N
N

N

HAL

open science

Synthesis of Discrete-Event Controllers based on the
Signal Environment

Hervé Marchand, Patricia Bournai, Michel Le Borgne, Paul Le Guernic

» To cite this version:

Hervé Marchand, Patricia Bournai, Michel Le Borgne, Paul Le Guernic. Synthesis of Discrete-Event
Controllers based on the Signal Environment. Discrete Event Dynamic Systems, 2000, 10 (4), pp.325-

346. 10.1023/A:1008311720696 . hal-00546147

HAL Id: hal-00546147
https://hal.science/hal-00546147
Submitted on 13 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00546147
https://hal.archives-ouvertes.fr

Synthesis of Discrete-Event Controllers based on the
Signal Environment

Hervé Marchand hmarchan@irisa.fr
IRISA / INRIA - Rennes, Campus Univ. de Beaulieu, F-35042 Rennes, France

Patricia Bournai bournai@irisa.fr
IRISA / INRIA - Rennes, Campus Univ. de Beaulieu, F-35042 Rennes, France

Michel Le Borgne leborgne@irisa.fr
IRISA / INRIA - Rennes, Campus Univ. de Beaulieu, F-35042 Rennes, France

Paul Le Guernic leguerni@irisa.fr
IRISA / INRIA - Rennes, Campus Univ. de Beaulieu, F-35042 Rennes, France

Abstract. In this paper, we present the integration of controller synthesis tech-
niques in the SIGNAL environment through the description of a tool dedicated to the
incremental construction of reactive controllers. The plant is specified in SIGNAL and
the control synthesis is performed on a logical abstraction of this program, named
polynomial dynamical system (PDS) over Z/37 = {—1,0,+1}. The control of the
plant is performed by restricting the controllable input values with respect to the
control objectives. These restrictions are obtained by incorporating new algebraic
equations into the initial system. This theory sets the basis for the verification and
the controller synthesis tool, SIGALI. Moreover, we present a tool developed around
the SIGNAL environment allowing the visualization of the synthesized controller by
an interactive simulation of the controlled system. In a first stage, the user spec-
ifies in SIGNAL both the physical model and the control objectives to be ensured.
A second stage is performed by the SIGNAL compiler which translates the initial
SIGNAL program into a PDS, and the control objectives in terms of polynomial
relations/operations. The controller is then synthesized using SiGALL. The result is
a controller coded by a polynomial and then by a Ternary Decision Diagram (TDD).
Finally, in a third stage, the obtained controller and some simulation processes are
automatically included in the initial SIGNAL program. It is then sufficient for the
user to compile the resulting SIGNAL program which generates executable code ready
for simulation. Different academic examples are used to illustrate the application of
the tool.

Keywords: Control theory, Polynomial methods, Synchronous methodology, SiG-
NAL environment, SIGALI.

1. Introduction & Motivations

The SIGNAL language [3, 16] is dedicated to reliable specifications of
real-time reactive systems [2]. In this area, many applications require
high reliability and safety. Traditionally, these requirements are checked
a posteriori using simulation techniques and/or property verification.
Control theory of discrete event systems allows the use of constructive
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2 H. Marchand, P. Bournai, M. Le Borgne and P. Le Guernic

methods that ensure, a priori, required properties on the system behav-
ior. In this approach, the validation phase is reduced to properties not
guaranteed by the programming process. There exist different theories
for control of Discrete Event Systems since the 80’s [24, 1, 10, 17].
Usually, the starting point of these theories is: given a model for the
system and the control objectives, a controller must be derived by var-
ious means such that the resulting behavior of the closed-loop system
meets the control objectives.

In our case, the specification of the physical model (or the plant)
is realized using the synchronous data-flow language SIGNAL. Control
theory is then applied on an equational model of the logical part of
SIGNAL programs. For this purpose, the boolean part of the program
is translated into a polynomial dynamical system over Z/3z (i.e.,
integers modulo 3: {0,1,-1}) [15]. Furthermore, using such algebraic
methods and polynomial dynamical system as a formal model, we are
able to synthesize controllers satisfying various kinds of control objec-
tives (they can be expressed as invariance, reachability and attractivity
as well as as order relations over the states of the plant). As SIG-
NAL is a data-flow language, meaning that the system reacts to inputs
sent by the environment and produces outputs resulting from internal
transformation, it is natural for us to use an input/output approach
(see [1] for another I/O approach); however systems defined as finite
state automata, as in Ramadge and Wonhaim, can also be considered
within this framework. In our methodology, the physical model is then
represented by a polynomial dynamical system while the control of
the system is performed by restricting the controllable input values
to values suitable for the control goal. This restriction is obtained by
incorporating new algebraic equations into the initial system.

Overview of the tool: We now briefly present how the controller
synthesis problem has been integrated in the SIGNAL environment.
There are two fundamental aspects: the first one deals with the unifi-
cation of the formalism and the second one deals with the visualization
of the result. In order to simplify the use of the tool, the same language
is now used to specify the physical model of the system and the control
objectives (as well as the verification objectives). Both can now be writ-
ten in a new extension of the SIGNAL language, named SIGNAL+. With
SIGNAL+, it is not necessary for the user to know (or to understand) the
mathematical framework that is necessary to perform the computation
of the controller. Irrespective of the model used to represent the system
and the synthesized controller, some obstacles prevent the diffusion of
formal methods for logical controller synthesis. The most important
deals with the intrinsic abstraction of the obtained controllers. For
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Synthesis of Discrete-Event Controllers based on the Signal Environment 3

instance, in our framework, the controllers are coded by polynomials
over Z/gz and consequently by Ternary Decision Diagrams (TDDs), a
slight extension of the Binary Decision Diagrams (BDDs) [5]. In other
research works, they are sometimes represented by automata [23, 9].
In both cases, they are too complex to be satisfactorily understood.
The number of nodes for the first one and the number of states for the
second one is too prohibitive.

