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Abstract

Almgren and Chriss (Optimal execution of portfolio transactions. Journal of Risk, Vol. 3, No.
2, 2010, pp. 5-39) and Lehalle (Rigorous strategic trading: balanced portfolio and mean reversion.
Journal of Trading, Summer 2009, pp. 40-46.) developed optimal trading algorithms for assets and
portfolios driven by a brownian motion. More recently, Gatheral and Schied (Optimal trade execution

under geometric brownian motion in the Almgren and Chriss framework. Working paper SSRN, Au-
gust 2010) addressed the same problem for the geometric brownian motion. In this article we extend
these ideas for assets and portfolios driven by a discrete version of a selfsimilar process of exponent
H ∈ (0, 1), which can be either a fractional brownian motion of Hurst exponent H or a truncated
Lévy distribution of index 1/H.

The cost functional we use is not the classical expectation-variance one: instead of the variance,
we use the p-variation, i.e. the lp equivalent of the variance. We find explicitly the trading algo-
rithm for any p > 1 and compare the resulting trading curve (that we call p-curve) with the classical
expectation-variance curve (the 2-curve). If p < 2 we show that the p-curve is below the 2-curve at
the beginning of the execution and above at the end of the execution. Therefore, we have a trading
pattern that minimizes the market risk (i.e. the risk that the prices will drift away from its current
level). On the other hand, if p > 2 then the p-curve is above the 2-curve at the beginning of the
execution and below at the end. Therefore, this pattern minimizes the market impact.

We also show that the value of p in the p-variation is related to the exponent H of selfsimilarity
via p = 1/H. In consequence, one can find the right value of p to put into the trading algorithm by
calibrating the exponent H via real time series. We believe this result is interesting applications for
high-frecuency trading.
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1 Introduction

1.1 Brownian motion and expectation-variance: a review

This section recalls the framework, notation and results in Almgren and Chriss [1] and Lehalle [8].
Suppose we want to trade an asset S throughout a time horizon T > 0. We will also suppose that we
have already set the trading schedule, i.e. we will do N trades at times

0 = t0 < t1 < t2 < · · · < tN = T.

Define

τn = tn − tn−1

and assume that the price dynamics follows a brownian motion, i.e.

Sn+1 = Sn + στ
1/2

n+1εn+1, (1)

where σ > 0 and (εn)1≤n≤N are i.i.d. normal random variables of mean zero and variance 1. Following
Almgren and Chriss [1] and Lehalle [8], we will model the temporary market impact as a function h
depending on the average trading on each interval. More precisely, if

(ν1, . . . , νN ),

N
∑

n=1

νn = 1

is the number of units we trade at each time n then

h(νn) = η
σνn

Vn
, η > 0, (2)

with Vn the historical volume of the asset at time n. This implies that the temporary market impact
is directly proportional to the number of traded units νn and the volatility, but inversely proportional
to the available volume. Under this framework, the wealth process (i.e. the full trading revenue upon
completion of all trades) is

W =

N
∑

n=1

qnνn(Sn + qnh(νn)) (3)

=

N
∑

n=1

qnνnSn +

N
∑

n=1

Sn
ησ(νn)2

Vn
,

where qn = 1 if we buy at time n and qn = −1 if we sell.

The permanent market impact will no be considered here for two reasons. On the one hand, the
permanent impact can be added without structural changes on the model, as long as this impact is linear
(Lehalle [8]). On the other hand, we believe that there is no clear definition, nor consensus, on what
is the fundamental price of an asset (Bouchaud and Potters [4]), and on consequence the definition of
permanent market impact is rather ambiguous.
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For long-only portfolios (i.e. qn = +1) the wealth process as a function of (x1, . . . , xn) takes the form

W (x1, . . . , xn) = S0 +

N
∑

n=1

στ1/2
n εnxn +

N
∑

n=1

ησ

Vn
(xn − xn+1)

2. (4)

The expectation and variance of the wealth process (4) as functions of xn are

E(W ) = S0 +

N
∑

n=1

ησ

Vn
(xn − xn+1)

2, (5)

Var(W ) =

N
∑

n=1

σ2τnx2
n .

Therefore, the corresponding cost functional for a level of risk aversion λ is

Jλ(x1, . . . , xN ) = E(W ) + λVar(W ) (6)

= S0 +

N
∑

n=1

ησ

Vn
(xn − xn+1)

2 + λ

N
∑

n=1

σ2τnx2
n .

