (Mvt Mouse i, Mvt Cat i). This inputs will be considered as uncontrollable during the synthesis phase. The inputs DoorState Mouse i and DoorState Cat i indicate opening and closing requests of the various doors. They will be controllable. The outputs of the main process are the booleans (Mouse Room i, Cat Room i) and (Cat Door i, Mouse Door i) respectively representing the room in which the animals are and the status of the doors.

The State of Rooms process: This process describes the occupation of the rooms for the animals with regard to the mouse and cat movements and the status of the doors (Cf Figure 4 for a part of this process). Consider for example the possible movements of the mouse into or out of room 0. The mouse can come into this room through the door 3 To model the occupation of the room, two supplementary boolean signals are needed: Z Mouse Room 0 and Mouse Room 0. The rst one carries the current status of the room 0, where as the second one carries the future status. At a given instant Z Mouse Room 0 holds the value true if the mouse is in room 0 and is false otherwise. Mouse Room 0 evolves according to the signals Mvt Mouse 3, Mvt Mouse 6, Mvt Mouse 1, and Mvt Mouse 4, and to the current status of the room: Mouse Room 0 becomes true whenever the mouse enters through the door 3 or 6 (when Mvt Mouse 3 default when Mvt Mouse 6), false when it leaves through the door 1 or 4 ((false when Mvt Mouse 3) default (false when Mvt Mouse 6)). If none of the sensors signals a passage, the signal Mouse Room 0 is equal to the current status Z Mouse Room 0. The occupation of all the other rooms can be described similarly.

The assumption process: once the physical model speci ed, describing the global behavior of the system in the language Signal, we have to take into account various assumptions on the physical model. Indeed, when we specify a system, it is not necessary to specify the particular behavior of the inputs. For example, in the cat and mouse problem, we have to take into account the fact that it is not possible for the animals to make two di erent movements at the same time and that a movement is possible if and only if the animal is in the correct room and if the corresponding door is opened. In order to perform control synthesis as well as veri cation, a new Signal process has, in general, to be included in the initial Signal program. This process describes the particular behavior of the inputs (i.e., the behavioral restrictions due to the environment).

For example, if the cat is in room 1, two movements are possible: Mvt Cat 7 and Mvt Cat 2. Of course, the cat cannot choose both. Moreover the movement Mvt Cat 2 is possible if and only if the corresponding door is opened (when the boolean Z Cat Door 2 is true). These assumptions are written in Signal as shown in Figure 5. The rst line simply says that the signal Mvt Cat 2 as to be present only at the instants where the signal Z Cat Door 2 is present and true, whereas the last line says that the instants where the signals Mvt Cat 2 and Mvt Cat 7 are present at the same time is reduced to the null clock (which means that this never happens).

3. Sigali: a proof/synthesis environment software The Signal environment also contains a veri cation and controller synthesis tool-box, named Sigali 6]. This tool makes it possible to prove the correctness of the dynamical behavior of the system. The equational nature of the Signal language leads naturally to the use of a method based on polynomial dynamical equation systems (PDSs) over Z Z= 3Z Z (i.e., integers modulo 3: f0,1,-1g = f0,1,2g) as a formal model of program behavior. The theory of PDS uses classical concepts of algebraic geometry, such as ideals, varieties and comorphisms 14]. The techniques consist of manipulating the system of equations instead of the sets of solutions, which avoids enumerating state spaces. More precisely, a set of states and/or events can actually be represented by a unique polynomial named principal generator. This way we can perform operations on sets, while still remaining in the domain of polynomial functions, and not having to enumerate them. The tool Sigali implements the basic operators: set theoretic operators, xpoint computation, quanti ers 20] (An overview of the Sigali syntax can be found in 22]). It relies on an implementation of polynomials by Ternary Decision Diagram (TDD) (for three valued logics) in the same spirit of BDD 5], but where the paths in the data structures are labeled by values in f 1; 0; 1g.