Thus, in order to efficiently visualize the result (i.e., the behavior
of the controlled system (plant and controller)), a new simulation en-
vironment of controlled SIGNAL programs, built around the primitive
SIGNAL environment, has been developed. This tool allows the visu-
alization of the controller synthesis result by interactive simulation of
the controlled system. Figure 1 sums up the different stages necessary
to perform such simulations.

Second phase: Controller synthesis
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Figure 1. Description of the tool

In the first stage, the user specifies the physical model and the
control objectives in SIGNAL+. The second stage is performed by the
SIGNAL compiler which translates the initial SIGNAL program into a
polynomial dynamical system and the control objectives as well as the
verification objectives in terms of polynomial relations and polynomial
operations. The controller is then synthesized using the formal calculus
tool SIGALL Finally, in the third stage, the obtained controller is au-
tomatically integrated in a new SIGNAL program through an algebraic
equation resolver written both in SIGNAL and in C*t (some generic
processes for simulation can be added at this stage). This new global
SIGNAL program can then be compiled. The result is an executable
code ready for simulation.

The validation of this prototype has been performed through differ-
ent academic examples, like the control of a manufacturing production
cell [13] and the well-known cat and mouse example [25], which we now
present. This example will be used intensively in the following sections
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4 H. Marchand, P. Bournai, M. Le Borgne and P. Le Guernic

to illustrate the various stages of our controller synthesis techniques
and highlight the features of the tool.

The model: a cat and a mouse are placed in a maze shown in Figure 2.
The animals can move through doors represented by arrows in this
figure.

Jis}

4

Figure 2. The cat and mouse example.

Doors (1, ..., Cr are exclusively for the cat, whereas doors My, ..., Mg
are exclusively for the mouse. Each doorway can be traversed in only
one direction, with the exception of the door C7. A sensor associated
with each door detects the passages of the cat and the mouse through
the doors and a control mechanism allows each door to be opened or
closed, except for the door C'7 which always stays opened. Initially, the
cat and the mouse are in room 2 and 4 respectively.

The requirements: the problem is to control the doors in order to
guarantee the two following requirements:

1. The cat and the mouse never occupy the same room simultaneously.

2. It is always possible for the animals to return to their initial posi-
tions.

In order to control the system, we assume that the controllable events
are door opening and closing requests, whereas the movements of the
animals are assumed to be uncontrollable.

The occupation of the rooms and the status of the door, as well
as the movements of the animals have been specified in SIGNAL. In
order to take into account the requirements (1), (2), with the purpose
of obtaining an optimal controller!, we rely on automatic controller

! The controller is optimal in the sense that the controlled system has a smaller
behavior than the original one - to fulfill the control objectives - but as large as
possible, otherwise, the controlled system “doing nothing” would correspond most
of the time (e.g., requirement (1)).
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synthesis that is performed on the logical abstraction of the global
system.

2. The SIGNAL equational data flow real-time language

In order to specify our model, we use a synchronous approach to re-
active real-time systems, and particularly the data flow language S1G-
NAL [16, 7]. Synchronous languages [8] are derived from theoretical
and applied studies on discrete event systems with real time aspects,
and on specification methodologies and programming environments for
their development [2, 8].

2.1. THE SIGNAL LANGUAGE.

The SIGNAL language [16, 7] manipulates signals X, which denote un-
bounded series of typed values, indexed by time. An associated clock
determines the set of instants at which values are present. The con-
structs of the language can be used in an equational style to specify
the relations between signals, i.e., between their values and between
their clocks. Data flow applications are activities executed over a set
of instants in time. At each instant, input data are acquired from the
execution environment; output values are produced according to the
system of equations considered as a network of operations.

The SIGNAL language is defined by a small kernel of operators. Each
operator has formally defined semantics and is used to obtain a clock
equation and the data dependencies of the participating signals.

e Functions are instantaneous transformations on the data. The defi-
nition of a signal Y; by the function f: V¢, Y; = f(X1,, Xo,, ..., Xn,)
is written in SIGNAL: Y := f(X1, X2,..., Xn).Y,X1,..., Xn are
required to have the same clock.

e Selection of a signal X according to a boolean condition Cis: Y :=
X when C. If C is present and true, then Y has the presence and
value of X. The clock of Y is the intersection of that of X and that
of C at the value true.

e Deterministic merge noted: Z := X default Y has the value of X
when it is present, or otherwise that of Y if it is present and X is
not. Its clock is the union of that of X and that of Y.

e Delay gives access to past values of a signal. E.g., the equation
Z Xy = X1, with initial value V defines a dynamic process. It is
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6 H. Marchand, P. Bournai, M. Le Borgne and P. Le Guernic

encoded by: ZX := X$1 with initialization ZX init VO. X and ZX
have equal clocks.

e Composition of processes is noted “|” (for processes P; and P,
with parenthesizing: (| P, | P 1)). It consists of the composi-
tion of the systems of equations; it is associative and commutative.
It can be interpreted as parallelism between processes.

Derived processes have been defined on the base of the primitive oper-
ators, providing programming comfort. E.g., the instruction X N = Y
specifies that signals X and Y are synchronous (i.e., have equal clocks);
when B gives the clock of true-valued occurrences of B. For a more
detailed description of the language and its semantics, the reader is
referred to [16]. The complete programming environment also features
a block-diagram oriented graphical user interface [4]) and a proof sys-
tem for dynamic properties of SIGNAL programs, called SIGALI (see
Section 3).