We compute the partial derivative of Jλ:

∂Jλ

∂xn
= −

2ησ

Vn−1

(xn−1 − xn) +
2ησ

Vn
(xn − xn+1) + 2λσ2τnxn. (7)

Equating (6) to zero we obtain the optimal trading curve via the recursive algorithm

xn+1 =

(

1 +
Dn−1

Dn
+ λ

σ2τn

Dn

)

xn −
Dn−1

Dn
xn−1 , Dn =

ησ

Vn
, (8)

under the constraints x0 = 1 and xN+1 = 0.

1.2 Selfsimilarity and Lévy processes

This section recalls the basic definitions and properties of selfsimilar and Lévy processes (see Embrechts
and Maejima [5] for more details).

• An R
K-valued stochastic processes {S(t) : t ≥ 0} is selfsimilar if for any a > 0 there exists b > 0

such that {S(at)} = {bS(t)} in distribution.

• {S(t) : t ≥ 0} is stochastically continuous if for any ε > 0,

lim
h→0

P {|S(t + h) − S(t)| > ε} = 0.

In particular, a continuous process is stochastically continuous.

• If {S(t) : t ≥ 0} is selfsimilar and stochastically continuous then there exists a unique H ≥ 0 such
that b = aH , i.e. {S(at)} = {aHS(t)} in distribution. We call H the exponent of self-similarity and
{S(t) : t ≥ 0} a H-selfsimilar process.
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• If H = 1/2 we recover the classical brownian motion.

• An R
K-valued stochastic processes {S(t) : t ≥ 0} is a Lévy process if

– S(0) = 0 a.s.

– It is stochastic continuous at any t ≥ 0.

– It has independent and stationary increments.

– It sample paths are right-continuous and have left limits a.s.

• A probability measure m on R
K is stable if for any a > 0 there exists b > 0 such that

m̂(y)a = m̂(by) ∀y ∈ R
K .

where m̂ is the Fourier transform of m.

• If m is stable then there exists a unique p ∈ (0, 2] such that b = a1/p, i.e.

m̂(y)a = m̂(a1/py) ∀y ∈ R
K .

Such probability measure m is called p-stable.

• Let p ∈ (0, 2] and let Z be an R
K-valued random variable with a p-distribution. Then for any

γ ∈ (0, p) we have E[|Z|γ ] < ∞, but E[|Z|p] = ∞.

• Let {S(t) : t ≥ 0} be a Lévy process. Then {S(t) : t ≥ 0} is H-selfsimilar if and only if X(1) is
µ-stable. Moreover, µ and H satisfy µ = 1/H.

• Stable Lévy processes are the only selfsimilar processes with independent and stationary increments.

• If µ = 2 we recover the classical brownian motion.

1.3 Fractional brownian motion

This section recalls the definition and properties of the fractional brownian motion (see Embrechts and
Maejima [5], Bouchaud and Potters [4] and Mandelbrot [9] for more details).

• Let H ∈ (0, 1]. The fractional brownian motion {BH(t) : t ≥ 0} is a real-valued gaussian process
such that

E[B(t)] = 0 ,

E[B(t)B(s)] =
1

2

(

t2H + s2H − |t − s|2H
)

.

• If H = 1/2 the returns are not correlated and BH is the classical brownian motion (also called
white noise).

• If H > 1/2 the returns are positively correlated ( and the process is called red noise). This implies
that the asset has a trend.
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• If H < 1/2 the returns are negatively correlated (blue noise). This implies that the asset has a
mean-reverting dynamics.

The idea of using power law distribution instead of gaussian ones is not a new one. One of the reasons
is that gaussian distributions fail to reproduce several properties of the actual distributions of returns.
This properties, known as stylized facts, are common of any asset class: the real distribution of returns is
approximately symmetric, it has fat tails (i.e. extreme returns are more likely to happen that the normal
theory would forecast), it has a high peak (i.e. leptokurtic), there is weak autocorrelation between returns
but a high autocorrelation in the absolute value of square returns. The last point implies that volatility
varies over time and presents clustering patterns, i.e. there are periods of high volatility and low volatility
(see Bouchaud and Potters [4] and Embrechts et al [11] for more details).