The automatic controller synthesis methodology using Sigali

In this section we brie y present the controller synthesis methodology. We rst present how the logical part of Signal program can be \extracted" leading to a polynomial dynamical system (PDS). Such a system is the key object on which Sigali works. From a PDS, we show how it is possible to synthesize a controller according to control objectives. We do not provide the algorithm since the aim of this paper is not to present in details the underlying theory but more to present what we are able to perform using this tool. For a complete review of the theoretical framework of controller synthesis using polynomial methods, the reader is referred to 20].

The logical abstraction of a Signal program

To model its behavior, a Signal process is translated into a system of polynomial equations over Z Z= 3Z Z 14].

Signals. The three possible states of a boolean signal X (i.e., present and true, present and false, or absent) are coded in a signal variable x J-DEDS.tex; 19/05/2000; 9:18; p.9 by (present and true ! 1, present and false ! 1, and absent ! 0).

For the non-boolean signals, we only code the fact that the signal is present or absent: (present ! 1 and absent ! 0). Note that the square of present is 1, whatever its value, when it is present. Hence, for a signal X, its clock can be coded by x 2 . It follows that two synchronous signals X and Y satisfy the constraint equation: x 2 = y 2 . This fact is used extensively in the following.

Primitive operators. Each of the primitive processes of Signal can be encoded in a polynomial equation. For example C := A when B, which means "if b = 1 then c = a else c = 0" can be rewritten in c = a( b b 2 ): the solutions of this are the set of behaviors of the primitive process when. The delay $, which is a dynamic operator deserves some extra explanations. It requires memorizing the past value of the signal into a state variable. Translating B := A $1, requires the introduction of two auxiliary equations: (1) x 0 = a + (1 a 2 )x, where x 0 denotes the next value of state variable x, expresses the dynamics of the system.

(2) b = a 2 x delivers the value of the delayed signal according to the memorization in state variable x. Table I shows how all the primitive operators are translated into polynomial equations. For the non boolean expressions, we just translate the synchronization between the signals. Processes. By composing the equations representing the primitive processes, any Signal speci cation can be translated into a set of equations called polynomial dynamical system (PDS). Formally, a PDS can be reorganized into three sub-systems of polynomial equations of the form:

S = 8 < : X 0 = P(X; Y; U) Q(X; Y; U) = 0 Q 0 (X) = 0 (1)
where X; X 0 are vectors of variables in Z Z= 3Z Z and dim(X) = dim(X 0 ) = n. The components of the vectors X and X 0 represent the states of the system and are called state variables. The trajectories of a controllable system are sequences (x t ; y t ; u t ) in (ZZ= 3Z Z ) n (ZZ= 3Z Z ) m (ZZ= 3Z Z ) p such that Q 0 (x 0 ) = 0 and, for all t, Q(x t ; y t ; u t ) = 0 and x t+1 = P(x t ; y t ; u t ): The events (y t ; u t ) include an uncontrollable component y t and a controllable one u t . This particular aspect constitutes one of the main di erences with 24]. In our case, the events are partially controllable, whereas in the Ramadge and Wonham formulation, the events are either controllable or uncontrollable. We have no direct in uence on the y t part which depends only on the state x t , but we observe it. On the other hand, we have full control over u t and we can choose any value of u t which is admissible, i.e., such that Q(x t ; y t ; u t ) = 0.

Control synthesis Problem.