To illustrate the preceding notions, let us consider the specification
in SIGNAL of the cat and mouse example.

2.2. MODELING OF THE CAT AND MOUSE SYSTEM

The complete behavior of the cat and mouse system has been specified
in SIGNAL using the graphical interface of the SIGNAL environment.
Four processes compose the global system (see Figure 3). The process
State_of Rooms describes the occupation of the rooms (i.e., in which
room the cat and the mouse are). The process State_of Doors de-
scribes the status of the doors (open or closed). The two last processes
describe the assumptions that are made on the physical model.

The inputs of the main process system are booleans that encode
the possible movements of the animals (Mvt_Mouse_i, Mvt_Cat_i). This
inputs will be considered as uncontrollable during the synthesis phase.
The inputs DoorState Mouse_i and DoorState_Cat_i indicate open-
ing and closing requests of the various doors. They will be control-
lable. The outputs of the main process are the booleans (Mouse Room_i,
Cat _Room_i) and (Cat_Door_i, Mouse Door_i) respectively representing
the room in which the animals are and the status of the doors.

The State_of Rooms process: This process describes the occupation
of the rooms for the animals with regard to the mouse and cat move-
ments and the status of the doors (Cf Figure 4 for a part of this process).
Consider for example the possible movements of the mouse into or out
of room 0. The mouse can come into this room through the door 3
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Figure 3. The main process in SIGNAL

(Mvt_Mouse_3) or through the door 6 (Mvt_Mouse_6) or go out through
the door 1 (Mvt_Mouse_1) or through the door 4 (Mvt_Mouse_4).

(| (] Mouse Room 0 := (when Mwt_Mouse 3) default (when Mvt _Mouse 6)
default (false when Mvt_Mouse 1)
default (false when Mvt_Mouse_4)
default Z_Mouse_ Room 0

| Z_Mouse Room 0 := Mouse Room 0 $1
1)
| (| Mouse Room 1 := (when Mwvt_Mouse Z2) default (false when Mvt_ Mouse_3)
default Z_Mouse_ Room_1
Z_Mouse Room_ 1 := Mouse Room 151

|

1]

| Mouse_ Room_2
| Mouse_ Room 3
| Mouse_ Rocom_d

{
[
{

| Mouse Room 0 #= Mouse Room 1 %= Mouse Room 2 *= Mouse Room 3 *= Mouse Room 4
[

Figure 4. Specification of the states of the rooms (Part of the State_of _Rooms
process)

To model the occupation of the room, two supplementary boolean
signals are needed: Z_Mouse Room 0 and Mouse Room 0. The first one
carries the current status of the room 0, where as the second one carries
the future status. At a given instant Z Mouse Room O holds the value
true if the mouse is in room 0 and is false otherwise. Mouse Room_0 e-
volves according to the signals Mvt _Mouse_3, Mvt _Mouse 6, Mvt Mouse_1,
and Mvt_Mouse_4, and to the current status of the room: Mouse Room_0
becomes true whenever the mouse enters through the door 3 or 6
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8 H. Marchand, P. Bournai, M. Le Borgne and P. Le Guernic

(when Mvt Mouse_3 default when Mvt_Mouse_6), false when it leaves
through the door 1 or 4 ((false when Mvt Mouse_3) default (false
when Mvt_Mouse_6)). If none of the sensors signals a passage, the sig-
nal Mouse_Room 0 is equal to the current status Z_Mouse Room 0. The
occupation of all the other rooms can be described similarly.

The assumption process: once the physical model specified, describ-
ing the global behavior of the system in the language SIGNAL, we have
to take into account various assumptions on the physical model. Indeed,
when we specify a system, it is not necessary to specify the particular
behavior of the inputs. For example, in the cat and mouse problem,
we have to take into account the fact that it is not possible for the
animals to make two different movements at the same time and that a
movement is possible if and only if the animal is in the correct room
and if the corresponding door is opened. In order to perform control
synthesis as well as verification, a new SIGNAL process has, in general,
to be included in the initial SIGNAL program. This process describes
the particular behavior of the inputs (i.e., the behavioral restrictions
due to the environment).

For example, if the cat is in room 1, two movements are possi-
ble: Mvt_Cat_7 and Mvt_Cat_2. Of course, the cat cannot choose both.
Moreover the movement Mvt_Cat_2 is possible if and only if the cor-
responding door is opened (when the boolean Z_Cat Door_2 is true).
These assumptions are written in SIGNAL as shown in Figure 5.

% Mowvement is possible if the eat is in the room %
(| (| when Mvt_Cat_2 *= (when Mvt_Cat_2) when Z_Cat_Room_ 1
| when Mvt_cCat_7 *= (when Mvt_Cat_7) when Z_Cat_ Room_1
1]
% Mowement 1s possible if the door is cpened %
| (] when Mvt_cat_2 *= (when Mvt_Cat_2) when Z_Cat_Door_ 2

[

% the movements of the cat are exclusive %

| (| {when Mvt Cat_2) when (when Mvt_Cat_7T) "= not Tick
I

]

Figure 5. Specification of the mouse movement (Part of the Assumption process)

The first line simply says that the signal Mvt_Cat_2 as to be present
only at the instants where the signal Z_Cat _Door_2 is present and true,
whereas the last line says that the instants where the signals Mvt_Cat_2
and Mvt_Cat_7 are present at the same time is reduced to the null clock
(which means that this never happens).
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Synthesis of Discrete-Event Controllers based on the Signal Environment 9

