
HAL Id: hal-00546147
https://hal.science/hal-00546147v1

Submitted on 13 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synthesis of Discrete-Event Controllers based on the
Signal Environment

Hervé Marchand, Patricia Bournai, Michel Le Borgne, Paul Le Guernic

To cite this version:
Hervé Marchand, Patricia Bournai, Michel Le Borgne, Paul Le Guernic. Synthesis of Discrete-Event
Controllers based on the Signal Environment. Discrete Event Dynamic Systems, 2000, 10 (4), pp.325-
346. �10.1023/A:1008311720696�. �hal-00546147�

https://hal.science/hal-00546147v1
https://hal.archives-ouvertes.fr

Synthesis of Discrete-Event Controllers based on theSignal EnvironmentHerv�e Marchand hmarchan@irisa.frIRISA / INRIA - Rennes, Campus Univ. de Beaulieu, F-35042 Rennes, FrancePatricia Bournai bournai@irisa.frIRISA / INRIA - Rennes, Campus Univ. de Beaulieu, F-35042 Rennes, FranceMichel Le Borgne leborgne@irisa.frIRISA / INRIA - Rennes, Campus Univ. de Beaulieu, F-35042 Rennes, FrancePaul Le Guernic leguerni@irisa.frIRISA / INRIA - Rennes, Campus Univ. de Beaulieu, F-35042 Rennes, FranceAbstract. In this paper, we present the integration of controller synthesis tech-niques in the Signal environment through the description of a tool dedicated to theincremental construction of reactive controllers. The plant is speci�ed in Signal andthe control synthesis is performed on a logical abstraction of this program, namedpolynomial dynamical system (PDS) over ZZ=3ZZ = f�1; 0;+1g. The control of theplant is performed by restricting the controllable input values with respect to thecontrol objectives. These restrictions are obtained by incorporating new algebraicequations into the initial system. This theory sets the basis for the veri�cation andthe controller synthesis tool, Sigali. Moreover, we present a tool developed aroundthe Signal environment allowing the visualization of the synthesized controller byan interactive simulation of the controlled system. In a �rst stage, the user spec-i�es in Signal both the physical model and the control objectives to be ensured.A second stage is performed by the Signal compiler which translates the initialSignal program into a PDS, and the control objectives in terms of polynomialrelations/operations. The controller is then synthesized using Sigali. The result isa controller coded by a polynomial and then by a Ternary Decision Diagram (TDD).Finally, in a third stage, the obtained controller and some simulation processes areautomatically included in the initial Signal program. It is then su�cient for theuser to compile the resulting Signal program which generates executable code readyfor simulation. Di�erent academic examples are used to illustrate the application ofthe tool.Keywords: Control theory, Polynomial methods, Synchronous methodology, Sig-nal environment, Sigali.1. Introduction & MotivationsThe Signal language [3, 16] is dedicated to reliable speci�cations ofreal-time reactive systems [2]. In this area, many applications requirehigh reliability and safety. Traditionally, these requirements are checkeda posteriori using simulation techniques and/or property veri�cation.Control theory of discrete event systems allows the use of constructivec 2000 Kluwer Academic Publishers. Printed in the Netherlands.
J-DEDS.tex; 19/05/2000; 9:18; p.1

2 H. Marchand, P. Bournai, M. Le Borgne and P. Le Guernicmethods that ensure, a priori, required properties on the system behav-ior. In this approach, the validation phase is reduced to properties notguaranteed by the programming process. There exist di�erent theoriesfor control of Discrete Event Systems since the 80's [24, 1, 10, 17].Usually, the starting point of these theories is: given a model for thesystem and the control objectives, a controller must be derived by var-ious means such that the resulting behavior of the closed-loop systemmeets the control objectives.In our case, the speci�cation of the physical model (or the plant)is realized using the synchronous data-ow language Signal. Controltheory is then applied on an equational model of the logical part ofSignal programs. For this purpose, the boolean part of the programis translated into a polynomial dynamical system over ZZ=3ZZ (i.e.,integers modulo 3: f0,1,-1g) [15]. Furthermore, using such algebraicmethods and polynomial dynamical system as a formal model, we areable to synthesize controllers satisfying various kinds of control objec-tives (they can be expressed as invariance, reachability and attractivityas well as as order relations over the states of the plant). As Sig-nal is a data-ow language, meaning that the system reacts to inputssent by the environment and produces outputs resulting from internaltransformation, it is natural for us to use an input/output approach(see [1] for another I/O approach); however systems de�ned as �nitestate automata, as in Ramadge and Wonham, can also be consideredwithin this framework. In our methodology, the physical model is thenrepresented by a polynomial dynamical system while the control ofthe system is performed by restricting the controllable input valuesto values suitable for the control goal. This restriction is obtained byincorporating new algebraic equations into the initial system.Overview of the tool: We now briey present how the controllersynthesis problem has been integrated in the Signal environment.There are two fundamental aspects: the �rst one deals with the uni�-cation of the formalism and the second one deals with the visualizationof the result. In order to simplify the use of the tool, the same languageis now used to specify the physical model of the system and the controlobjectives (as well as the veri�cation objectives). Both can now be writ-ten in a new extension of the Signal language, named Signal+. WithSignal+, it is not necessary for the user to know (or to understand) themathematical framework that is necessary to perform the computationof the controller. Irrespective of the model used to represent the systemand the synthesized controller, some obstacles prevent the di�usion offormal methods for logical controller synthesis. The most importantdeals with the intrinsic abstraction of the obtained controllers. For
J-DEDS.tex; 19/05/2000; 9:18; p.2

Synthesis of Discrete-Event Controllers based on the Signal Environment 3instance, in our framework, the controllers are coded by polynomialsover ZZ=3ZZ and consequently by Ternary Decision Diagrams (TDDs), aslight extension of the Binary Decision Diagrams (BDDs) [5]. In otherresearch works, they are sometimes represented by automata [23, 9].In both cases, they are too complex to be satisfactorily understood.The number of nodes for the �rst one and the number of states for thesecond one is too prohibitive.Thus, in order to e�ciently visualize the result (i.e., the behaviorof the controlled system (plant and controller)), a new simulation en-vironment of controlled Signal programs, built around the primitiveSignal environment, has been developed. This tool allows the visu-alization of the controller synthesis result by interactive simulation ofthe controlled system. Figure 1 sums up the di�erent stages necessaryto perform such simulations.
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