The stylized facts can be reproduced using different distributions such as (truncated) Lévy, Student or
fractional brownian motion. Moreover, there is empirical evidence of the selfsimilar behavior of returns.
Indeed, Almgren et al [3] analyzed real data and found that market impact is a power law of exponent
3/5 of block size, with specific dependence on trade duration, daily volume and volatility. For all this
reasons, a model based on sefsimilar processes is a natural step towards the understanding of the real
dynamics of market prices.

2 The p-variation model

2.1 Definition and properties of the p-variation

Let p > 1 and y = (y1, . . . , yn) ∈ R
N be a random vector of mean zero. We define the p-variation of y as

Vp(y) =

N
∑

n=1

E [ | yn|
p ] .

The p-variation Vp(y) and the lp-norm in R
N are related via

‖y‖p = Vp(y)1/p.

Notice that if y = (y1, . . . , yn) is a time series of i.i.d. random variables then the 2-variation reduces to
the variance, i.e.

V2(y) = Var(y) .

Moreover, it is easy to show that the p-variation defines a metric on R
N , and since all norms in R

N are
equivalent there exist 0 < α < β such that

α‖y‖p ≤ ‖y‖2 ≤ β‖y‖p.

Therefore, the variance (i.e. the 2-variation) and the p-variation are two equivalent metrics on R
N such

that
Vp(y) ∼ V2(y)p/2 . (9)

For real-life applications we have V2(y) < 1. Since p 7→ V2(y)p/2 is decreasing, we have the following
statements:
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• If p < 2 the p-variation Vp(y) amplifies the effect of the variance.

• If p > 2 the p-variation reduces the effect of the variance.

Now let us define the p-variation for a special family of functions of random variables. Let y =
(y1, . . . , yN ) a random vector of mean zero. Consider the function F : R

N → R defined as

F (y) =

N
∑

n=1

yn.

We define the p-variation of F as

Vp(F ) =

N
∑

n=1

E [ | yn|
p ] .

Observe that if y = (y1, . . . , yN ) is a time series of mean zero then Vp(F ) is the p-th moment of the time
series y. Finally, for general functions F such that

F − E(F ) =

N
∑

n=1

yn

we define their p-variation as
Vp(F ) := Vp(F − E(F )) = Vp(y).

2.2 Optimal trading algorithms

Let H ∈ (0, 1) and assume that the price dynamics is

Sn+1 = Sn + στH
n+1εn+1, (10)

where (εn)1≤n≤N are identically-distributed random variables such that E [εn] = 0. Under these assump-
tions, the wealth process is

W (x1, . . . , xn) = S0 +

N
∑

n=1

στH
n εnxn +

N
∑

n=1

ησ

Vn
(xn − xn+1)

2 . (11)

Its corresponding expectation and p-variation are

E(W ) = S0 +

N
∑

n=1

ησ

Vn
(xn − xn+1)

2, (12)

Vp(W ) = Vp(W − E(W ))

=

N
∑

n=1

σpτpH
n |xn|

p .

The corresponding cost functional is

Jp(x1, . . . , xN ) = E(W ) + λVp(W ) (13)

= S0 +
N
∑

n=1

ησ

Vn
(xn − xn+1)

2 + λ
N
∑

n=1

σpτpH
n |xn|

p .
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In order to have a well-defined cost functional Jp in terms of units, we need to have the same time units
in both E(W ) and Vp(W ). But notice that E(W ) has linear time units, whereas Vp(W ) has tpH units.
In consequence, the only choice for p that renders the p-variance linear in time is p = 1/H. Therefore,
assuming H = 1/p and

E[|εn|
p] = 1 ∀n = 1, . . . , N (14)

we obtain

Jp(x1, . . . , xN ) = E(W ) + λVp(W ) (15)

= S0 +

N
∑

n=1

ησ

Vn
(xn − xn+1)

2 + λ

N
∑

n=1

σpτn|xn|
p .

The partial derivative of Jp is

∂Jλ

∂xn
= −

2ησ

Vn−1

(xn−1 − xn) +
2ησ

Vn
(xn − xn+1) + pλσpτnxn|xn|

p−2. (16)

Equating (16) to zero yields the optimal trading curve via the recursive algorithm

xn+1 =

(

1 +
Dn−1

Dn

)

xn −
Dn−1

Dn
xn−1 +

pλσpτn

2Dn
xn|xn|

p−2 , Dn =
ησ

Vn
, (17)

with the constraints x0 = 1 and xN+1 = 0. Notice that (17) is a well-defined algorithm for p > 1.