Given a PDS S, as de ned by (1), a controller is de ned by a system of two equations: C(X; Y; U) = 0 and C 0 (X) = 0, where the equation C 0 (X) = 0 determines initial states satisfying the control objectives and the other one describes how to choose the instantaneous controls; when the controlled system is in state x, and when an event y occurs, any value u such that Q(x; y; u) = 0 and C(x; y; u) = 0 can be chosen. The behavior of the system S composed with the controller is modeled by the system S c :

S c = 8 < : X 0 = P(X; Y; U) Q(X; Y; U) = 0 C(X; Y; U) = 0 Q 0 (X 0 ) = 0 C 0 (X 0 ) = 0 (2)
The various control objectives (as well as their de nitions) for which we are able to synthesize a controller 20] include:

The invariance of a set of states. The recurrence of a set of states. A set of states E is recurrent if it is visited in nitely often. We can also consider control objectives that are conjunctions of basic properties of state trajectories (e.g., invariance + reachability). Finally note that some other control objectives, dealing with quantitative criteria can also be considered. In general, these control objectives are expressed as partial order relations. Such relations can, for example, be described by means of numerical cost functions (see [START_REF] Marchand | On the Optimal Control of Polynomial Dynamical Systems over Z/pZ[END_REF][START_REF] Marchand | Partial Order Control of Discrete Event Systems modeled as Polynomial Dynamical Systems[END_REF][START_REF] Marchand | The Supervisory Control Problem of Discrete Event Systems using polynomial Methods[END_REF]).

Remark 2. From a veri cation point of view, besides the veri cation of the invariance, reachability and attractivity of a given set of states, it is also possible to symbolically express CTL formulae 6], propositional calculus formulae 12, 21] as well as bisimulation equivalences 11, 22].

3.1.3. Speci cation of an objective in Signal+.

Using an extension of the Signal language, named Signal+, it is possible to express the properties to be checked as well as the control objectives to be synthesized directly, in the Signal program. With Signal+, it is not necessary for the user to know (or to understand) the mathematical framework which is necessary to perform the computation of the controller. The syntax is given in Table II.

Table II. Basic syntax of Signal+ (j Sigali(Verif Objective(Prop)) j Sigali(Control Objective(Prop)) j)

The keyword Sigali means that the subexpression must be evaluated by Sigali. In the rst case, the function Verif Objective (it could be invariance(), reachability(), attractivity(),etc) means that Sigali has to check the veri cation objectives according to the boolean PROP, which de nes a set of states in the corresponding polynomial dynamical system. In the second case, the function Control Objective means that Sigali has to compute a controller which will ensure the control objective for the controlled system. It could be one of the control objectives presented in the previous Section, (i.e.(S Security(), S Reachability(), S Attractivity(), etc.). We also proscribe in the Signal program the status of the inputs (controllable or not)) by the function Controllable(). The complete Signal program is obtained composing the process specifying the plant and the one specifying both the veri cation objectives and the control objectives in parallel. The compiler produces a le which contains the polynomial dynamical system resulting from the abstraction of the complete Signal program and the algebraic control (or veri cation) objectives. This le is then interpreted by Sigali.

Application to the cat and mouse example

To illustrate Section 3.1, let us come back to the cat and mouse example. Using the language Signal+, the control objectives we want to ensure for the cat and mouse problem can be described as follows (cf Figure 6):

We rst introduce the signals cat mouse room i, (i=0,...,4) which are true when the cat and the mouse are both in room i and absent otherwise. We then introduce the boolean error which is true when one of the events cat mouse room i is true and it is false otherwise (in terms of automata, we describe the set of states where objective 1 is violated). To specify the second objective, we introduce the boolean initial States that is true whenever both the cat The corresponding Sigali le system CMD.z3z (Table III), obtained after the compilation of the global Signal program (such a computation is automatic and performed, in this case, in less than 5Sec), is the following:

Table III. The resulting Sigali le read(\system.z3z"); ) loading of the PDS S read(\Synthesis Library.z3z"); read(\Veri cation Library.z3z"); ) Loading of the necessary libraries Set The le \system.z3z" codes the polynomial dynamical system S that represents the initial system. S is represented by 23 state variables, 12 controllable variables and 13 uncontrollable variables. The second and third les (\Veri cation library.z3z" and `Synthesis library.z3z") are libraries in which we can nd the di erent algorithms concerning veri cation and controller synthesis problems. The boolean Error becomes a polynomial expressed by state variables and events as well as the boolean Initial States. The polynomials Set States 1 and Set States 1 respectively represents the set of states where the polynomial Error is equal to -1 (i.e. in the Signal world, where the boolean Error is false) and the set of states where the boolean Initial States is equal to 1 (therefore true). The last two lines correspond to the controller computations.

