Fernando Jim Enez-Fraustro
email: fernando.jimenez@irisa.fr

Eric Rutten
email: eric.rutten@inrialpes.fr

A synchronous model of the PLC programming language ST

Keywords: programmable logic controllers, formal methods, synchronous languages

This paper presents rst results in the de nition of a synchronous model of the PLC programming language ST. This work is part of the integration of the IEC 1131 design standard and the synchronous technology, with the motivation to give access to formal techniques and tools.

1 The design of industrial controllers Industrial control systems, e.g. in factory automation, are complex and safety critical systems. Their controlling dangerous or safety critical activities calls for strong requirements regarding the analysis of the correctness of their design and implementation. Certication authorities begin advocating the use of formal and automated methods. They are often implemented on Programmable Logic Controllers (PLC) architectures. Their design relies on standards like the IEC 1131 norm, and more specially its IEC 1131-3 part concerning programming languages [START_REF] Halbwachs | Synchronous programming of reactive systems[END_REF][START_REF]ternational Standard for Programmable Controllers[END_REF]. These are various: ladder diagrams, imperative sequential languages like Structured Text (ST), Sequential Function Charts (SFC). This variety re ects that of levels of design and of cultures involved in the design of large controllers, where legacy speci cations can be very important. From the point of view of the correctness and safety of controllers, the problem is in the size and complexity of designs. A design assistance has to be provided to designers, giving clear semantics to large speci cations, to the way the interoperability of languages works, and a formal basis on which the analysis of speci cations can be achieved. The assistance that can be provided by an environment of practical tools to a correct design and implementation is essential. In the area of reactive real-time systems, the emergence of the synchronous technology 5, 9] provides for design environments o ering automated support tools for speci cation, validation (simulation, veri cation), performance evaluation, distributed implementation, execution on di erent platforms (HW and OS).

The motivation of our work is to connect the industrial automation design standard IEC 1131 with the synchronous formal model, technology and tools The method followed is based on the modeling of the behavior of the languages of the IEC 1131 norm in terms of Signal. Its implementation in an automated translation opens access to the whole design environment and to its diverse analysis and implementation functionalities. Compared with other work on formalization of PLC languages (e.g. [START_REF]ternational Standard for Programmable Controllers: Programming Languages, IEC 1131 part[END_REF][START_REF] Beauvais | A translation of StateCharts into Signal[END_REF][START_REF] Le Guernic | Experiments with the synchronous methodology illustrating its support of predictability[END_REF]), we want to address the complete norm (i.e. have a formal model of all the languages and their inter-operation), and to connect it to a formally based technology where not only analysis and validation, but also compilation, architecture dependent implementation, code generation are considered. In this paper, we present rst results in the de nition of a synchronous model of the PLC programming language Structured Text (ST).

The IEC 1131 norm and ST

The IEC 1131-3 norm on programming languages is divided in two parts : the common elements, and the four di erent programming languages. The common elements concern everything that can be used in all the languages. Elementary data types and variables, with default initial values, can be used to build derived ones. Program Organization Units are the basic structuring units, that can be associated to tasks in the execution environment. They can be programs, written in any of the programming languages de ned further. Sequential Function Charts (SFC) are a graphical language for modeling the functional and behavioral aspects of discrete-event control systems. Con guration elements give ways to describe the implementation of the controller with the help of global variables, resources, tasks, and acces paths. The PLC programs are mainly structured by means of function block units. Function blocks are instances of function block types that encapsulate local data and algorithmic behaviour and respect de nite communication interfaces through strongly typed input/output variables. When a function block is activated, input data is passed to its input variables and its algorithm is executed. All the input variables and the local data are accessible for the algorithm. This local data persists from one activation to the next, therefore can be used to record relevant information for future use. After the activation is nished, the caller can read the calculated results from the output variables.