We would like to remark that the idea of a risk measure that is linear in time was already introduced
by Gatheral and Schied [6]. The risk measure they chose was the expectation of the time-average, whereas
our risk measure is a lp version of the variance. In both cases, the risk measure has the same time units
as the expectation of the process. However, in our case there is no a priori on the dynamics of the price
process: the right choice of p is a consequence of finding empirically the exponent H of selfsimilarity and
using the relation p = 1/H.

2.3 Comparison between 2-variation and p-variation algorithms

Let us study the difference between the p-variation algorithm (17) and the 2-variation algorithm (8)

δn+1(p) = xn+1(p) − xn+1(2) =
λxnτn

Dn

(p

2
σp|xn|

p−2 − σ2

)

. (18)

Proposition 1 Let x(p) = (x0(p), . . . , xN+1(p)) be the optimal trading curve defined by the p-variation
algorithm (17). Suppose that x0(p) = 1 and x1(p) = α is constant for all p. If σ ≤ e−1/2 ≈ 0.6065 then
the mapping

p 7→ δn+1(p)

is decreasing for all n = 2, . . . , N .

Proof: Suppose p > 2. The function

f(x, σ, p) :=
p

2
σp|x|p−2 − σ2
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Figure 1: Comparing the p-curves for the same value of x1(p). As it was shown in Proposition 1, the mapping
p 7→ x(p) with x1(p) = α constant for all p is decreasing.

is increasing in |x|. Therefore,

f(x, σ, p) ≤ f(1, σ, p) for all x ∈ (0, 1], σ > 0, p > 2.

But notice that

f(1, σ, p) ≤ 0 ⇐⇒ σ ≤ σ∗ :=

(

2

p

)
1

p−2

.

After some straightforward computations from elementary Calculus, it can be shown the function

p 7→

(

2

p

)
1

p−2

is increasing in p > 2 and that its minimum is e−1/2 ≈ 0.6065. The case p < 2 can be treated similarly.
Indeed,

f(x, σ, p) :=
p

2
σp|x|p−2 − σ2

is decreasing in |x|, which implies that

f(x, σ, p) ≥ f(1, σ, p) for all x ∈ (0, 1], σ > 0, p > 2.

Therefore

f(1, σ, p) ≥ 0 ⇐⇒ σ ≤ σ∗ :=
(p

2

)
1

2−p

.

As before, it can be shown that

p 7→
(p

2

)
1

2−p

is decreasing in p < 2 and that its minimum is e−1/2 ≈ 0.6065. �
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Proposition 2 Let 1 < q < p, σ ≤ e−1/q and suppose that x0(p) = x0(q) = 1 and x1(p) = x1(q) = α.
Then x(q) ≥ x(p), i.e. the p-curves are monotone decreasing (see Fig. 1). In particular, the result is
independent of the choice of p and q provided σ ≤ e−1 ≈ 0.3678.

Proof: The difference between the p and q-curves is

f(x, σ, p, q) =
p

2
σp|x|p−2 −

q

2
σq|x|q−2 .

Therefore,

f(x, σ, p, q) ≤ 0 ⇐⇒
p

q
σp−q|x|p−q ≤ 1 for all x ∈ (0, 1].

Fix q > 1. It can be shown with some Calculus that the mapping

q 7→

(

q

p

)
1

p−q

is increasing and that its minimum is e−1/q. In conclusion,

f(x, σ, p, q) ≤ 0 for all x ∈ (0, 1], σ ≤ e−1/q and p > q > 1. �

3 Numerical results

3.1 The p-curves are increasing in p

Let x(p) = (x0(p), , . . . , xN+1(p)) be the optimal trading curve defined by the p-variation algorithm
(17). Suppose that x1(p) is chosen in such a way that xN+1(p) = 0. In that framework, our numerical
simulations show that the p-curves x(p) is increasing in p (see Fig. 2). This confirms the intuition given
in Section 2.1 about the p-variation, i.e. that p is a “tuning parameter” in the sense that it amplifies
(resp. reduces) the effect of the variance when p < 2 (resp. when p > 2).

3.2 The p-variation algorithm is robust with respect to H

Proposition 3 Let π(e) as the error in the estimate p when the estimate of H has an error of e. Then
π(e) is independent of p and H and

π(e) ≤
e

1 − e
.