)

(|
|
|
|)

and

(|

|

Control

verification

)

Polynomial

|

objectives

|

|

Sigali
file

|
|

dynamical
system(|

in
Specified
System

Signal

Signal file

SIGALI

Controller

results
Verification

Simulator
 Resolver

Simulation

First phase: Specification
Second phase: Controller synthesis

Third phase: Simulation

SystemFigure 1. Description of the toolIn the �rst stage, the user speci�es the physical model and thecontrol objectives in Signal+. The second stage is performed by theSignal compiler which translates the initial Signal program into apolynomial dynamical system and the control objectives as well as theveri�cation objectives in terms of polynomial relations and polynomialoperations. The controller is then synthesized using the formal calculustool Sigali. Finally, in the third stage, the obtained controller is au-tomatically integrated in a new Signal program through an algebraicequation resolver written both in Signal and in C++ (some genericprocesses for simulation can be added at this stage). This new globalSignal program can then be compiled. The result is an executablecode ready for simulation.The validation of this prototype has been performed through di�er-ent academic examples, like the control of a manufacturing productioncell [13] and the well-known cat and mouse example [25], which we nowpresent. This example will be used intensively in the following sections
J-DEDS.tex; 19/05/2000; 9:18; p.3

4 H. Marchand, P. Bournai, M. Le Borgne and P. Le Guernicto illustrate the various stages of our controller synthesis techniquesand highlight the features of the tool.The model: a cat and a mouse are placed in a maze shown in Figure 2.The animals can move through doors represented by arrows in this�gure.

Figure 2. The cat and mouse example.Doors C1; : : : ; C7 are exclusively for the cat, whereas doors M1; : : : ;M6are exclusively for the mouse. Each doorway can be traversed in onlyone direction, with the exception of the door C7. A sensor associatedwith each door detects the passages of the cat and the mouse throughthe doors and a control mechanism allows each door to be opened orclosed, except for the door C7 which always stays opened. Initially, thecat and the mouse are in room 2 and 4 respectively.The requirements: the problem is to control the doors in order toguarantee the two following requirements:1. The cat and the mouse never occupy the same room simultaneously.2. It is always possible for the animals to return to their initial posi-tions.In order to control the system, we assume that the controllable eventsare door opening and closing requests, whereas the movements of theanimals are assumed to be uncontrollable.The occupation of the rooms and the status of the door, as wellas the movements of the animals have been speci�ed in Signal. Inorder to take into account the requirements (1), (2), with the purposeof obtaining an optimal controller1, we rely on automatic controller1 The controller is optimal in the sense that the controlled system has a smallerbehavior than the original one - to ful�ll the control objectives - but as large aspossible, otherwise, the controlled system \doing nothing" would correspond mostof the time (e.g., requirement (1)).
J-DEDS.tex; 19/05/2000; 9:18; p.4

Synthesis of Discrete-Event Controllers based on the Signal Environment 5synthesis that is performed on the logical abstraction of the globalsystem.2. The Signal equational data ow real-time languageIn order to specify our model, we use a synchronous approach to re-active real-time systems, and particularly the data ow language Sig-nal [16, 7]. Synchronous languages [8] are derived from theoreticaland applied studies on discrete event systems with real time aspects,and on speci�cation methodologies and programming environments fortheir development [2, 8].2.1. The Signal language.The Signal language [16, 7] manipulates signals X, which denote un-bounded series of typed values, indexed by time. An associated clockdetermines the set of instants at which values are present. The con-structs of the language can be used in an equational style to specifythe relations between signals, i.e., between their values and betweentheir clocks. Data ow applications are activities executed over a setof instants in time. At each instant, input data are acquired from theexecution environment; output values are produced according to thesystem of equations considered as a network of operations.The Signal language is de�ned by a small kernel of operators. Eachoperator has formally de�ned semantics and is used to obtain a clockequation and the data dependencies of the participating signals.� Functions are instantaneous transformations on the data. The de�-nition of a signal Yt by the function f : 8t; Yt = f(X1t ;X2t ; : : : ;Xnt)is written in Signal: Y := f(X1, X2,..., Xn). Y, X1,. . . , Xn arerequired to have the same clock.� Selection of a signal X according to a boolean condition C is: Y :=X when C. If C is present and true, then Y has the presence andvalue of X. The clock of Y is the intersection of that of X and thatof C at the value true.� Deterministic merge noted: Z := X default Y has the value of Xwhen it is present, or otherwise that of Y if it is present and X isnot. Its clock is the union of that of X and that of Y.� Delay gives access to past values of a signal. E.g., the equationZXt = Xt�1, with initial value V0 de�nes a dynamic process. It is
J-DEDS.tex; 19/05/2000; 9:18; p.5