3. SIGALL: a proof/synthesis environment software

The SIGNAL environment also contains a verification and controller
synthesis tool-box, named SIGALI [6]. This tool makes it possible to
prove the correctness of the dynamical behavior of the system. The
equational nature of the SIGNAL language leads naturally to the use
of a method based on polynomial dynamical equation systems (PDSs)
over Z/3z (i.e., integers modulo 3: {0,1,-1} = {0,1,2}) as a formal
model of program behavior. The theory of PDS uses classical concepts
of algebraic geometry, such as ideals, varieties and comorphisms [14].
The techniques consist of manipulating the system of equations instead
of the sets of solutions, which avoids enumerating state spaces. More
precisely, a set of states and/or events can actually be represented
by a unique polynomial named principal generator. This way we can
perform operations on sets, while still remaining in the domain of
polynomial functions, and not having to enumerate them. The tool
SiGALI implements the basic operators: set theoretic operators, fix-
point computation, quantifiers [20] (An overview of the SIGALI syntax
can be found in [22]). It relies on an implementation of polynomials
by Ternary Decision Diagram (TDD) (for three valued logics) in the
same spirit of BDD [5], but where the paths in the data structures are
labeled by values in {—1,0,1}.

3.1. THE AUTOMATIC CONTROLLER SYNTHESIS METHODOLOGY
USING SIGALI

In this section we briefly present the controller synthesis methodolo-
gy. We first present how the logical part of SIGNAL program can be
“extracted” leading to a polynomial dynamical system (PDS). Such
a system is the key object on which SIGALI works. From a PDS, we
show how it is possible to synthesize a controller according to control
objectives. We do not provide the algorithm since the aim of this paper
is not to present in details the underlying theory but more to present
what we are able to perform using this tool. For a complete review
of the theoretical framework of controller synthesis using polynomial
methods, the reader is referred to [20].

3.1.1. The logical abstraction of a SIGNAL program
To model its behavior, a SIGNAL process is translated into a system of
polynomial equations over Z/gz [14].

Signals. The three possible states of a boolean signal X (i.e., present
and true, present and false, or absent) are coded in a signal variable x
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10 H. Marchand, P. Bournai, M. Le Borgne and P. Le Guernic

by (present and true — 1, present and false — —1, and absent — 0).
For the non-boolean signals, we only code the fact that the signal is
present or absent: (present — 1 and absent — 0). Note that the square
of present is 1, whatever its value, when it is present. Hence, for a
signal X, its clock can be coded by z2. It follows that two synchronous
signals X and Y satisfy the constraint equation: z? = y?. This fact is
used extensively in the following.

Primitive operators. Each of the primitive processes of SIGNAL can
be encoded in a polynomial equation. For example C := A when B,
which means "if b = 1 then ¢ = a else ¢ = 07 can be rewritten in ¢ =
a(—b—b?): the solutions of this are the set of behaviors of the primitive
process when. The delay $, which is a dynamic operator deserves some
extra explanations. It requires memorizing the past value of the signal
into a state variable. Translating B := A $1, requires the introduction of
two auxiliary equations: (1) ' = a + (1 — a?)z, where ' denotes the
next value of state variable x, expresses the dynamics of the system.
(2) b = a%x delivers the value of the delayed signal according to the
memorization in state variable z. Table I shows how all the primitive
operators are translated into polynomial equations. For the non boolean
expressions, we just translate the synchronization between the signals.

Table I. Translation of the primitive operators.

boolean instructions
B := not A b = —a
C = A and B 22 z Z;)(ab—a—b—l)
= ]_ — — —
C = AorB 22 _ Z;)( @ —b—ab)
C := A default B c = a+(1-a’b
:= A when B c = a(=b-10?
= a+(1-a’)r
B := A $1 (init bo) || b = a’z
xro = bo
non-boolean instructions
B = f(Al,,An) bz = af::ai
C := A default B 2 = a?®+b%—a’?
C := A when B S = d(-b-1b?)
B := A $1 (init by) || ¢ = a®

Remark 1. Note that for a boolean relation/function we have an ex-
act coding of the relation/function as a polynomial function while for a
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Synthesis of Discrete-Event Controllers based on the Signal Environment 11

numerical function/relation, the encoding retains only the synchronisa-
tion constraints between the signals involved in this relation/function.
Therefore, SIGALI is only able to have reasoning capabilities on the
synchronisation and logic properties of SIGNAL programs.

Processes. By composing the equations representing the primitive
processes, any SIGNAL specification can be translated into a set of
equations called polynomial dynamical system (PDS). Formally, a PDS
can be reorganized into three sub-systems of polynomial equations of
the form:

X! — P(X,Y,U)
s ={ Qx,Yy,U) =0 (1)
Qo(X) =0

where X, X' are vectors of variables in Z /37 and dim(X) = dim(X') =
n. The components of the vectors X and X' represent the states of
the system and are called state variables. They come from the trans-
lation of the delay operator . Y is a vector of variables in Z/g7z and
dim(Y') = m called uncontrollable event variables, whereas U is a vector
of controllable variables, with dim(U) = p. The first equation called
state transition equation can be considered as a vector-valued function
[Py,...,P,] from (Z/37 )" TP to (Z/3 )" It is composed of all the
equations on the state variables, and it captures the dynamical aspect
of the system. The second equation is called the constraint equation
and is a system of equations [Q1, ..., Q;]. It specifies which event may
occur in a given state. The last equation gives the initial states.