Proof: Let Ĥ = H + εH be an estimate of H, where ε is the signed relative error. Then the error π(ε)
is independent of H and p, i.e.

π(ε) =

∣

∣

∣

∣

p̂ − p

p

∣

∣

∣

∣

=

∣

∣

∣

∣

ε

1 − ε

∣

∣

∣

∣

.

In consequence, if we define e := |ε| then

π(e) ≤
e

1 − e
. �

Now let R(e, p) be the maximum error in the p-curves when the estimate of H has an error of e. In
our numerical experiments (see Table 1) we found that the error ratio R(e, p)/e is smaller than one. This
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Figure 2: Comparing the p-curves. According to our numerical experiments, the mapping p 7→ x(p) is increasing
when x1(p) is chosen in such a way that xN+1 = 0.

implies that the p-variation algorithm has somewhat a “regularising” effect in the sense that the error in
the p-curve is smaller that the error in the estimate of H. Moreover, the mapping

p 7→
R(e, p)

e

is monotone decreasing. This was expected since the case p = 1 is singular, and as p increases we are
further from this (numerical) instability. In conclusion, the p-variation algorithm (17) is robust with
respect to H, and this robustness improves as p increases.

p Error in H Error in p-curve Error ratio
e R(e, p) R(e, p)/e

2.33 1% 0.29% 0.29
5% 1.6% 0.32
10% 3.74% 0.374

1.33 1% 0.68% 0.68
5% 3.54% 0.708
10% 7.58% 0.758

Table 1: Numerical results for the errors. As we can see, the errors in the calibration of H are smoothed out by
the p-variation algorithm, and this smoothing or regularising effect is more important as p increases.
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4 Relation between p-variation algorithms and selfsimilar pro-

cesses

4.1 Interpretation in terms of Lévy processes

Observe that the discrete model (10) is selfsimilar of exponent H = 1/p. One would like to show that
(10) can be the discretization of a familiar continuous stochastic process.

If (10) were the discrete version of a continuous, selfsimilar random process with i.i.d. increments
then the process would be necessarily a stable Lévy process. However, any H-selfimilar, Lévy process is
p-stable Lévy, where p = 1/H, and one of their properties is that the p-th moment is infinite, whereas in
the p-variance we implicitly assume that the p-th moment is finite. In consequence, (10) cannot be the
discretization of a Lévy process.

In order to overcome the integrability issues of the stable Lévy distribution, we can consider that the
prices have a truncated Lévy distribution, i.e. a p-stable Lévy distribution for finite values, but either zero
(see Mantegna and Stanley [10]) or exponential distribution (see Koponen [7]) for large values. Under
this conditions, it follows that the model (10) is “locally” (i.e. inside a compact set in time and space)
the discretization of a selfsimilar, Lévy process of index p and the hypothesis of p-th moments is satisfied.

4.2 Interpretation in terms of fractional brownian motion

Unlike stable Lévy processes, the fractional brownian motion has finite moments of all orders and its
increments are autocorrelated. However, if the increments in the model (10) are not independent then
the p-variation does not coincide with the p-th moment of a fractional brownian motion, since the latter
does not take into account the autocorrelations. Nevertheless, we could think that the the p-variance is
a first-order approximation of the p-th moment, in which we are negecting the effect of autocorrelations.
The good news are that this approximation reproduces the trading patterns that one could expect from
a fractional brownian motion:

• If p < 2 (i.e. H > 1/2) we have positive autocorrelation, i.e. prices have a trend. Therefore, our
trading will move prices in the wrong sense for us: if we sell prices will go down, whereas if we buy
prices will go up. In consequence, since there is a bigger market risk than for the classical brownian
motion, we would like to execute the order faster in order to minimize this risk.

• If p > 2 (i.e. H < 1/2) we have negative autocorrelation, i.e. prices follow a mean-reverting
dynamics. In consequence, since the market risk is less important than for the classical brownian
motion, the algorithm focusses on minimizing the market impact, which implies that we trade
slower.