The algorithmic behaviour of a function block is dened in one of the four languages of the norm. There are two graphical languages: Ladder Diagrams (LD), that are based on the graphical presentation of Relay Ladder Logic, and Function Block Diagrams (FBD), which express the behaviour of functions, function blocks and programs as a set of interconnected blocks with the ow of variables between them. The two others are textual languages: Instruction List (IL), which resembles assembly languages, and Structured Text (ST), which is a sequential imperative language, of the family of Pascal, Ada, C, and the like. In Figure 1, the four programming languages are illustrated by the description of the same simple program. There are two input variables A and B, of the Boolean type, and one output variable C of the same type; the operation consists in making the conjuction of the value of A and that of the negation of B. All four languages are interlinked through the programming units, this means that one can implement a function block in one language and use it in another. The syntax and semantics of all the languages allow the use of programming units described in any other language. The basic semantics of the languages involves cyclic repetition of a scan, where inputs are evaluated, a reaction is computed and outputs are emitted.

The synchronous technology

The synchronous approach to real-time and reactive systems 5] o ers models and practical design assistance tools with a formal basis. The underlying theory is that of discrete event systems and automata theory. It provides for a technology concretely available as design environments (e.g., the Signal one, or Sacres) with tools for speci cation (graphical interfaces), simulation, veri cation, performance evaluation, execution on di erent platforms (HW and OS).

Some synchronous languages are Esterel, Lustre Signal, Argos and StateCharts. The synchrony refers to a particular formal model, with a notion of logical instant, where composability of subsystems is made simpler, and more e cient w.r.t. automated analysis tools. Recently, exchange formalisms, e.g. DC+, allow for the interoperability of the tools of di erent origins, widening the potential support for languages connected to these formats. Commercial versions of the languages and tools exist, and have applications in industry (nuclear plant control, avionics, ...) 1].

Signal is a data-ow language, where programs are written in the form of systems of equations, composed in a block-diagrammatic fashion 9]; experiments illustrate the ways it can be practically used, and the actual meaning of the synchrony They are su ciently expressive to model nite state machines. They can be composed using the composition operator noted \|". There exist derived constructs for confort and structuring, and external (e.g. C) functions. They can be used to express behaviours in a way reminiscent of sequential circuits, with delays used as registers. A di erence is that the downand up-samplings allow for not strictly single-clocked speci cations as in circuits, hence enabling less constrained clocks, more modularity and reusability.

The Sacres project and programming environment is an industrial instantiation of a design environment based on that technology 1]. StateMate 4] is integrated to the synchronous technology by providing a translator to Signal and Dc+ 2]. This exampli es that it is possible to give access to synchronous technology from languages originally not de ned within the synchronous approach. This potentiality is extensible to languages which show reactivity, and is especially meaningful when safety of the design is crucial, and complexity requires automated assistance to its assessment. This is the case of industrial controllers programming, hence our approach. In particular, the language of actions in Statemate 4] features imperative sequential constructs quite close to those of ST 12]; therefore these results could be re-used here. [START_REF] Fett | Formal speci cation of a safe PLC language and its compiler[END_REF] Modeling Structured Text in Signal General principle. A function block encapsulates local data that persists from one activation to the next and an algorithm that is executed during an activation. So a function block consists of an environment together with an evaluation function. The rst is the state of all variables accessible to the function block. The latter is a statement list in the ST language working on that environment. In imperative languages like ST, every assignment statement changes the environment, and several assignments can change the same variable during the execution.

This section outlines the translation of imperative ST into equational (data-ow) Signal, representing basically the data dependencies between instructions. Signal considers signals which carry only one value per logical instant. Hence, in order to model in such a synchronous, single-assignment formalism a language with multiple-assignment variables, one can de ne one signal for each assignment to a variable. This is possible especially when we have a bounded sequence of them, i.e. a ST program with no unbounded loop. Therefore, we manage an environment Env with a signal associated to every state variable, passing it along the sequence of instructions. It can be seen as unfolding the sequence or bounded loop. The case of unbounded loops is mentioned at the end of the section, and principles of a solution are sketched.

The general form of the translation function is tran(Env input ; Env output)(stat) whith stat the statement to translate, Env input the input environment and Env output the new one, output of the translation of stat. The resulting Signal code is shown in a box.