6 H. Marchand, P. Bournai, M. Le Borgne and P. Le Guernicencoded by: ZX := X$1 with initialization ZX init V0. X and ZXhave equal clocks.� Composition of processes is noted \|" (for processes P1 and P2,with parenthesizing: (| P1 | P2 |)). It consists of the composi-tion of the systems of equations; it is associative and commutative.It can be interpreted as parallelism between processes.Derived processes have been de�ned on the base of the primitive oper-ators, providing programming comfort. E.g., the instruction X ^ = Yspeci�es that signals X and Y are synchronous (i.e., have equal clocks);when B gives the clock of true-valued occurrences of B. For a moredetailed description of the language and its semantics, the reader isreferred to [16]. The complete programming environment also featuresa block-diagram oriented graphical user interface [4]) and a proof sys-tem for dynamic properties of Signal programs, called Sigali (seeSection 3).To illustrate the preceding notions, let us consider the speci�cationin Signal of the cat and mouse example.2.2. Modeling of the cat and mouse systemThe complete behavior of the cat and mouse system has been speci�edin Signal using the graphical interface of the Signal environment.Four processes compose the global system (see Figure 3). The processState of Rooms describes the occupation of the rooms (i.e., in whichroom the cat and the mouse are). The process State of Doors de-scribes the status of the doors (open or closed). The two last processesdescribe the assumptions that are made on the physical model.The inputs of the main process system are booleans that encodethe possible movements of the animals (Mvt Mouse i, Mvt Cat i). Thisinputs will be considered as uncontrollable during the synthesis phase.The inputs DoorState Mouse i and DoorState Cat i indicate open-ing and closing requests of the various doors. They will be control-lable. The outputs of the main process are the booleans (Mouse Room i,Cat Room i) and (Cat Door i, Mouse Door i) respectively representingthe room in which the animals are and the status of the doors.The State of Rooms process: This process describes the occupationof the rooms for the animals with regard to the mouse and cat move-ments and the status of the doors (Cf Figure 4 for a part of this process).Consider for example the possible movements of the mouse into or outof room 0. The mouse can come into this room through the door 3
J-DEDS.tex; 19/05/2000; 9:18; p.6

Synthesis of Discrete-Event Controllers based on the Signal Environment 7

Figure 3. The main process in Signal(Mvt Mouse 3) or through the door 6 (Mvt Mouse 6) or go out throughthe door 1 (Mvt Mouse 1) or through the door 4 (Mvt Mouse 4).
Figure 4. Speci�cation of the states of the rooms (Part of the State of Roomsprocess)To model the occupation of the room, two supplementary booleansignals are needed: Z Mouse Room 0 and Mouse Room 0. The �rst onecarries the current status of the room 0, where as the second one carriesthe future status. At a given instant Z Mouse Room 0 holds the valuetrue if the mouse is in room 0 and is false otherwise. Mouse Room 0 e-volves according to the signals Mvt Mouse 3, Mvt Mouse 6, Mvt Mouse 1,and Mvt Mouse 4, and to the current status of the room: Mouse Room 0becomes true whenever the mouse enters through the door 3 or 6

J-DEDS.tex; 19/05/2000; 9:18; p.7

8 H. Marchand, P. Bournai, M. Le Borgne and P. Le Guernic(when Mvt Mouse 3 default when Mvt Mouse 6), false when it leavesthrough the door 1 or 4 ((false when Mvt Mouse 3) default (falsewhen Mvt Mouse 6)). If none of the sensors signals a passage, the sig-nal Mouse Room 0 is equal to the current status Z Mouse Room 0. Theoccupation of all the other rooms can be described similarly.The assumption process: once the physical model speci�ed, describ-ing the global behavior of the system in the language Signal, we haveto take into account various assumptions on the physical model. Indeed,when we specify a system, it is not necessary to specify the particularbehavior of the inputs. For example, in the cat and mouse problem,we have to take into account the fact that it is not possible for theanimals to make two di�erent movements at the same time and that amovement is possible if and only if the animal is in the correct roomand if the corresponding door is opened. In order to perform controlsynthesis as well as veri�cation, a new Signal process has, in general,to be included in the initial Signal program. This process describesthe particular behavior of the inputs (i.e., the behavioral restrictionsdue to the environment).For example, if the cat is in room 1, two movements are possi-ble: Mvt Cat 7 and Mvt Cat 2. Of course, the cat cannot choose both.Moreover the movement Mvt Cat 2 is possible if and only if the cor-responding door is opened (when the boolean Z Cat Door 2 is true).These assumptions are written in Signal as shown in Figure 5.
Figure 5. Speci�cation of the mouse movement (Part of the Assumption process)The �rst line simply says that the signal Mvt Cat 2 as to be presentonly at the instants where the signal Z Cat Door 2 is present and true,whereas the last line says that the instants where the signals Mvt Cat 2and Mvt Cat 7 are present at the same time is reduced to the null clock(which means that this never happens).

J-DEDS.tex; 19/05/2000; 9:18; p.8

Synthesis of Discrete-Event Controllers based on the Signal Environment 93. Sigali: a proof/synthesis environment softwareThe Signal environment also contains a veri�cation and controllersynthesis tool-box, named Sigali [6]. This tool makes it possible toprove the correctness of the dynamical behavior of the system. Theequational nature of the Signal language leads naturally to the useof a method based on polynomial dynamical equation systems (PDSs)over ZZ=3ZZ (i.e., integers modulo 3: f0,1,-1g = f0,1,2g) as a formalmodel of program behavior. The theory of PDS uses classical conceptsof algebraic geometry, such as ideals, varieties and comorphisms [14].The techniques consist of manipulating the system of equations insteadof the sets of solutions, which avoids enumerating state spaces. Moreprecisely, a set of states and/or events can actually be representedby a unique polynomial named principal generator. This way we canperform operations on sets, while still remaining in the domain ofpolynomial functions, and not having to enumerate them. The toolSigali implements the basic operators: set theoretic operators, �x-point computation, quanti�ers [20] (An overview of the Sigali syntaxcan be found in [22]). It relies on an implementation of polynomialsby Ternary Decision Diagram (TDD) (for three valued logics) in thesame spirit of BDD [5], but where the paths in the data structures arelabeled by values in f�1; 0; 1g.3.1. The automatic controller synthesis methodologyusing SigaliIn this section we briey present the controller synthesis methodolo-gy. We �rst present how the logical part of Signal program can be\extracted" leading to a polynomial dynamical system (PDS). Sucha system is the key object on which Sigali works. From a PDS, weshow how it is possible to synthesize a controller according to controlobjectives. We do not provide the algorithm since the aim of this paperis not to present in details the underlying theory but more to presentwhat we are able to perform using this tool. For a complete reviewof the theoretical framework of controller synthesis using polynomialmethods, the reader is referred to [20].3.1.1. The logical abstraction of a Signal programTo model its behavior, a Signal process is translated into a system ofpolynomial equations over ZZ=3ZZ [14].Signals. The three possible states of a boolean signal X (i.e., presentand true, present and false, or absent) are coded in a signal variable x
J-DEDS.tex; 19/05/2000; 9:18; p.9