The trajectories of a controllable system are sequences (z, yy, ug) in
(Z[37 )" % (Z]37 )" x (Z]37 )P such that Qy(zo) = 0 and, for all ¢,
Q(zy, yt, ur) = 0 and 441 = P(xy, yi, ug). The events (yy, uy) include an
uncontrollable component y; and a controllable one u;. This particular
aspect constitutes one of the main differences with [24]. In our case, the
events are partially controllable, whereas in the Ramadge and Wonham
formulation, the events are either controllable or uncontrollable. We
have no direct influence on the y; part which depends only on the state
xt, but we observe it. On the other hand, we have full control over wu,
and we can choose any value of u; which is admissible, i.e., such that

Q(mtuytaut) =0.

3.1.2. Control synthesis Problem.

Given a PDS S, as defined by (1), a controller is defined by a system
of two equations: C(X,Y,U) = 0 and Cy(X) = 0, where the equation
Co(X) = 0 determines initial states satisfying the control objectives
and the other one describes how to choose the instantaneous controls;
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12 H. Marchand, P. Bournai, M. Le Borgne and P. Le Guernic

when the controlled system is in state x, and when an event y occurs,
any value v such that Q(z,y,u) = 0 and C(z,y,u) = 0 can be chosen.
The behavior of the system .S composed with the controller is modeled
by the system S,:

X' = P(X,Y,U)
S, =8 QX,Y,U)=0 C(X,Y,U)=0 (2)
Qo(Xo) =0 Co(Xo) =0

The various control objectives (as well as their definitions) for which
we are able to synthesize a controller [20] include:

e The invariance of a set of states. A set of states E is invariant
if every trajectory initialized in F remains in E.

e The (global) reachability of a set of states. A set E is (glob-
ally) reachable, if starting from any possible state, there exists a
trajectory that reaches FE.

e The attractivity of a set of states from another set of s-
tates. A set F'is attractive for a set E if every trajectory initialized
in F reaches F.

e The persistence of a set of states. A set of states E if it is attractive
from the initial states and if E is invariant.

e The recurrence of a set of states. A set of states E is recurrent
if it is visited infinitely often.

e We can also consider control objectives that are conjunctions of
basic properties of state trajectories (e.g., invariance + reachabil-

ity).

Finally note that some other control objectives, dealing with quantita-
tive criteria can also be considered. In general, these control objectives
are expressed as partial order relations. Such relations can, for example,
be described by means of numerical cost functions (see [18, 19, 20]).

Remark 2. From a verification point of view, besides the verification
of the invariance, reachability and attractivity of a given set of states, it
is also possible to symbolically express CTL formulae [6], propositional
pcalculus formulae [12, 21] as well as bisimulation equivalences [11, 22].
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3.1.3. Specification of an objective in SIGNAL+.

Using an extension of the SIGNAL language, named SIGNAL+-, it is pos-
sible to express the properties to be checked as well as the control objec-
tives to be synthesized directly, in the SIGNAL program. With SIGNAL+,
it is not necessary for the user to know (or to understand) the math-
ematical framework which is necessary to perform the computation of
the controller. The syntax is given in Table II.

Table II. Basic syntax of SIGNAL+

(|  Sigali(Verif_Objective(Prop))
|  Sigali(Control_Objective(Prop)) |)

The keyword Sigali means that the subexpression must be evaluated
by SIGALL In the first case, the function Verif_Objective (it could
be invariance(), reachability(), attractivity(),etc) means that Si-
GALI has to check the verification objectives according to the boolean
PROP, which defines a set of states in the corresponding polynomial
dynamical system. In the second case, the function Control_Objective
means that SIGALI has to compute a controller which will ensure the
control objective for the controlled system. It could be one of the con-
trol objectives presented in the previous Section, (i.e.(S_Security(),
S_Reachability(), S_Attractivity(), etc.). We also proscribe in the
SIGNAL program the status of the inputs (controllable or not)) by the
function Controllable(). The complete SIGNAL program is obtained
composing the process specifying the plant and the one specifying both
the verification objectives and the control objectives in parallel. The
compiler produces a file which contains the polynomial dynamical sys-
tem resulting from the abstraction of the complete SIGNAL program
and the algebraic control (or verification) objectives. This file is then
interpreted by SIGALI.

3.2. APPLICATION TO THE CAT AND MOUSE EXAMPLE

To illustrate Section 3.1, let us come back to the cat and mouse exam-
ple. Using the language SIGNAL+, the control objectives we want to
ensure for the cat and mouse problem can be described as follows (cf
Figure 6):

We first introduce the signals cat_mouse_room_i, (i=0,...,4) which
are true when the cat and the mouse are both in room 7 and ab-
sent otherwise. We then introduce the boolean error which is true
when one of the events cat_mouse_room_i is frue and it is false
otherwise (in terms of automata, we describe the set of states where
objective 1 is violated). To specify the second objective, we intro-
duce the boolean initial _States that is {rue whenever both the cat
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(] system() |) % the physical model specified in Signal

|

| Gat Mouwse Room 0 := when (EZ_Cat Room 0 and £ Mowse Room 0)
| Gat Mouse Room 1 when (E_CGat Room 1 and & Mowse Room 1)
| Gat Mouse Room 2 when (Z_Cat Room 2 and £ Mowse Room 2)
|
|
|
[

when (%_Cat Room 3 and Z_Mouse Room_3)

Cat_Mouse Room_3
Cat Mouse Room_d4

when (Z_Cat_Room_4 and Z_Mouse Room_4)

Error:= Cat_Mouse Room 0 default Cat Mouse Room 1 default Cat Mouse Room 2
default Cat Mouse Room_3 default Cat Mouse Room 4 default false
Error = Tick

Sigali(S Security(False(Erroc)))

|
|
[ Initial States:= Z_Cat Room 2 and Z Mouse Room 4 |)
£l
| Sigali (S Reachability (True (Initial States)))
[

I

Figure 6. Specification of the control objectives

and the mouse are in their initial room and false otherwise. Finally,
to ensure the two objectives, we require SIGALI to compute a con-
troller which ensures (i) the invariance of the set of states where the
boolean error is false (objective 1: S_Security(False(Error))) and
(ii) the reachability of the cat and mouse initial positions (objective 2:
S_Reachable(True(Initial states))).