This le is then interpreted by Sigali (read(``system CMD.z3z'')) which computes the controller with respect to the control objectives. In this case, Sigali rst computes a controller which ensures the the invariance of the set of states where the polynomial Set States 1 takes the value 0. The obtained controlled system is called S c 1. From this new system, Sigali computes the controller that ensures the reachability of the initial states. The result is given by a new controlled system S c from which the global controller ensuring the two control objectives is extracted. The global controller (in fact a TDD) is computed by Sigali in about 15Sec. This TDD is then saved in a le, which could be used to perform simulation following the principle described in the next section.

The simulation of the results

As explain in the introduction, one of the main problems dealing with the controller synthesis methodology is the visualization of the new behavior of the controlled system. What we propose, in our tool, is an easy way to obtain a simulation which allows the visualization of the controller synthesis result by interactive simulation of the controlled system. This way, the user can better understand the controller synthesis e ects on the system. We here suppose that a controller has already be synthesized according to given control objectives. The rst stage consists in integrating automatically the controller (more precisely, a resolver process) in the initial Signal program and the second stage consists in generating a simulation of this new Signal program, following the architecture of Figure 7.

Integration of the resolver in a Signal program & simulator building

The resolver: In our framework, a controller is a polynomial, and thus is represented by a TDD. In most cases, the result is not deterministic; several values are possible for each command, when the system evolves into a state. Therefore, an algebraic equation resolver has been developed in Signal for the control part of the resolver process and in C ++ for the Algebraic Equation Resolver (AER). The AER is able to solve polynomial equations (i.e., controllers in our case) according to the internal state values (the values of the state variables) and the input event values. The constraint part of the controller is given by the polynomial : C(X; Y; U) = 0, where X,Y and U are sets of variables. The AER provides, for given values x; y, all the possible values for the commands u; it is important to notice that not only one but all the alternatives of commands are proposed. The AER is automatically integrated in the initial Signal program, following the diagram of Figure 7. The AER, which can be considered as an external function, is encapsulated in a signal process, named resolver. The links (i.e., the connections through signals) between the process resolver, the AER and the process which speci es the system are automatically added in order to obtain the new Signal program.

Following the same principle, if some assumptions have been expressed on the uncontrollable events, a sub-controller is also integrated in the Signal program. In this case, the sub-controller is a polynomial in variables X and Y given by Q 0 (x; y) = 0 , 9u; Q(x; y; u) = 0, where Q is the constraint equation of the polynomial dynamical system (i.e., the only admissible uncontrollable events are the ones for which there exists at least one command u such that Q(x; y; u) = 0). Note that when Q 0 is not reduced to the null polynomial, another process resolver is included (and that even if no assumption process exists). The fact that Q 0 be not reduced to the null polynomial simply means that there eventually exist relations (constraints) between the uncontrollable inputs.

Remark 3. The complexity of the algorithm that provides the possible values of the controllable events is very low. Indeed, once the values of the x and y have been sent to the AER, the controller is reduced to an equation C 0 (U 1 ; :::; U p ) = 0. Hence, in order to know whether U i could take a value j 2 0; 1; 1, the AER just has to test if the TDD C 0 (U 1 ; :U i 1 ; j; U i+1 ; ::; U p ) reduces to the constant polynomial 1. If not, j is a possible value for the controllable event variable U i .