10 H. Marchand, P. Bournai, M. Le Borgne and P. Le Guernicby (present and true! 1, present and false! �1, and absent! 0).For the non-boolean signals, we only code the fact that the signal ispresent or absent: (present! 1 and absent! 0). Note that the squareof present is 1, whatever its value, when it is present. Hence, for asignal X, its clock can be coded by x2. It follows that two synchronoussignals X and Y satisfy the constraint equation: x2 = y2. This fact isused extensively in the following.Primitive operators. Each of the primitive processes of Signal canbe encoded in a polynomial equation. For example C := A when B,which means "if b = 1 then c = a else c = 0" can be rewritten in c =a(�b�b2): the solutions of this are the set of behaviors of the primitiveprocess when. The delay $, which is a dynamic operator deserves someextra explanations. It requires memorizing the past value of the signalinto a state variable. Translating B := A $1, requires the introduction oftwo auxiliary equations: (1) x0 = a + (1 � a2)x, where x0 denotes thenext value of state variable x, expresses the dynamics of the system.(2) b = a2x delivers the value of the delayed signal according to thememorization in state variable x. Table I shows how all the primitiveoperators are translated into polynomial equations. For the non booleanexpressions, we just translate the synchronization between the signals.Table I. Translation of the primitive operators.boolean instructionsB := not A b = �aC := A and B c = ab(ab� a� b� 1)a2 = b2C := A or B c = ab(1� a� b� ab)a2 = b2C := A default B c = a+ (1� a2)bC := A when B c = a(�b� b2)B := A $1 (init b0) x0 = a+ (1� a2)xb = a2xx0 = b0non-boolean instructionsB := f(A1; : : : ; An) b2 = a21 = � � � = a2nC := A default B c2 = a2 + b2 � a2b2C := A when B c2 = a2(�b� b2)B := A $1 (init b0) c2 = a2Remark 1. Note that for a boolean relation/function we have an ex-act coding of the relation/function as a polynomial function while for a
J-DEDS.tex; 19/05/2000; 9:18; p.10

Synthesis of Discrete-Event Controllers based on the Signal Environment 11numerical function/relation, the encoding retains only the synchronisa-tion constraints between the signals involved in this relation/function.Therefore, Sigali is only able to have reasoning capabilities on thesynchronisation and logic properties of Signal programs.Processes. By composing the equations representing the primitiveprocesses, any Signal speci�cation can be translated into a set ofequations called polynomial dynamical system (PDS). Formally, a PDScan be reorganized into three sub-systems of polynomial equations ofthe form: S = 8<: X 0 = P (X;Y;U)Q(X;Y;U) = 0Q0(X) = 0 (1)whereX;X 0 are vectors of variables in ZZ=3ZZ and dim(X) = dim(X 0) =n. The components of the vectors X and X 0 represent the states ofthe system and are called state variables. They come from the trans-lation of the delay operator . Y is a vector of variables in ZZ=3ZZ anddim(Y) = m called uncontrollable event variables, whereas U is a vectorof controllable variables, with dim(U) = p. The �rst equation calledstate transition equation can be considered as a vector-valued function[P1; : : : ; Pn] from (ZZ=3ZZ)n+m+p to (ZZ=3ZZ)n. It is composed of all theequations on the state variables, and it captures the dynamical aspectof the system. The second equation is called the constraint equationand is a system of equations [Q1; : : : ; Ql]. It speci�es which event mayoccur in a given state. The last equation gives the initial states.The trajectories of a controllable system are sequences (xt; yt; ut) in(ZZ=3ZZ)n� (ZZ=3ZZ)m� (ZZ=3ZZ)p such that Q0(x0) = 0 and, for all t,Q(xt; yt; ut) = 0 and xt+1 = P (xt; yt; ut): The events (yt; ut) include anuncontrollable component yt and a controllable one ut. This particularaspect constitutes one of the main di�erences with [24]. In our case, theevents are partially controllable, whereas in the Ramadge and Wonhamformulation, the events are either controllable or uncontrollable. Wehave no direct inuence on the yt part which depends only on the statext, but we observe it. On the other hand, we have full control over utand we can choose any value of ut which is admissible, i.e., such thatQ(xt; yt; ut) = 0.3.1.2. Control synthesis Problem.Given a PDS S, as de�ned by (1), a controller is de�ned by a systemof two equations: C(X;Y;U) = 0 and C0(X) = 0, where the equationC0(X) = 0 determines initial states satisfying the control objectivesand the other one describes how to choose the instantaneous controls;
J-DEDS.tex; 19/05/2000; 9:18; p.11

12 H. Marchand, P. Bournai, M. Le Borgne and P. Le Guernicwhen the controlled system is in state x, and when an event y occurs,any value u such that Q(x; y; u) = 0 and C(x; y; u) = 0 can be chosen.The behavior of the system S composed with the controller is modeledby the system Sc:Sc = 8<: X 0 = P (X;Y;U)Q(X;Y;U) = 0 C(X;Y;U) = 0Q0(X0) = 0 C0(X0) = 0 (2)The various control objectives (as well as their de�nitions) for whichwe are able to synthesize a controller [20] include:� The invariance of a set of states. A set of states E is invariantif every trajectory initialized in E remains in E.� The (global) reachability of a set of states. A set E is (glob-ally) reachable, if starting from any possible state, there exists atrajectory that reaches E.� The attractivity of a set of states from another set of s-tates. A set F is attractive for a set E if every trajectory initializedin E reaches F .� The persistence of a set of states. A set of states E if it is attractivefrom the initial states and if E is invariant.� The recurrence of a set of states. A set of states E is recurrentif it is visited in�nitely often.� We can also consider control objectives that are conjunctions ofbasic properties of state trajectories (e.g., invariance + reachabil-ity).Finally note that some other control objectives, dealing with quantita-tive criteria can also be considered. In general, these control objectivesare expressed as partial order relations. Such relations can, for example,be described by means of numerical cost functions (see [18, 19, 20]).Remark 2. From a veri�cation point of view, besides the veri�cationof the invariance, reachability and attractivity of a given set of states, itis also possible to symbolically express CTL formulae [6], propositional�calculus formulae [12, 21] as well as bisimulation equivalences [11, 22].