4.3 Real trading applications

The p-variation model (10) can be regarded as a generalization of the classical expectation-variance
approach, for which there is a parameter p that has a qualitative impact on the trading patterns. Observe
that when choosing a value of p and writing the cost functional in terms of the p-variation, we are
implicitly assuming that we the price process follows a selfsimilar process of exponent H = 1/p (the
classical brownian motion is the particular case p = 2). Regardless of the continuous dynamics of (10),
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i.e. whether it is a truncated Lévy processes or a fractional brownian motion, the right value of p to put
into the algorithm can be calibrated empirically using time series: we choose the exponent H as the best
fit for the logarithm of the price process, i.e.

log(S(tn) − S(tn−1)) = α + H × log(τn) + εn, τn = tn − tn−1.

5 Extensions of the model to portfolios

5.1 General portfolios

This section is a generalization of the multi-asset case in Almgren and Chriss [1] and Lehalle [8] to a
selfsimilar process. Suppose we have a portfolio of K assets S = (S1, . . . , SK). For any n we define the
asset vector Sn = (S1

n, . . . , SK
n ), whose dynamics is supposed to be a fractional brownian motion, i.e.

Sn+1 = Sn + τ1/p
n En+1, (19)

where (En)1≤n≤N are i.i.d. K-dimensional Gaussian vectors with mean zero and covariance matrix

[Sn]ij = E
[

E i
nE

j
n

]

.

The wealth function is

W =

K
∑

k=1

Sk
0 +

K
∑

k=1

N
∑

n=1

τ1/p
n Ek

nxk
n +

K
∑

k=1

N
∑

n=1

ηk σk

V k
n

(xk
n − xk

n+1)
2. (20)

Its corresponding expectation and p-variation are

E(W ) =

K
∑

k=1

Sk
0 +

K
∑

k=1

N
∑

n=1

ηk σk

V k
n

(xn − xn+1)
2, (21)

Vp(W ) =
N
∑

n=1

τn xn(p)′Sn(p)xn(p),

where
xn(p) = (|x1

n|
p/2, . . . , |xK

n |p/2)

and
[Sn(p)]ij = E

[

sign(E i
nE

j
n) |E i

n|
p/2|Ej

n|
p/2

]

(notice that for p = 2 we recover the classical variance-covariance matrix). The cost functional is

Jp(x1, . . . ,xN ) = E(W ) + λVp(W )

=

K
∑

k=1

Sk
0 +

N
∑

n=1

(

λτn xn(p)′Sn(p)xn(p) +

K
∑

k=1

ηk σk

V k
n

(xn − xn+1)
2

)

. (22)

The corresponding recursive algorithm is still of the form

xn+1 = F (xn,xn−1),

where x0 is given and xN+1 = (0, . . . , 0). However, the explicit formula is complicated because it involves
the partial derivatives of xn(p)′Sn(p)xn(p), which do not have a linear expression for p 6= 2.
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5.2 Balanced portfolios for brownian motion: a review

Here we recall a particular case of a multi-asset gaussian case, the so-called balanced portfolio, that
appears in Lehalle [8]. Let us suppose that the price dynamics is a classical brownian motion, i.e.

Sn+1 = Sn + τ1/2
n En+1,

where (En)1≤n≤N are i.i.d. K-dimensional Gaussian vectors with mean zero and covariance matrix

[Sn]ij = E
[

E i
nE

j
n

]

,

and that there is a unique trading strategy

(ν̃1, . . . , ν̃N ),

N
∑

n=1

ν̃n = 1 (23)

such that the trading schedule of any asset k is a constant multiple of it. More precisely, we will assume
that for any k = 1, . . . ,K there exists πk > 0 such that

νk
n = πkν̃n for all n = 1, . . . , N .

The number πk is the total number of shares of asset k to be traded. Under this framework we also have
xk

n = πkx̃n. Indeed,

xk
n =

N
∑

i=n

νk
i =

N
∑

i=n

πkν̃i

= πk
N
∑

i=n

ν̃i = πkx̃n. (24)

Define π = (π1, . . . , πK). From (23) and (24) it follows that the wealth process (20) for a balanced
portfolio takes the form

W =

K
∑

k=1

Sk
0 +

N
∑

n=1

τ1/2
n

(

k
∑

k=1

Ek
nπk

)

x̃n +

N
∑

n=1

(x̃n − x̃n+1)
2

(

K
∑

k=1

ηk(πk)2
σk

V k
n

)

,

Therefore, the expectation and variance are

E(W ) =

K
∑

k=1

Sk
0 +

N
∑

n=1

Dπ
n(x̃n − x̃n+1)

2, (25)

V ar(W ) =
N
∑

n=1

τn π′
Snπ (x̃n)2 ,

where as before

Dπ
n :=

K
∑

k=1

ηk(πk)2
σk

V k
n

.
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In consequence, the cost functional is

Jλ(x̃1, . . . , x̃N ) =

K
∑

k=1

Sk
0 + λ

N
∑

n=1

τn π′
Snπ(x̃n)2 +

N
∑

n=1

Dπ
n(x̃n − x̃n+1)

2.