The corresponding SIGALI file system_CMD.z3z (Table III), obtained
after the compilation of the global SIGNAL program (such a computa-
tion is automatic and performed, in this case, in less than 5Sec), is the
following;:

Table III. The resulting S1GALI file

read( “system.z3z”); = loading of the PDS S
read( “Synthesis_Library.z3z” ); } . . .
. . . = Loading of the necessary libraries

read( “Verification_Library.z3z” );
Set_States_1: False(Error); = Compute the states where Error is false
Set_States_2: True(Initial_States);

= Compute the states where Initial_States is true
S_c-1: S_Invariance(S,Set_States_1);

= Controller ensuring the invariance of Set_States_1
S_c: S_Reachable(S_c_1,Set_States_2);

= Controller ensuring the reachability of Set_States_2

The file “system.z3z” codes the polynomial dynamical system .S that
represents the initial system. S is represented by 23 state variables,
12 controllable variables and 13 uncontrollable variables. The second
and third files (“Verification_library.z3z” and ‘Synthesis_library.z3z”)
are libraries in which we can find the different algorithms concerning
verification and controller synthesis problems. The boolean Error be-
comes a polynomial expressed by state variables and events as well
as the boolean Initial_States. The polynomials Set_States_1 and
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Set_States_1 respectively represents the set of states where the poly-
nomial Error is equal to -1 (i.e. in the SIGNAL world, where the boolean
Error is false) and the set of states where the boolean Initial _States
is equal to 1 (therefore ¢rue). The last two lines correspond to the
controller computations.

This file is then interpreted by SIGALI (read (¢ ‘system_ CMD.z3z’’))
which computes the controller with respect to the control objectives.
In this case, SIGALI first computes a controller which ensures the the
invariance of the set of states where the polynomial Set_States_1 takes
the value 0. The obtained controlled system is called S_c_1. From this
new system, SIGALI computes the controller that ensures the reachabil-
ity of the initial states. The result is given by a new controlled system
S_c from which the global controller ensuring the two control objectives
is extracted. The global controller (in fact a TDD) is computed by
SIGALI in about 15Sec. This TDD is then saved in a file, which could
be used to perform simulation following the principle described in the
next section.

4. The simulation of the results

As explain in the introduction, one of the main problems dealing with
the controller synthesis methodology is the visualization of the new
behavior of the controlled system. What we propose, in our tool, is an
easy way to obtain a simulation which allows the visualization of the
controller synthesis result by interactive simulation of the controlled
system. This way, the user can better understand the controller syn-
thesis effects on the system. We here suppose that a controller has
already be synthesized according to given control objectives. The first
stage consists in integrating automatically the controller (more pre-
cisely, a resolver process) in the initial SIGNAL program and the second
stage consists in generating a simulation of this new SIGNAL program,
following the architecture of Figure 7.

4.1. INTEGRATION OF THE RESOLVER IN A SIGNAL PROGRAM &
SIMULATOR BUILDING

The resolver: In our framework, a controller is a polynomial, and thus
is represented by a TDD. In most cases, the result is not deterministic;
several values are possible for each command, when the system evolves
into a state. Therefore, an algebraic equation resolver has been devel-
oped in SIGNAL for the control part of the resolver process and in
C*T for the Algebraic Equation Resolver (AER).
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Figure 7. Integration of the resolver and simulation processes : The principle

The AER is able to solve polynomial equations (i.e., controllers
in our case) according to the internal state values (the values of the
state variables) and the input event values. The constraint part of the
controller is given by the polynomial : C(X,Y,U) = 0, where X,Y
and U are sets of variables. The AER provides, for given values x, v,
all the possible values for the commands u; it is important to notice
that not only one but all the alternatives of commands are proposed.
The AER is automatically integrated in the initial SIGNAL program,
following the diagram of Figure 7. The AER, which can be considered
as an external function, is encapsulated in a signal process, named
resolver. The links (i.e., the connections through signals) between
the process resolver, the AER and the process which specifies the
system are automatically added in order to obtain the new SIGNAL
program.

Following the same principle, if some assumptions have been ex-
pressed on the uncontrollable events, a sub-controller is also integrated
in the SIGNAL program. In this case, the sub-controller is a polynomial
in variables X and Y given by Q'(z,y) = 0 & Fu,Q(z,y,u) = 0,
where @ is the constraint equation of the polynomial dynamical system
(i.e., the only admissible uncontrollable events are the ones for which
there exists at least one command w such that Q(z,y,u) = 0). Note
that when @' is not reduced to the null polynomial, another process
resolver is included (and that even if no assumption process exists). The
fact that @' be not reduced to the null polynomial simply means that
there eventually exist relations (constraints) between the uncontrollable
inputs.
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Remark 3. The complexity of the algorithm that provides the possi-
ble values of the controllable events is very low. Indeed, once the values
of the z and y have been sent to the AER, the controller is reduced
to an equation C'(Uy,...,Up) = 0. Hence, in order to know whether U;
could take a value j € 0,1,—1, the AER just has to test if the TDD
C'(U1,.Ui—1,7,Uit1, .., Up) reduces to the constant polynomial 1. If not,
j is a possible value for the controllable event variable U;.