J-DEDS.tex; 19/05/2000; 9:18; p.12

Synthesis of Discrete-Event Controllers based on the Signal Environment 133.1.3. Speci�cation of an objective in Signal+.Using an extension of the Signal language, named Signal+, it is pos-sible to express the properties to be checked as well as the control objec-tives to be synthesized directly, in the Signal program. With Signal+,it is not necessary for the user to know (or to understand) the math-ematical framework which is necessary to perform the computation ofthe controller. The syntax is given in Table II.Table II. Basic syntax of Signal+(j Sigali(Verif Objective(Prop))j Sigali(Control Objective(Prop)) j)The keyword Sigalimeans that the subexpressionmust be evaluatedby Sigali. In the �rst case, the function Verif Objective (it couldbe invariance(), reachability(), attractivity(),etc) means that Si-gali has to check the veri�cation objectives according to the booleanPROP, which de�nes a set of states in the corresponding polynomialdynamical system. In the second case, the functionControl Objectivemeans that Sigali has to compute a controller which will ensure thecontrol objective for the controlled system. It could be one of the con-trol objectives presented in the previous Section, (i.e.(S Security(),S Reachability(), S Attractivity(), etc.). We also proscribe in theSignal program the status of the inputs (controllable or not)) by thefunction Controllable(). The complete Signal program is obtainedcomposing the process specifying the plant and the one specifying boththe veri�cation objectives and the control objectives in parallel. Thecompiler produces a �le which contains the polynomial dynamical sys-tem resulting from the abstraction of the complete Signal programand the algebraic control (or veri�cation) objectives. This �le is theninterpreted by Sigali.3.2. Application to the cat and mouse exampleTo illustrate Section 3.1, let us come back to the cat and mouse exam-ple. Using the language Signal+, the control objectives we want toensure for the cat and mouse problem can be described as follows (cfFigure 6):We �rst introduce the signals cat mouse room i, (i=0,...,4) whichare true when the cat and the mouse are both in room i and ab-sent otherwise. We then introduce the boolean error which is truewhen one of the events cat mouse room i is true and it is falseotherwise (in terms of automata, we describe the set of states whereobjective 1 is violated). To specify the second objective, we intro-duce the boolean initial States that is true whenever both the cat
J-DEDS.tex; 19/05/2000; 9:18; p.13

14 H. Marchand, P. Bournai, M. Le Borgne and P. Le Guernic

Figure 6. Speci�cation of the control objectivesand the mouse are in their initial room and false otherwise. Finally,to ensure the two objectives, we require Sigali to compute a con-troller which ensures (i) the invariance of the set of states where theboolean error is false (objective 1: S Security(False(Error))) and(ii) the reachability of the cat and mouse initial positions (objective 2:S Reachable(True(Initial states))).The corresponding Sigali �le system CMD.z3z (Table III), obtainedafter the compilation of the global Signal program (such a computa-tion is automatic and performed, in this case, in less than 5Sec), is thefollowing:Table III. The resulting Sigali �leread(\system.z3z");) loading of the PDS Sread(\Synthesis Library.z3z");read(\Veri�cation Library.z3z"); �) Loading of the necessary librariesSet States 1: False(Error);) Compute the states where Error is falseSet States 2: True(Initial States);) Compute the states where Initial States is trueS c 1: S Invariance(S,Set States 1);) Controller ensuring the invariance of Set States 1S c: S Reachable(S c 1,Set States 2);) Controller ensuring the reachability of Set States 2The �le \system.z3z" codes the polynomial dynamical system S thatrepresents the initial system. S is represented by 23 state variables,12 controllable variables and 13 uncontrollable variables. The secondand third �les (\Veri�cation library.z3z" and `Synthesis library.z3z")are libraries in which we can �nd the di�erent algorithms concerningveri�cation and controller synthesis problems. The boolean Error be-comes a polynomial expressed by state variables and events as wellas the boolean Initial States. The polynomials Set States 1 and
J-DEDS.tex; 19/05/2000; 9:18; p.14

Synthesis of Discrete-Event Controllers based on the Signal Environment 15Set States 1 respectively represents the set of states where the poly-nomial Error is equal to -1 (i.e. in the Signal world, where the booleanError is false) and the set of states where the boolean Initial Statesis equal to 1 (therefore true). The last two lines correspond to thecontroller computations.This �le is then interpreted by Sigali (read(``system CMD.z3z''))which computes the controller with respect to the control objectives.In this case, Sigali �rst computes a controller which ensures the theinvariance of the set of states where the polynomial Set States 1 takesthe value 0. The obtained controlled system is called S c 1. From thisnew system, Sigali computes the controller that ensures the reachabil-ity of the initial states. The result is given by a new controlled systemS c from which the global controller ensuring the two control objectivesis extracted. The global controller (in fact a TDD) is computed bySigali in about 15Sec. This TDD is then saved in a �le, which couldbe used to perform simulation following the principle described in thenext section. 4. The simulation of the resultsAs explain in the introduction, one of the main problems dealing withthe controller synthesis methodology is the visualization of the newbehavior of the controlled system. What we propose, in our tool, is aneasy way to obtain a simulation which allows the visualization of thecontroller synthesis result by interactive simulation of the controlledsystem. This way, the user can better understand the controller syn-thesis e�ects on the system. We here suppose that a controller hasalready be synthesized according to given control objectives. The �rststage consists in integrating automatically the controller (more pre-cisely, a resolver process) in the initial Signal program and the secondstage consists in generating a simulation of this new Signal program,following the architecture of Figure 7.4.1. Integration of the resolver in a Signal program &simulator buildingThe resolver: In our framework, a controller is a polynomial, and thusis represented by a TDD. In most cases, the result is not deterministic;several values are possible for each command, when the system evolvesinto a state. Therefore, an algebraic equation resolver has been devel-oped in Signal for the control part of the resolver process and inC++ for the Algebraic Equation Resolver (AER).
J-DEDS.tex; 19/05/2000; 9:18; p.15