Therefore, the optimal trading curve is the solution of the recursive algorithm

x̃n+1 =

(

1 +
Dπ

n−1

Dπ
n

+ λ
τn π′

Snπ

Dπ
n

)

x̃n −
Dπ

n−1

Dπ
n

x̃n−1 , (26)

under the constraints x̃1 = 1 and x̃N+1 = 0.

5.3 Balanced portfolios for selfsimilar processes: the p-variation model

We will extend the balanced portfolios for the p-variation model. Suppose that the portfolio follows the
dynamics in (19) and define

π(p) := (|π1|p/2, . . . , |πK |p/2) .

Using (23) and (24) it can be shown that the wealth process (20) for a balanced portfolio takes the form

W =

N
∑

n=1

Sn
0 +

N
∑

n=1

τ1/p
n

(

k
∑

k=1

Ek
nπk

)

x̃n +
N
∑

n=1

Dπ
n(x̃n − x̃n+1)

2 .

From (21) it follows that the expectation and p-variation are

E(W ) =
K
∑

k=1

Sk
0 +

N
∑

n=1

Dπ
n(xn − xn+1)

2, (27)

Vp(W ) =

N
∑

n=1

τn π(p)′Sn(p)π(p) |x̃n|
p ,

where (as before)

[Sn(p)]ij = E

[

sign(E i
nE

j
n) |E i

n|
p/2|Ej

n|
p/2

]

.

In consequence, the cost functional is

Jp(x̃1, . . . , x̃N ) =

K
∑

k=1

Sk
0 + λ

N
∑

n=1

τn π(p)′Sn(p)π(p) |x̃n|
p +

N
∑

n=1

Dπ
n(x̃n − x̃n+1)

2 .

In consequence, the corresponding recursive algorithm is

x̃n+1 =

(

1 +
Dπ

n−1

Dπ
n

)

x̃n −
Dπ

n−1

Dπ
n

x̃n−1 +
pλτn π(p)′Sn(p)π(p)

2Dπ
n

x̃n|x̃n|
p−2 , (28)

with the constraints x̃1 = 1 and x̃N+1 = 0. Notice that (28) is well-defined for p > 1.
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6 Conclusions

• Equation (1) can be considered as the discretization of a selfsimilar process. If (εn)1≤n≤N are i.i.d.
then its continuous version S(t) can be a stable Lévy process of exponent p = 1/H. However,
for a p-stable Lévy process we have E[|S(t)|p] = ∞. Nevertheless, if we consider truncated Lévy
processes we can ensure that the p-moment is finite.

• If (εn)1≤n≤N are gaussian and correlated then S(t) can be a fractional brownian motion of Hurst
exponent H = 1/p. However, the p-variation does not take into account the autocorrelations.
Nevertheless, we can consider that the p-variation is a first order approximation (i.e. neglecting
autocorrelations) of the true p-moment.

• We have presented a general algorithm for optimal trading curves when the underlying is a selfsimilar
process (i.e. a fractal). We showed numerically that the optimal trading curves are increasing in p.
Therefore, the effect of the volatility is decreasing in p.

• When p = 2 we recover the original Almgren-Chriss model [1].

• We extended our model to portfolios. For general portfolios the algorithm is fully implicit, but
balanced portfolios) we have the same results as in the single-asset case.

• In other works (e.g. Gatheral and Schied [6]) the underlying follows a geometrical brownian motion.
In our model, however, we are not imposing a gaussian model: it is the empirical data who determine
the choice of p. Indeed, we set p = 1/H after calibrating H via the real time series of the process.
This can offer interesting applications for practitioners.

• The p-variation algorithm (17) has a regularising effect in the sense that the error in the estimate
of H is bigger than the error between the corresponding p-curves. Moreover, this effect increases
as p increases.

• We plan to extend our model in an upcoming work, where we will include autocorrelations and
nonlinear temporary market impact.
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truncated Lévy flight. Phys. Rev. Lett. 73, pp. 2946-2949, 1994.
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