The simulator: at the same time, the user has the option of adding in this new program some generic processes of simulation. These Signal processes perform, after compilation, the automatic construction of graphical input acquisition buttons (interactive dialogue box in Figure 7) and output display windows for the signals of the interface of the program, in an oscilloscope-like fashion; with regard to the commands and the uncontrollable events, the graphical acquisition button processes are automatically added in the Signal program when the resolver(s) is (are) included. From this point, it is su cient for the user to compile the resulting Signal program which generates executable code ready for simulation.We are also able to perform real graphical animation in order to simulate the behavior of the system (see Section 4.2).

Simulation principle: once the controller has been computed and integrated in the new Signal program as explained in the previous section, we have to simulate the result of the synthesis. In most cases, the controller is not deterministic, in the sense that for a given state and a given uncontrollable event, more than one command can be admissible. To solve this problem, we choose to perform a step by step simulation.

During the rst stage of Signal program speci cation, the user indicated the controllable and uncontrollable inputs. Thus, the values of the controllable events will be chosen by the user under the control of the resolver through an interactive dialogue box (cf. Figure 8). For example, when the user makes a choice (i.e., the user chooses a particular value for one of the commands), this choice is automatically sent to the AER, which returns the set of possible values for the remaining commands. In fact, each time a new choice is made by the user, a new controller is computed, in the sense that one variable of the polynomial controller has been instantiated. New constraints can then appear on the commands which are not totally speci ed (there still exist more than one choice); During this exchange between the dialogue box and the resolver, some commands can be totally speci ed by the resolver in which case their values are then imposed. ). Figure 9(c) represents the commands (i.e., the opening and closing requests). The choice of the user is limited by the main resolver in order to ensure the two objectives. Finally, Figure 9(b) represents the graphical interface of simulation, in which the positions of the animals, as well as the states of the door can be observed.

Remark 5. This graphical simulation has not been produced using the generic processes of simulation but has been implemented in Java. To this end, we developed a \generic" interface making the link between the C le produced by the Signal compiler and a Java graphical interface. The control panels are still automatically generated (Figure 9(a) and 9(c) as well as a pace-maker panel (not presented here)). The only part which is non generic is the graphical simulation of Figure 9(b) which concerns the animation of the movements, but this can be done easily.

Another example:

The control of a manufacturing cell 5.1. Brief description of the problem In this example, we consider a exible manufacturing cell, as shown in Figure 10. This manufacturing cell is composed of ve workstations (three processing workstations, a part-receiving station (Work Station 1 in Figure 10) and one completed parts station (Work Station 4 in Figure 10)). Five Automated Guided Vehicles (AGV's) transport materials between pairs of stations, passing through con ict zones shared with other AGV's. We assume that the controller receives signals from the AGV's indicating their current positions in the manufacturing cell. We also assume that we can stop the AGV's before they enter in some con ict zones (C i transitions in Figure 10).

The control synthesis problem is to coordinate the movement of the various AGV's in order to avoid collisions in the con ict zones (i.e., it is required that all AGV's be controlled so that each zone be occupied by no more than one AGV).

Specification in Signal:

The complete behavior of the system is speci ed in Signal. It is decomposed into 10 subsystems, respectively coding the 5 workstations, and the ve AGV's circuits (processes Work Station i and Agv i). The movement in each subsystem is driven by a clock, possibly di erent for each subsystem, named Time Wst i for the workstations, and Time Agv i for the AGV's. Synchronizations between the di erent subsystems are performed through exchanged messages, coding the state of each sub-system (in dash in Figure 11). The control objective is speci ed by another process. Figure 12 describes this speci cation: In order to realize the control objective, we rst have to de ne the states of the system where two AGV's are at the same time in a common zone. For example, the signal Zone 1 is a boolean which is true when the AGV 1 and the AGV 2 are both in the con ict zone 1. In this expression, the boolean Next Agv i j represents the j th position of the i th AGV. Zone 1 is synchronized with the event Tick which is equal to the union of the di erent clocks for the sub-systems (Time ...). Each con ict zone is speci ed in Signal in this manner. Finally, The boolean Conflit is true when one of the booleans Zone i is true, it is false otherwise. It corresponds to the forbidden states (i.e., the states where two AGV's share a con ict zone). Now that the property has been speci ed, we add in the Signal program the control objective. We rst indicate which event is controllable SIGALI(Controllable(Ci)). Finally, to ensure the control objective, we require Sigali to compute a controller that ensures the invariance of the set of states where the boolean Conflit is false: S Security(False(Conflit)).