16 H. Marchand, P. Bournai, M. Le Borgne and P. Le Guernic
Model

Physical

resolver

Interactive

Choice of
the user

Dialogue Box

Algebraic equation

Choices for
the events

Dialogue Box

Interactive
Dialogue Box for the uncontrollable

events Interactive

Variables

Useful

Set of final

Set of admissible values

Set of admissible values
for the commands

the commands
Choices for
Set of final

Choice of
the user

Algebraic equation
resolver

If assumptions (1)

If no assumption (2)

Figure 7. Integration of the resolver and simulation processes : The principleThe AER is able to solve polynomial equations (i.e., controllersin our case) according to the internal state values (the values of thestate variables) and the input event values. The constraint part of thecontroller is given by the polynomial : C(X;Y;U) = 0, where X,Yand U are sets of variables. The AER provides, for given values x; y,all the possible values for the commands u; it is important to noticethat not only one but all the alternatives of commands are proposed.The AER is automatically integrated in the initial Signal program,following the diagram of Figure 7. The AER, which can be consideredas an external function, is encapsulated in a signal process, namedresolver. The links (i.e., the connections through signals) betweenthe process resolver, the AER and the process which speci�es thesystem are automatically added in order to obtain the new Signalprogram.Following the same principle, if some assumptions have been ex-pressed on the uncontrollable events, a sub-controller is also integratedin the Signal program. In this case, the sub-controller is a polynomialin variables X and Y given by Q0(x; y) = 0 , 9u;Q(x; y; u) = 0,where Q is the constraint equation of the polynomial dynamical system(i.e., the only admissible uncontrollable events are the ones for whichthere exists at least one command u such that Q(x; y; u) = 0). Notethat when Q0 is not reduced to the null polynomial, another processresolver is included (and that even if no assumption process exists). Thefact that Q0 be not reduced to the null polynomial simply means thatthere eventually exist relations (constraints) between the uncontrollableinputs.
J-DEDS.tex; 19/05/2000; 9:18; p.16

Synthesis of Discrete-Event Controllers based on the Signal Environment 17Remark 3. The complexity of the algorithm that provides the possi-ble values of the controllable events is very low. Indeed, once the valuesof the x and y have been sent to the AER, the controller is reducedto an equation C 0(U1; :::; Up) = 0. Hence, in order to know whether Uicould take a value j 2 0; 1;�1, the AER just has to test if the TDDC 0(U1; :Ui�1; j; Ui+1; ::; Up) reduces to the constant polynomial 1. If not,j is a possible value for the controllable event variable Ui.The simulator: at the same time, the user has the option of adding inthis new program some generic processes of simulation. These Signalprocesses perform, after compilation, the automatic construction ofgraphical input acquisition buttons (interactive dialogue box in Figure7) and output display windows for the signals of the interface of theprogram, in an oscilloscope-like fashion; with regard to the commandsand the uncontrollable events, the graphical acquisition button process-es are automatically added in the Signal program when the resolver(s)is (are) included. From this point, it is su�cient for the user to compilethe resulting Signal program which generates executable code readyfor simulation.We are also able to perform real graphical animation inorder to simulate the behavior of the system (see Section 4.2).Simulation principle: once the controller has been computed and inte-grated in the new Signal program as explained in the previous section,we have to simulate the result of the synthesis. In most cases, thecontroller is not deterministic, in the sense that for a given state and agiven uncontrollable event, more than one command can be admissible.To solve this problem, we choose to perform a step by step simulation.During the �rst stage of Signal program speci�cation, the userindicated the controllable and uncontrollable inputs. Thus, the valuesof the controllable events will be chosen by the user under the controlof the resolver through an interactive dialogue box (cf. Figure 8). Forexample, when the user makes a choice (i.e., the user chooses a partic-ular value for one of the commands), this choice is automatically sentto the AER, which returns the set of possible values for the remainingcommands. In fact, each time a new choice is made by the user, a newcontroller is computed, in the sense that one variable of the polynomialcontroller has been instantiated. New constraints can then appear onthe commands which are not totally speci�ed (there still exist morethan one choice); During this exchange between the dialogue box andthe resolver, some commands can be totally speci�ed by the resolver inwhich case their values are then imposed.
J-DEDS.tex; 19/05/2000; 9:18; p.17

18 H. Marchand, P. Bournai, M. Le Borgne and P. Le Guernic
resolver

to be true by the

Visualization of
the choice made

by the user

Commands chosen
Commands already chosen
either by the resolver or by the user New choices for

the user

Choice of the command value
by the user Figure 8. Example of simulation during a step.The choice of the command values can be performed step by stepby the user, or using a random process for a step of simulation. In thesecond case, the resolver chooses the command values. The user canalso ask for a random simulation during an indeterminate number ofsimulation steps.Remark 4. The choice of the uncontrollable event variable values fol-lows the same principle. The value of these inputs will be given by theusers (without any restrictions in the case where Q0 � 0) or using arandom process according to the admissibility of these events ((1) inFigure 7). In the case where the uncontrollable events are constrained,then the possible values of these inputs have to be accepted by anotherresolver, which gives, through a dialogue box, the possible choices forthese uncontrollable inputs ((2) in Figure 7).4.2. Simulation of the Cat and mouse ExampleOnce the controller corresponding to the two control objectives hasbeen synthesized by Sigali, it is integrated in the Signal environmentas explained in Section 4.1. After the compilation of this new Signalprogram, a graphical simulation is obtained (see Figure 9).Figure 9(a) represents the uncontrollable events (i.e., the cat andmouse movements). They are constrained by a resolver resulting fromthe process assumptions (never two di�erent movements at the same