The simulator: at the same time, the user has the option of adding in
this new program some generic processes of simulation. These SIGNAL
processes perform, after compilation, the automatic construction of
graphical input acquisition buttons (interactive dialogue box in Figure
7) and output display windows for the signals of the interface of the
program, in an oscilloscope-like fashion; with regard to the commands
and the uncontrollable events, the graphical acquisition button process-
es are automatically added in the SIGNAL program when the resolver(s)
is (are) included. From this point, it is sufficient for the user to compile
the resulting SIGNAL program which generates executable code ready
for simulation.We are also able to perform real graphical animation in
order to simulate the behavior of the system (see Section 4.2).

Simulation principle: once the controller has been computed and inte-
grated in the new SIGNAL program as explained in the previous section,
we have to simulate the result of the synthesis. In most cases, the
controller is not deterministic, in the sense that for a given state and a
given uncontrollable event, more than one command can be admissible.
To solve this problem, we choose to perform a step by step simulation.

During the first stage of SIGNAL program specification, the user
indicated the controllable and uncontrollable inputs. Thus, the values
of the controllable events will be chosen by the user under the control
of the resolver through an interactive dialogue box (cf. Figure 8). For
example, when the user makes a choice (i.e., the user chooses a partic-
ular value for one of the commands), this choice is automatically sent
to the AER, which returns the set of possible values for the remaining
commands. In fact, each time a new choice is made by the user, a new
controller is computed, in the sense that one variable of the polynomial
controller has been instantiated. New constraints can then appear on
the commands which are not totally specified (there still exist more
than one choice); During this exchange between the dialogue box and
the resolver, some commands can be totally specified by the resolver in
which case their values are then imposed.

J-DEDS.tex; 19/05/2000; 9:18; p.17



18 H. Marchand, P. Bournai, M. Le Borgne and P. Le Guernic

Commands chosen
Commands already chosen tobetrueby the

either by theresolver or by the user
| commandes _|

New choices for

Choice of the command value Visualization of
by the user the choice made
by the user

Figure 8. Example of simulation during a step.

The choice of the command values can be performed step by step
by the user, or using a random process for a step of simulation. In the
second case, the resolver chooses the command values. The user can
also ask for a random simulation during an indeterminate number of
simulation steps.

Remark 4. The choice of the uncontrollable event variable values fol-
lows the same principle. The value of these inputs will be given by the
users (without any restrictions in the case where Q' = 0) or using a
random process according to the admissibility of these events ((1) in
Figure 7). In the case where the uncontrollable events are constrained,
then the possible values of these inputs have to be accepted by another
resolver, which gives, through a dialogue box, the possible choices for
these uncontrollable inputs ((2) in Figure 7).

4.2. SIMULATION OF THE CAT AND MOUSE EXAMPLE

Once the controller corresponding to the two control objectives has
been synthesized by SIGALL, it is integrated in the SIGNAL environment
as explained in Section 4.1. After the compilation of this new SIGNAL
program, a graphical simulation is obtained (see Figure 9).

Figure 9(a) represents the uncontrollable events (i.e., the cat and
mouse movements). They are constrained by a resolver resulting from
the process assumptions (never two different movements at the same
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DoorState_Mouse_6 | True J False

DoorState_Mouse_5

DoorState_Mouse_4

DoorState_Mouse_3 | True § False

DoorState_Mouse_2 | True § False

True

Doorstate_Mouse_1 | True § False

DoorState_Cat_6

DoorState_Cal_5 | True § False
Mvi_Mouse_5

DoorState_Cai_4 | True § False § =ioo
Mvt_Mouse_6

Wvt_hiouse_3 DoorState_Cat_3

Mvt_Mouse_2 DoorState_Cat 2 | True § False f =i

Myt Mouse_d DoorState_Cat_1 True § False J =i

(a) The events (b) The simulator interface (¢) The commands

Figure 9. Cat and Mouse Problem Simulation

time and a movement is admissible if and only if the door is open
and the animal is in the correct room.). Figure 9(c) represents the
commands (i.e., the opening and closing requests). The choice of the
user is limited by the main resolver in order to ensure the two objectives.
Finally, Figure 9(b) represents the graphical interface of simulation, in
which the positions of the animals, as well as the states of the door can
be observed.

Remark 5. This graphical simulation has not been produced using
the generic processes of simulation but has been implemented in Java.
To this end, we developed a “generic” interface making the link between
the C file produced by the SIGNAL compiler and a Java graphical inter-
face. The control panels are still automatically generated (Figure 9(a)
and 9(c) as well as a pace-maker panel (not presented here)). The only
part which is non generic is the graphical simulation of Figure 9(b)
which concerns the animation of the movements, but this can be done
easily.

5. Another example: The control of a manufacturing cell

5.1. BRIEF DESCRIPTION OF THE PROBLEM

In this example, we consider a flexible manufacturing cell, as shown
in Figure 10. This manufacturing cell is composed of five workstations
(three processing workstations, a part-receiving station (Work Station
1 in Figure 10) and one completed parts station (Work Station 4 in
Figure 10)).
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Figure 10. The flexible manufacturing cell

Five Automated Guided Vehicles (AGV’s) transport materials be-
tween pairs of stations, passing through conflict zones shared with other
AGV’s. We assume that the controller receives signals from the AGV'’s
indicating their current positions in the manufacturing cell. We also
assume that we can stop the AGV’s before they enter in some conflict
zones (C; transitions in Figure 10).

The control synthesis problem is to coordinate the movement of the
various AGV’s in order to avoid collisions in the conflict zones (i.e., it
is required that all AGV’s be controlled so that each zone be occupied
by no more than one AGV).