Assignment. For a statement X:=expr, a new signal is created as well as a new environment with this signal in it (substituting the previous one). The value carried by the signal will be the result of the translation to Signal of expr, e.g.: tran(fx1; y1g; fx2; y1g)(X:=expr) = x2 := tran(fx1,y1g,fx1, y1g)(expr) Sequence. It is noted \;" in ST. The environment calculated for the rst statement is passed as input environment to the following statement: tran(Env input ; Env output)(stat;statlist) = tran(Env input ; Env stat)(stat) | tran(Env stat ; Env output)(statlist) At the end of the ST sequence the last environment is saved into the memory for the next scan, as follows:

| Env current := Env endbody default Env mem | Env mem := Env current $1 init V al init
where Env endbody is the environment resulting of the translation of the statement list, Env current the one holding the news values and Env mem holding the previous values.

Conditional statement. The if-then statement has an input environment and must produce an output environment which can be either the same input environment when the condition is false or a new one produced by the statement list when it is true:

tran(E in ; E out)(IF exprC THEN statlist END IF) = cond := tran(E in)(exprC) | Env bodyif := E in when cond | tran(Env bodyif ; Env endbodyif)(statlist) | E out := Env Endbodyif default (E in when not cond)
The conditional expression exprC is evaluated using the input environment. If it is true, a new environment (Env bodyif) is created holding the signals with the clock when cond. The statement is translated using this environment, yielding Env endbodyif . Then, Env output is the merging of this one and the input one when the condition is false (and no statement is executed).

Bounded loop. There is a choice of several kinds of loops in ST: bounded (FOR expr DO inst END FOR) and unbounded (WHILE expr DO inst END WHILE and REPEAT inst UNTIL expr END REPEAT), with an EXIT statement causing the current level of nested loops to be exited. As mentioned above, bounded loops can be unfolded into a sequence, and then treated just like the sequence presented before. In case of bounded loops with high bounds (i.e. numerous iterations) this unfolding or expansion can indeed be costly; one can discuss whether this is reasonable according the cases under study. Compared to the other one mentioned next, this approach can be termed spatial expansion.

Unbounded loop. One can de ne, alternately, one instant for each assignment to the variable: this approach can be named temporal expansion. In this case, one has to de ne the control automaton of the ST program, describing the sequence between slices with no more that one assignment for each variable referenced. Then one has to associate equations for each of the slices, and activate them at the right logical instant, according to the control automaton. The memorization of variables has to be managed from one instant to the other, in an explicit manner (in Signal, using the $ delay operator).

Given the presence of unbounded loops in ST, this technique is necessary to model this kind of behavior.

The mechanism of Signal called upsampling consists in being able to write Signal programs that upsample a signal, i.e. that perform actions at more instants than the occurrences of that signal, i.e. at a relatively faster (or denser) clock (in the sense of sets of instants, the upsampling includes the upsampled). It is possible to specify at which instants of the internal clock (according to the internal state) new inputs can be acquired. In that sense, Signal is a proactive language rather that a reactive language.

This corresponds to what we want to model in ST: unbounded loops can insert an arbitrary number of instants between input acquisition and output emission (i.e. instants inside a scan). The moment when the loop is terminated (because of the condition or of an EXIT statement) is determined by the internal state of variables and control.

Our model on ST in Signal makes use of these two approaches. Its modeling bene ts from results of the modeling into Signal of the imperative language of actions in StateMate 2, 12].

Conclusion and perspectives

The way we approah the integration of the IEC 1131 norm with the synchronous technology is by modeling the languages into Signal equations, supported by an automatic translation. In particular the imperative sequential language Structured Text (ST) is modeled using the data-dependencies encoded as data-ows. The up-sampling of Signal is used to model time internal to the PLCs execution cycle, illustrating the use of synchronous models to represent non-instantaneous input-output behavior.

Perspectives are in polishing the modeling of ST (e.g. integrating complex data types), validating and implementing it, modeling other IEC 1131 languages, and taking care of inter-operability questions, making actual use of the synchronous analysis and compilation functionalities, adapted to the speci ties of the IEC languages and PLC architectures, and generalizing the use of upsampling to re ne a logical instant into a sequential implementation.

Figure 1 :

 1 Figure 1: The four programming languages of the IEC 1131-3 norm.

 10]. The basic objects are signals, which are series of values. The programs are equations relating the values of signals at a given instant. The primitive constructs are as follows: functions: e.g. on Booleans: X := A and not B; selection (or down-sampling): X := Y when B; merge (or upsampling): X := Y default Z; delay (previous value, with initialization): X := Y$1 init X0.