J-DEDS.tex; 19/05/2000; 9:18; p.18

Synthesis of Discrete-Event Controllers based on the Signal Environment 19

(a) The events (b) The simulator interface (c) The commandsFigure 9. Cat and Mouse Problem Simulationtime and a movement is admissible if and only if the door is openand the animal is in the correct room.). Figure 9(c) represents thecommands (i.e., the opening and closing requests). The choice of theuser is limited by the main resolver in order to ensure the two objectives.Finally, Figure 9(b) represents the graphical interface of simulation, inwhich the positions of the animals, as well as the states of the door canbe observed.Remark 5. This graphical simulation has not been produced usingthe generic processes of simulation but has been implemented in Java.To this end, we developed a \generic" interface making the link betweenthe C �le produced by the Signal compiler and a Java graphical inter-face. The control panels are still automatically generated (Figure 9(a)and 9(c) as well as a pace-maker panel (not presented here)). The onlypart which is non generic is the graphical simulation of Figure 9(b)which concerns the animation of the movements, but this can be doneeasily.5. Another example: The control of a manufacturing cell5.1. Brief description of the problemIn this example, we consider a exible manufacturing cell, as shownin Figure 10. This manufacturing cell is composed of �ve workstations(three processing workstations, a part-receiving station (Work Station1 in Figure 10) and one completed parts station (Work Station 4 inFigure 10)).
J-DEDS.tex; 19/05/2000; 9:18; p.19

20 H. Marchand, P. Bournai, M. Le Borgne and P. Le Guernic

Figure 10. The exible manufacturing cellFive Automated Guided Vehicles (AGV's) transport materials be-tween pairs of stations, passing through conict zones shared with otherAGV's. We assume that the controller receives signals from the AGV'sindicating their current positions in the manufacturing cell. We alsoassume that we can stop the AGV's before they enter in some conictzones (Ci transitions in Figure 10).The control synthesis problem is to coordinate the movement of thevarious AGV's in order to avoid collisions in the conict zones (i.e., itis required that all AGV's be controlled so that each zone be occupiedby no more than one AGV).5.2. Specification in Signal:The complete behavior of the system is speci�ed in Signal. It is decom-posed into 10 subsystems, respectively coding the 5 workstations, andthe �ve AGV's circuits (processes Work Station i and Agv i). Themovement in each subsystem is driven by a clock, possibly di�erentfor each subsystem, named Time Wst i for the workstations, andTime Agv i for the AGV's. Synchronizations between the di�erentsubsystems are performed through exchanged messages, coding thestate of each sub-system (in dash in Figure 11).
J-DEDS.tex; 19/05/2000; 9:18; p.20

Synthesis of Discrete-Event Controllers based on the Signal Environment 21

Figure 11. Speci�cation in Signal of the synchronization between the sub-systemsThe control objective is speci�ed by another process. Figure 12describes this speci�cation:

Figure 12. The control ObjectiveIn order to realize the control objective, we �rst have to de�ne thestates of the system where two AGV's are at the same time in a commonzone. For example, the signal Zone 1 is a boolean which is true whenthe AGV 1 and the AGV 2 are both in the conict zone 1. In thisexpression, the boolean Next Agv i j represents the jth position of theith AGV. Zone 1 is synchronized with the event Tick which is equalto the union of the di�erent clocks for the sub-systems (Time ...).Each conict zone is speci�ed in Signal in this manner. Finally, Theboolean Conflit is true when one of the booleans Zone i is true, it isfalse otherwise. It corresponds to the forbidden states (i.e., the stateswhere two AGV's share a conict zone).
J-DEDS.tex; 19/05/2000; 9:18; p.21

22 H. Marchand, P. Bournai, M. Le Borgne and P. Le GuernicNow that the property has been speci�ed, we add in the Signalprogram the control objective. We �rst indicate which event is con-trollable SIGALI(Controllable(Ci)). Finally, to ensure the controlobjective, we require Sigali to compute a controller that ensures theinvariance of the set of states where the boolean Conflit is false:S Security(False(Conflit)).5.3. Controller synthesis and simulation of the results:The global system (the model process, the control objectives process)is automatically translated by the compiler in a polynomial dynamicalsystem. It is represented by 56 states variables and 10 controllableevent variables encoding the C i and 10 uncontrollable events encodingthe clock of each sub-system. It can be shown that the correspondingexplicit automaton has more than 106 reachable states. The controlleris then synthesized by Sigali. Its computation is realized in less than10Sec by Sigali. The result is a TDD, which is integrated into theinitial Signal program. After the compilation of this new Signal pro-gram, a graphical simulation is obtained (see Figure 8 and 10). Figure 8represents the commands (i.e., the opening and closing requests). Thechoice of the user is limited by the main resolver in order to ensurethe objective. Finally, Figure 10 represents the graphical interface ofsimulation, in which the positions of the AGV's can be observed.We also have performed the synthesis of controllers with a moreintricate manufacturing cell (in fact with two AGV's in the �rst, thirdand �fth transport zone). Note that the corresponding automaton isnow composed of more than 2 � 108 di�erent reachable states. For thesame control objective, the controller is computed in less than 2 hours(Compared to the previous case, the high computation time is basicallydue to the state space explosion).Remark 6. For simulation purposes (simpli�cation), the clocks of thevarious sub-system have been assumed to be equal. Therefore, duringthe simulation all the events are controllable. However, the controllersynthesis phase has been performed with di�erent clocks for the sub-systems (they were supposed to be uncontrollable).6. ConclusionIn this paper, we have presented the integration of a controller synthesismethodology in the Signal environment through the description of atool dedicated to the algebraic computation of a controller and then tothe simulation of the controlled system.
J-DEDS.tex; 19/05/2000; 9:18; p.22