5.2. SPECIFICATION IN SIGNAL:

The complete behavior of the system is specified in SIGNAL. It is decom-
posed into 10 subsystems, respectively coding the 5 workstations, and
the five AGV’s circuits (processes Work_Station_i and Agv_i). The
movement in each subsystem is driven by a clock, possibly different
for each subsystem, named Time_Wst_i for the workstations, and
Time_Agv_i for the AGV’s. Synchronizations between the different
subsystems are performed through exchanged messages, coding the
state of each sub-system (in dash in Figure 11).
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Figure 11. Specification in SIGNAL of the synchronization between the sub-systems

The control objective is specified by another process. Figure 12
describes this specification:

{l ] Zone_l:= (true when (when (NEXT AGV16 or NEXT AGW13))
when (WEET AGVE3 or NEXT AGVZ1Z))
default (true when (NEXT AGV1E and NEXT AGW13)) default false
Fone_2 := (true when (when (MEXT_AGVIL or NEXT_AGVZ10))
when (WEXT AGV33 or NEXT AGV3E))
default (true when (NEXT AGV33 and WNEET AGV36)) default false
| Bone_3 := ... ..
| Eone_d4 := ... ..
| Tick := Time AGW 1 default Time AGV_2 default Time AGYV_3 default Time &GV 4 default
Time_AGV 5 default Time WST 1 default Time WST 2 defawlt Time WST 3 default
Time_WST_4 default Time_WST &
| Zone_l ~= Zone Z "= Zone_3 *= Zone_ 4 = Tick
| Conflit := Eone_1 or ZEone_2 or Zone_ 3 or Zone_4
| SIGALI(Cantrolsbleicl,cZ, T3, cd, o5, .6, C7, C&, 09, cl1d)
| SIGALI(S Security(False(Conflit)))
I

Figure 12. The control Objective

In order to realize the control objective, we first have to define the
states of the system where two AGV’s are at the same time in a common
zoune. For example, the signal Zone_1 is a boolean which is true when
the AGV_1 and the AGV_2 are both in the conflict zone 1. In this
expression, the boolean Next_Agv_i_j represents the 5% position of the
it" AGV. Zone_1 is synchronized with the event Tick which is equal
to the union of the different clocks for the sub-systems (Time_...).
Each conflict zone is specified in SIGNAL in this manner. Finally, The
boolean Conflit is true when one of the booleans Zone_i is true, it is
false otherwise. It corresponds to the forbidden states (i.e., the states
where two AGV’s share a conflict zone).
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Now that the property has been specified, we add in the SIGNAL
program the control objective. We first indicate which event is con-
trollable SIGALI(Controllable(Ci)). Finally, to ensure the control
objective, we require SIGALI to compute a controller that ensures the
invariance of the set of states where the boolean Conflit is false:
S_Security(False(Conflit)).

5.3. CONTROLLER SYNTHESIS AND SIMULATION OF THE RESULTS:

The global system (the model process, the control objectives process)
is automatically translated by the compiler in a polynomial dynamical
system. It is represented by 56 states variables and 10 controllable
event variables encoding the C_i and 10 uncontrollable events encoding
the clock of each sub-system. It can be shown that the corresponding
explicit automaton has more than 10° reachable states. The controller
is then synthesized by SIGALI Its computation is realized in less than
10Sec by SiGALI. The result is a TDD, which is integrated into the
initial SIGNAL program. After the compilation of this new SIGNAL pro-
gram, a graphical simulation is obtained (see Figure 8 and 10). Figure 8
represents the commands (i.e., the opening and closing requests). The
choice of the user is limited by the main resolver in order to ensure
the objective. Finally, Figure 10 represents the graphical interface of
simulation, in which the positions of the AGV’s can be observed.

We also have performed the synthesis of controllers with a more
intricate manufacturing cell (in fact with two AGV’s in the first, third
and fifth transport zone). Note that the corresponding automaton is
now composed of more than 2 * 10® different reachable states. For the
same control objective, the controller is computed in less than 2 hours
(Compared to the previous case, the high computation time is basically
due to the state space explosion).

Remark 6. For simulation purposes (simplification), the clocks of the
various sub-system have been assumed to be equal. Therefore, during
the simulation all the events are controllable. However, the controller
synthesis phase has been performed with different clocks for the sub-
systems (they were supposed to be uncontrollable).

6. Conclusion

In this paper, we have presented the integration of a controller synthesis
methodology in the SIGNAL environment through the description of a
tool dedicated to the algebraic computation of a controller and then to
the simulation of the controlled system.
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The specification of the system is done in a discrete event framework
using the language SIGNAL. In order to facilitate this step, the user
can use a block-diagram graphical user interface. This environment
allows the user to have graphical and textual representations of the
language structures. These representations may be used together during
the building or the “reading” of the program. The formal verification
of a SIGNAL program, as well as the automatic controller design are
performed using a formal calculus system named SIGALL.

The principle is to translate the logical part of SIGNAL program into
a polynomial dynamical system over Z/37 , an implicit representation
of an automaton. The operations on equation systems belonging to the
theory of algebraic geometry enable the treatment of various kinds of
properties. The same operations can also be used for the automated
synthesis of controllers where algebraic methods are used this time for
the derivation, from a model of a system, of a controller satisfying given
properties and objectives. Finally, in order to facilitate the use of the
controller synthesis methodology, we have added in the SIGNAL lan-
guage the possibility of directly expressing the control objectives (and
the verification objectives) in the initial SIGNAL program. Therefore, it
is not necessary for the user to know (or to understand) the mathemat-
ical framework which is necessary to perform the computation of the
controller. Moreover, as the result is an equation encoded by a TDD,
we have developed a simulator in the SIGNAL environment which allows
the user to visualize the new behavior of the controlled system.
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