Controller synthesis and simulation of the results:

The global system (the model process, the control objectives process) is automatically translated by the compiler in a polynomial dynamical system. It is represented by 56 states variables and 10 controllable event variables encoding the C i and 10 uncontrollable events encoding the clock of each sub-system. It can be shown that the corresponding explicit automaton has more than 10 6 reachable states. The controller is then synthesized by Sigali. Its computation is realized in less than 10Sec by Sigali. The result is a TDD, which is integrated into the initial Signal program. After the compilation of this new Signal program, a graphical simulation is obtained (see Figure 8 and 10). Figure 8 represents the commands (i.e., the opening and closing requests). The choice of the user is limited by the main resolver in order to ensure the objective. Finally, Figure 10 represents the graphical interface of simulation, in which the positions of the AGV's can be observed.

We also have performed the synthesis of controllers with a more intricate manufacturing cell (in fact with two AGV's in the rst, third and fth transport zone). Note that the corresponding automaton is now composed of more than 2 10 8 di erent reachable states. For the same control objective, the controller is computed in less than 2 hours (Compared to the previous case, the high computation time is basically due to the state space explosion). Remark 6. For simulation purposes (simpli cation), the clocks of the various sub-system have been assumed to be equal. Therefore, during the simulation all the events are controllable. However, the controller synthesis phase has been performed with di erent clocks for the subsystems (they were supposed to be uncontrollable).

Conclusion

In this paper, we have presented the integration of a controller synthesis methodology in the Signal environment through the description of a tool dedicated to the algebraic computation of a controller and then to the simulation of the controlled system.

The speci cation of the system is done in a discrete event framework using the language Signal. In order to facilitate this step, the user can use a block-diagram graphical user interface. This environment allows the user to have graphical and textual representations of the language structures. These representations may be used together during the building or the \reading" of the program. The formal veri cation of a Signal program, as well as the automatic controller design are performed using a formal calculus system named Sigali.

The principle is to translate the logical part of Signal program into a polynomial dynamical system over Z Z= 3Z Z , an implicit representation of an automaton. The operations on equation systems belonging to the theory of algebraic geometry enable the treatment of various kinds of properties. The same operations can also be used for the automated synthesis of controllers where algebraic methods are used this time for the derivation, from a model of a system, of a controller satisfying given properties and objectives. Finally, in order to facilitate the use of the controller synthesis methodology, we have added in the Signal language the possibility of directly expressing the control objectives (and the veri cation objectives) in the initial Signal program. Therefore, it is not necessary for the user to know (or to understand) the mathematical framework which is necessary to perform the computation of the controller. Moreover, as the result is an equation encoded by a TDD, we have developed a simulator in the Signal environment which allows the user to visualize the new behavior of the controlled system.

Figure 1 .

 1 Figure 1. Description of the tool

Figure 2 .

 2 Figure 2. The cat and mouse example. Doors C 1 ; : : : ; C 7 are exclusively for the cat, whereas doors M 1 ; : : : ; M 6 are exclusively for the mouse. Each doorway can be traversed in only one direction, with the exception of the door C 7 . A sensor associated with each door detects the passages of the cat and the mouse through the doors and a control mechanism allows each door to be opened or closed, except for the door C 7 which always stays opened. Initially, the cat and the mouse are in room 2 and 4 respectively.The requirements: the problem is to control the doors in order to guarantee the two following requirements:1. The cat and the mouse never occupy the same room simultaneously. 2. It is always possible for the animals to return to their initial positions. In order to control the system, we assume that the controllable events are door opening and closing requests, whereas the movements of the animals are assumed to be uncontrollable.The occupation of the rooms and the status of the door, as well as the movements of the animals have been speci ed in Signal. In order to take into account the requirements (1),[START_REF] Benveniste | Real-time systems designs and programming[END_REF], with the purpose of obtaining an optimal controller 1 , we rely on automatic controller

Figure 3 .