Synthesis of Discrete-Event Controllers based on the Signal Environment 23The speci�cation of the system is done in a discrete event frameworkusing the language Signal. In order to facilitate this step, the usercan use a block-diagram graphical user interface. This environmentallows the user to have graphical and textual representations of thelanguage structures. These representations may be used together duringthe building or the \reading" of the program. The formal veri�cationof a Signal program, as well as the automatic controller design areperformed using a formal calculus system named Sigali.The principle is to translate the logical part of Signal program intoa polynomial dynamical system over ZZ=3ZZ , an implicit representationof an automaton. The operations on equation systems belonging to thetheory of algebraic geometry enable the treatment of various kinds ofproperties. The same operations can also be used for the automatedsynthesis of controllers where algebraic methods are used this time forthe derivation, from a model of a system, of a controller satisfying givenproperties and objectives. Finally, in order to facilitate the use of thecontroller synthesis methodology, we have added in the Signal lan-guage the possibility of directly expressing the control objectives (andthe veri�cation objectives) in the initial Signal program. Therefore, itis not necessary for the user to know (or to understand) the mathemat-ical framework which is necessary to perform the computation of thecontroller. Moreover, as the result is an equation encoded by a TDD,we have developed a simulator in the Signal environment which allowsthe user to visualize the new behavior of the controlled system.AcknowledgementsThis work was partially supported by lectricit de France (EDF) undercontract number M64/7C8321/E5/11 and by the Esprit SYRF project22703. The authors gratefully acknowledge relevant and insightful com-ments from the anonymous reviewers of this paper.References1. Balemi, S., G. Ho�mann, H. Wong-Toi, and G. Franklin: 1993, `SupervisoryControl of a Rapid Thermal Multiprocessor'. IEEE Transactions on AutomaticControl 38(7), 1040{1059.2. Benveniste, A. and G. Berry: 1991, `Real-time systems designs and program-ming'. Proceedings of the IEEE 79(9), 1270{1282.3. Benveniste, A. and P. Le Guernic: 1990, `Hybrid Dynamical Systems and theSignal Programming Language'. IEEE Trans. Automat. Control 35, 535{546.
J-DEDS.tex; 19/05/2000; 9:18; p.23

24 H. Marchand, P. Bournai, M. Le Borgne and P. Le Guernic4. Bournai, P. and P. Le Guernic: 1993, `Un environnement graphique pour lelangage Signal'. Technical Report 741, IRISA (In French).5. Bryant, R.: 1986, `Graph-Based Algorithms for Boolean Function Manipula-tions'. IEEE Transaction on Computers C-45(8), 677{691.6. Dutertre, B.: 1992, `Sp�eci�cation et preuve de syst�emes dynamiques'. Ph.D.thesis, Universit�e de Rennes I, IFSIC (In French).7. Gautier, T. and P. Le Guernic: 1999, `Code generation in the SACRESproject'. In: Towards System Safety, Proceedings of the Safety-critical SystemsSymposium, SSS'99. Huntingdon, UK.8. Halbwachs, N.: 1993, Synchronous programming of reactive systems. Kluwer.9. Ho�mann, G. and H. Wong-Toi: 1992, `Symbolic synthesis of supervisory con-trollers'. In: Proc. of 1992 American Control Conference, Chicago,Il,USA. pp.2789{2793.10. Holloway, L., B. Krogh, and A. Giua: 1997, `A survey of Petri Net Methods forcontrolled Discrete Event Systems'. Discrete Event Dynamic Systems: Theoryand Application 7, 151{190.11. Kouchnarenko, O. and S. Pinchinat: 1998, `Intensional approachs for symbolicmethods'. Electronic Notes in TCS 18.12. Kozen, D.: 1983, `Results on the Propositional �-calculus'. TheoreticalComputer Science 27(3), 333{354.13. Krogh, B. H.: 1993, `Supervisory Control of Petri Nets'. In: Belgian-French-Netherlands' Summer School on Discrete Event Systems.14. Le Borgne, M., A. Benveniste, and P. Le Guernic: 1991, `Polynomial dynamicalsystems over �nite �elds'. In: Algebraic Computing in Control, Vol. 165. pp.212{222.15. Le Borgne, M., H. Marchand, E. Rutten, and M. Samaan: 1996, `Formal Ver-i�cation of SIGNAL programs: Application to a Power Transformer StationController'. In: Proceedings of AMAST'96, Vol. 1101 of Lecture Notes inComputer Science. Munich, Germany, pp. 271{285.16. Le Guernic, P., T. Gautier, M. Le Borgne, and C. Le Maire: 1991, `Program-ming Real-Time Applications with Signal'. Proceedings of the IEEE 79(9),1321{1336.17. Maler, O., A. Pnueli and J. Sifakis: 1995, `On the Synthesis of Discrete Con-trollers for timed Systems'. Proceedings STACS'95, , Vol. 900 of Lecture Notesin Computer Science, pp. 229{242.18. Marchand, H. and M. Le Borgne: 1998a, `On the Optimal Control of PolynomialDynamical Systems over Z/pZ'. In: 4th International Workshop on DiscreteEvent Systems. Cagliari, Italy, pp. 385{390.19. Marchand, H. and M. Le Borgne: 1998b, `Partial Order Control of DiscreteEvent Systems modeled as Polynomial Dynamical Systems'. In: 1998 IEEEInternational Conference On Control Applications. Trieste, Italia.20. Marchand, H. and M. Le Borgne: 1999, `The Supervisory Control Problem ofDiscrete Event Systems using polynomial Methods'. Research Report 1271,Irisa.21. Pinchinat, S.: 1996, `Sigali vs �calculus'. Personnal communication.22. Pinchinat, S., H. Marchand, and M. Le Borgne: 1999, `Symbolic Abstractions ofAutomata and their application to the Supervisory Control Problem'. ResearchReport 1279, IRISA.23. Ramadge, P. J. and W. M. Wonham: 1987, `Modular Feedback Logic forDiscrete Event Systems'. SIAM J. Control Optim. 25(5), 1202{1218.
J-DEDS.tex; 19/05/2000; 9:18; p.24

Synthesis of Discrete-Event Controllers based on the Signal Environment 2524. Ramadge, P. J. and W. M. Wonham: 1989, `The Control of Discrete EventSystems'. Proceedings of the IEEE; Special issue on Dynamics of DiscreteEvent Systems 77(1), 81{98.25. Wonham, W. M. and P. J. Ramadge: 1987, `On the Supremal ControllableSublanguage of a Given Language'. SIAM J. Control Optim. 25(3), 637{659.

J-DEDS.tex; 19/05/2000; 9:18; p.25

J-DEDS.tex; 19/05/2000; 9:18; p.26