 3 Figure 3. The main process in Signal

Figure 4 .

 4 Figure 4. Speci cation of the states of the rooms (Part of the State of Rooms process)

Figure 5 .

 5 Figure 5. Speci cation of the mouse movement (Part of the Assumption process)

2 Remark 1 .

 21 Note that for a boolean relation/function we have an exact coding of the relation/function as a polynomial function while for a numerical function/relation, the encoding retains only the synchronisation constraints between the signals involved in this relation/function. Therefore, Sigali is only able to have reasoning capabilities on the synchronisation and logic properties of Signal programs.

Figure 6 .

 6 Figure 6. Speci cation of the control objectives

States 1 :

 1 False(Error); ) Compute the states where Error is false Set States 2: True(Initial States); ) Compute the states where Initial States is true S c 1: S Invariance(S,Set States 1); ) Controller ensuring the invariance of Set States 1 S c: S Reachable(S c 1,Set States 2);) Controller ensuring the reachability of SetStates 2 

Figure 7 .

 7 Figure 7. Integration of the resolver and simulation processes : The principle

  (a) The events (b) The simulator interface (c) The commands Figure 9. Cat and Mouse Problem Simulation time and a movement is admissible if and only if the door is open and the animal is in the correct room.

Figure 10 .

 10 Figure 10. The exible manufacturing cell

Figure 11 .

 11 Figure 11. Speci cation in Signal of the synchronization between the sub-systems

Figure 12 .

 12 Figure 12. The control Objective

  They come from the translation of the delay operator . Y is a vector of variables in Z Z= 3Z Z and dim(Y ) = m called uncontrollable event variables, whereas U is a vector of controllable variables, with dim(U) = p. The rst equation called state transition equation can be considered as a vector-valued function P 1 ; : : : ; P n ] from (ZZ= 3Z Z ) n+m+p to (ZZ= 3Z Z ) n . It is composed of all the equations on the state variables, and it captures the dynamical aspect of the system. The second equation is called the constraint equation

and is a system of equations Q 1 ; : : : ; Q l ]. It speci es which event may occur in a given state. The last equation gives the initial states.

  A set of states E is invariant if every trajectory initialized in E remains in E.

	The (global) reachability of a set of states. A set E is (glob-ally) reachable, if starting from any possible state, there exists a trajectory that reaches E.
	The attractivity of a set of states from another set of s-tates. A set F is attractive for a set E if every trajectory initialized in E reaches F.

The persistence of a set of states. A set of states E if it is attractive from the initial states and if E is invariant.
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The choice of the command values can be performed step by step by the user, or using a random process for a step of simulation. In the second case, the resolver chooses the command values. The user can also ask for a random simulation during an indeterminate number of simulation steps.

Remark 4. The choice of the uncontrollable event variable values follows the same principle. The value of these inputs will be given by the users (without any restrictions in the case where Q 0 0) or using a random process according to the admissibility of these events ((1) in Figure 7). In the case where the uncontrollable events are constrained, then the possible values of these inputs have to be accepted by another resolver, which gives, through a dialogue box, the possible choices for these uncontrollable inputs ((2) in Figure 7).

Simulation of the Cat and mouse Example

Once the controller corresponding to the two control objectives has been synthesized by Sigali, it is integrated in the Signal environment as explained in Section 4.1. After the compilation of this new Signal program, a graphical simulation is obtained (see Figure 9). Figure 9(a) represents the uncontrollable events (i.e., the cat and mouse movements). They are constrained by a resolver resulting from the process assumptions (never two di erent movements at the same